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THE ECOLOGICAL FALLACY

STEVEN PIANTADOSI,12 DAVID P. BYAR,1 AND SYLVAN B. GREEN1

The purpose of this paper is to emphasize
for epidemiologists the possibility of serious
errors resulting from inferences based on
ecological analyses. Variables that describe
groups of individuals, rather than the in-
dividuals themselves, are termed "ecologi-
cal" and are often used when the analysis
of individuals' data is not possible (1). Eco-
logical analyses may be preferred when 1)
variables are more conveniently defined or
measured on groups because the analysis
on individuals would require excessive time
or extensive data gathering; 2) ecological
analyses permit study of a wider range of
values for the independent variable, as in
international studies of diet; 3) the preci-
sion of aggregate measures like alcohol con-
sumption is likely to be higher for groups
than for individuals; and 4) population re-
sponses such as smoking quit rates may be
of primary interest. Frequently, more than
one reason applies. For example, some of
the evidence favoring environmental and
dietary causes of cancer comes from the
comparison of incidence or mortality rates
with average levels of risk factors measured
on culturally or geographically defined
groups of individuals. The first three rea-
sons are relevant to this type of study.

We assume in this paper that measure-
ments on individuals are not available, as
in the diet and cancer example, since when
this information is known, it might be used
in place of, or to correct for biases in, the
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ecological analysis. Serious errors can re-
sult when an investigator makes the seem-
ingly natural assumption that the infer-
ences from an ecological analysis must per-
tain either to the individuals within the
groups or to individuals across groups. A
frequently cited early example of an ecolog-
ical inference was Durkheim's study of the
correlation between suicide rates and reli-
gious denominations in Prussia (2) in
which the suicide rate was observed to be
correlated with the number of Protestants.
However, it could as well have been the
Catholics who were committing suicide in
largely Protestant provinces. The potential
falsity of ecological inferences, at least in
the case of simple correlations, was pointed
out by Robinson (3), who gave it the name
"ecological fallacy" and provided the math-
ematical relation, without proof, between
the ecological correlation and the individ-
ual correlation across all groups. Duncan et
al. (4) have extended the equations to in-
clude simple linear regression coefficients.
The dangers of inferences about individuals
from ecological studies have been empha-
sized by some investigators (5-7), while
others (8-11) have sought to minimize the
concern over the possible biases in ecolog-
ical analyses, proposing alternatives or de-
lineating circumstances in which ecological
inferences are justified (e.g., certain linear
regression models when data on individuals
are available). Firebaugh (11) gives a par-
ticularly thorough discussion and list of
references related to this aspect of the prob-
lem.

Although there has been a persistent in-
terest in the problems associated with eco-
logical analyses in the social science liter-
ature, the impression seems to remain, even
among seasoned epidemiologists, that eco-
logical analyses may not have large biases,
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at least in certain cases. Such impressions
result, in part, from the nonintuitive sound
of serious disparity between group level and
individual level statistics. Our goal is to
provide convincing evidence, intuitively,
mathematically, and empirically, of the
possibility of important bias in ecological
analyses and to clarify some recent work
on this topic. We present a hypothetical
example of the ecological fallacy and a sim-
ple derivation of the relation between the
individual correlation and the ecological
correlation. We extend this derivation to
outline the relation between the individual
regression slope and the ecological regres-
sion slope. In addition, theoretical obser-
vations are supported by an ecological
analysis of correlations and regression coef-
ficients for a set of real data, using variables
often encountered in epidemiologic prac-
tice.

HYPOTHETICAL EXAMPLE

The ecological fallacy is illustrated in a
simple case by considering the hypothetical
data in table 1. Although these data are
contrived, they are useful since the relevant
correlations are evident by inspection or
simple calculation. Here, N individuals are
classified into r groups of equal size n, = k.
A variable, X, is assigned to each individual
and has the values of the consecutive inte-

TABLE l

Hypothetical data illustrating the ecological fallacy

X Y Group

1
2
3

k
k + 1
k + 2
k + 3

k
k-
k-

1
2k

2k-
2k-

1
2

1
2

1
1
1

1
2
2
2

gers from k(i — 1) + 1 to ki in the ith group.
Within each group, the values of a second
variable, Y, are chosen to be the descending
consecutive integers from ki to k{i — 1) +
1 in the ith group (i.e., the reverse order of
the X's). These data have the following
characteristics. The overall means of X and
Y, X and Y, are equal, as are the within-
group means, X, and Y,. Similarly, the over-
all variances are equal, as are the within-
group variances. The within-group corre-
lation coefficient, p,, equals —1 for all i, but
since the group means for X and Y are
identical, the between-group or ecological
correlation, pe, equals 1. It is easily shown
(see Appendix 1), however, that for these
data, the overall correlation between X and
Y, ignoring groups, is

P =
AT2 + 1 - 2k2

N2 - 1

N N-k+1 N/k

Thus, p = pc only when k = N (i.e., a single
group), and p = pe when k = 1 or as N —* oo
and k <K oo. In instances like this, however,
in which there is an appreciable group ef-
fect (i.e., the expected value of Y given X,
E( Y | X), is not the same in all groups), the
correlation of interest is neither p nor pe

but the average within-group correlation,
pw (defined later), which in the present
example equals —1 since all p, are the same.
For this example, the value of p always
exceeds 0.5, 0.92, and 0.98, respectively, for
two, five, and 10 groups, whatever the num-
ber of subjects in each group. Furthermore,
since the overall and within-group vari-
ances for X and Y are equal, the linear
model

Y= a + 0X

and its ecological counterpart

Y, = ae + (3eX

would give estimates /J = p and (3e
 = Pe-

This simple example demonstrates maxi-
mal disparity between the ecological cor-
relation or the ecological regression slope,
and the corresponding overall or within-
group estimates.
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THE ECOLOGICAL FALLACY 895

DERIVATION OF GENERAL RELATIONS

To understand the source of the ecologi-
cal fallacy in the general case, consider N
individuals classified into r groups of size
n,, where i = 1, 2, . . . , r, and a single
covariate, X, linearly related to a response
Y for each individual. The relation between
ecological analyses and other analyses
based on individuals can be seen by appro-
priate partitions of the total sums of
squares and cross-products. Define

X..=

and an analogous definition for Y. For no-
tational convenience, sums of squares and
cross-products are denoted by T (total), W
(within groups), or E (ecological or between
groups), with subscripts indicating the vari-
ables involved. Thus, in the usual analysis
of covariance (12) (table 2), Txx is the total
sum of squares of X, W^ is the within-
groups sum of cross-products of X and Y,
and Eyy is the between-groups sum of
squares of Y. The total sum of cross-
products about the mean across all individ-
uals may be partitioned into within-group
and between-group components as follows:

=1 ; = 1
.j- Y)

= WZy+ EXy,

where

and

i = l 7=1

r v \l V V \

I - Y).

The corresponding formulas for the sum of
squares of X (or Y) are obtained by replac-
ing Y with X (or X with Y) in these equa-
tions. The between-group or ecological
sums of squares and cross-products are
weighted by the number of individuals in
each group. The correlation coefficient be-
tween X and Y, ignoring groups, is

P = j rp rp >V4
1 i- xxlyyS

irp rp »Vi
I J- xxJ-yy)

Rewriting equation 1 as

irp rp jVb •
t J- xx-lyyf

(1)

P =

IW W I*

,„ wj" (2)

we may now define the ecological correlation

Pe =

and the average within-group correlation

Wxy
Pw —

so that

P _ j&&}\+tor ̂
L •* xxlyy) \_ ixx^yy )

(3)

Note that pw is not influenced by group
effects. Some additional definitions will
show that this last result is equivalent to
that given originally by Robinson (3). De-
tails are given in Appendix 2.

In an analogous fashion, we may define

TABLE 2

A general analysis of covariance

Source

Between groups
Within groups

Total

df

r - 1
2ra, — r

Sra,- 1

2 I2

Sum of squares and products

2 x y

Wyy

Tyy
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896 PIANTADOSI ET AL.

the regression coefficients

T
P - TfT >

1 xx

and

and show that

W
Pw w ,

W
P = 7f Pe + -zr Pw, (4)

-*• xx •* xx

where ft ft, and ft, are the overall regres-
sion slope, ecological regression slope, and
the average within-group regression slope,
respectively. This can be written

ft = f= 0 - & - ll ft,

T
= ft, + — (|8 - ft,), (5)

with the first equality being the relation
given by Duncan et al. (4).

ANALYSIS OF GENERAL RELATIONS

In the absence of group effects, the
regression coefficient of interest is 0,
whereas when group effects are present, p*w

is a more appropriate description of the
data. In fact, when group effects are absent,
P = ft,, so that ft, is always the regression
coefficient of interest. The ecological fal-
lacy consists of incorrectly assuming that,
when group effects are present, ft = ft.

We can see immediately from equation 4
that the coefficients of ft and ft sum to 1,
so that /3 is always a weighted average of
the ecological and within-group regression
slopes. The consequence of this is that p
either lies between ft and ft, (although the
order of ft and ft, cannot be predicted) or,
when there are no group effects, /3 = jSe =
ft,. More generally, however, there are
group effects so that P and ftj are unequal,
and thus ft and ft, are also unequal. For
regression coefficients, the notion of sepa-

rating "cross-level" bias into aggregation
bias (the difference between p and pe) and
specification bias (the difference between P
and pw) (1) is not meaningful since both
biases either occur together or not at all, as
implied by Firebaugh (11). In fact, it may
easily be shown that

W
Pe-P = -=?(P- PJ,

hixx

further emphasizing that aggregation bias
and specification bias do not occur sepa-
rately.

The results for correlation coefficients
are similar. The multipliers of pe and pw in
equation 3 do not, however, sum to 1, so
that p is not always constrained as P was.
For correlations, the ecological fallacy con-
sists of incorrectly assuming that pe esti-
mates either p or pw.

The point has been correctly made (1,
10, 11) that ecological correlations are
likely to be poorer estimates of their indi-
vidual counterparts than ecological regres-
sion slopes. This is because correlations
depend on the relative dispersions of X and
Y and thus are determined by the design of
the experiment. Note that

Wxx
Pw = Pw\ -7771 pe =

Ex

Selecting groups specifically because they
differ in X, will tend to increase the vari-
ance of Xi compared with the variance of
y,, and therefore increase the ecological
correlation. In the absence of group effects
in regression (P = pe = Pw), the correlations
can nevertheless differ, and the relation of
pe and pw will depend on how the groups
are chosen. Although demonstrating that
Pe^O can be useful, its actual value seems
quite arbitrary. If the goal is to make state-
ments about Y on the basis of X, then in
this situation, ft is a more useful quantity
than pe.

It has been stated by some writers (see
for example Stavraky (13) and Kleinbaum
et al. (14)) that ecological associations are
frequently an overestimate of the magni-
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THE ECOLOGICAL FALLACY 897

tude of the underlying individual effects.
While this is always possible, we can find
no justification for assuming that it is more
likely than the alternative. As noted above,
in the absence of group effects, the selection
of groups will affect pw (and may well tend
to increase correlations). When group ef-
fects do, however, exist (which is quite
likely in epidemiologic studies), the bias
can be in either direction.

The concept of group effects in regres-
sion can be expressed in other ways. As
stated above, by group effects we mean that
E(Y\X) is not the same in all groups or,
equivalently, that j8 # ft, 5̂  fiw (i.e., there is
cross-level bias). Thus, group membership
is related to some confounding factor(s)
which affects the observed relation between
X and Y. Firebaugh (11) addresses this
situation by considering a regression of the
form Y = a + ftX + yXi; the presence of
group effects implies that 7 5̂  0. Without
data on individuals, this situation cannot
be detected, yet it is quite likely to exist in
epidemiologic studies. Of course, if an in-
vestigator is aware of potential confounding
variables measured on the groups, these can
be included in the ecological regression to
decrease the bias (10). The issue to consider
is how likely are the groups to differ by
other (unmeasured) variables.

A confounder can exist on two levels. A
variable could be confounding only on the
group level, and thus affect both 0 (the
overall slope for X) and ft, (the ecological
slope for X), but not ft,,. For example, the
variable could be a characteristic of the
whole group rather than the individual
(e.g., geographic latitude) or the variable
could be independent of X within groups,
but correlated with X across groups. If such
a variable were known, it could be properly
incorporated in an ecological regression.
The problem is that variables such as this
could well exist but not be identified. If
individual level data on X and Y were avail-
able, individual level regression adjusted for
group effect would permit unbiased esti-
mation of the desired effect of X on Y.

Alternatively, a variable could be con-

founding on both the individual and group
levels (e.g., age confounding the effect of
diet). In this situation, information on the
confounder would have to be incorporated
into the regression whether at the individ-
ual level or the ecological level.

In theory, there is a third alternative in
which a variable is confounding on the in-
dividual level but is not confounding in
linear regression at the group level (because
the variable is uncorrelated with group
membership). For example, in an investi-
gation of the relation of diet to the risk of
colon cancer, sex is a possible confounding
factor, but it is conceivable that all groups
have essentially the same sex ratio. In this
situation, ecological regression might be
preferable to unadjusted individual level
regression.

EMPIRICAL STUDY OF ECOLOGICAL

CORRELATIONS

We now consider an ecological analysis
of data from the Second National Health
and Nutrition Examination Survey
(NHANES II) in which we can compare
individual level and grouped estimates.
This study, conducted by the National Cen-
ter for Health Statistics between 1976 and
1980, was intended to assess the health and
nutritional status of the general civilian
noninstitutionalized population of the
United States (15). Initially, a nationwide
probability sample of approximately 28,000
persons was taken with oversampling in
those groups thought to be at high risk of
malnutrition (low income, preschool chil-
dren, and the elderly). A 24-hour dietary
recall questionnaire was given to a subset
of 13,820 adults. From these records, we
selected 11 variables for analysis describing
or derived from health history, food fre-
quency, and anthropometry (16). Measure-
ments were on continuous scales for dietary
measures, height, weight, age, and body
mass index (weight in kilograms divided by
the square of height in meters), ordered
categories for income and education, and
binary categories for sex and race (table 3).
These variables were selected not because
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898 PIANTADOSI ET AL.

TABLE 3

Coding scheme for binary and ordered category
variables

Variable

Sex
Male
Female

Race
White
Other

Education
None

1*
2
3
4
5
6
7
8
9

10
11
12

I t
2
3
4

>5
Income^

< 1
1-2
2-3
3-4
4-5
5-6
6-7
7-9

10-15
15-20
20-25
>25

Code

1
2

1
2

0
1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17

11
12
13
14
15
16
17
18
19
20
21
22

* Grade.
t Year of college.
$ XI,000.

of pathologic behavior but because they
represent the type of measurements likely
to appear in ecological analyses conducted
by epidemiologists. Three levels of aggre-
gation were studied. Because individuals
were originally selected for the NHANES
II study through one of 64 primary sam-
pling units consisting of counties or county
aggregates, the primary sampling unit made

a convenient grouping variable and was the
lowest level of aggregation used. Individuals
also represented 34 different states which
were used as a second level of aggregation.
Finally, states were classified into one of
six regions (northeast, north central, etc.)
for the highest level of aggregation. Pri-
mary sampling units contained an average
of 216 people with extremes of 130 and 343.
Aggregation into states resulted in an av-
erage group size of 406 with extremes of
132 and 1,250. The six region sizes were
3,078, 2,869, 3,395, 2,333, 763, and 1,382
(mean = 2,303).

Table 4 shows a partition of sums of
squares and cross-products for the vari-
ables income and education (highest grade
attained). The between-group sums of
squares are weighted by the number of in-
dividuals in each area. These quantities are
presented here because of their relevance
to the derivation of equations 3 and 4 and
could be used to calculate the necessary
statistics. In practice, however, it is easier
to calculate the ecological correlation coef-
ficients and regression parameters directly
from suitable statistical software packages
without using the intermediate sums of
squares. The quantity pe is a weighted cor-
relation of Xi and Y, with weights equal to
the number of individuals in each group.
Similarly, /3e can be calculated as the
weighted regression of Y; on X, with
weights equal to the number of individuals
in each group. The quantity pw may be
conveniently calculated from the within-
group sums of squares. These same quan-
tities may be used to calculate /3M. Alter-
natively, f3w can be calculated as the
weighted average of within-group regres-
sion slopes; the weights for pw are the
within-group sums of squares about the
mean for the independent variable X. Al-
ternatively, in a linear analysis of covari-
ance model that fits a separate intercept
for each group, the common slope is /3W.

The behavior of ecological correlations in
the NHANES II data can be seen by ex-
amining the results in table 5. Significance
levels for these estimated correlation coef-

 at U
niversity of C

alifornia, Los A
ngeles on A

ugust 3, 2011
aje.oxfordjournals.org

D
ow

nloaded from
 

http://aje.oxfordjournals.org/


THE ECOLOGICAL FALLACY 899

TABLE 4

Analyses of covariance for the NHANES data (x = income, y = education)

Source df

Between primary sampling units
Individuals within primary sampling units

Between states
Individuals within states

Between regions
Individuals within regions

Total

63
13,756

33
13,786

5
13,814

7,761
92,523

5,675
94,609

2,634
97,650

5,468
30,769

4,544
31,693

3,567
32,670

10,609
143,669

8,130
146,148

4,905
149,373

13,819 100,284 36,237 154,278

ficients were calculated by comparing {N —
2)* p/(l - p2)* with the t distribution with
N — 2 df (17), where N is the number of
observations on which the correlation is
based. It is apparent that correlations
among group averages not only inade-
quately estimate both the correlation
among individuals and the average within-
group correlation but also show no discern-
ible qualitative consistency to this effect.
The ecological correlations may under- or
overestimate the correlation among indi-
viduals, with equally unpredictable signifi-
cance levels. The average within-area cor-
relations in table 5 are, however, essentially
identical to the overall correlation that ig-
nores groups, indicating that for these data,
most of the total variation is due to within-
group variation.

Of the 13 variable pairs examined in table
5, four show increasing positive or negative
correlation as the level of aggregation in-
creases, three show the reverse pattern, and
six are mixed. The levels of statistical sig-
nificance for testing the hypothesis that the
correlation is zero (not shown) may either
increase or decrease with higher aggrega-
tion. It is not surprising that aggregation
fails to preserve the statistical significance
of some overall correlations (e.g., race-
income) because of reduced degrees of free-
dom at higher levels of aggregation, but it
is worrisome that nonsignificant individual
level statistics can produce significant eco-
logical estimates (e.g., height-body mass in-
dex).

The behavior of ecological regression
coefficients in the NHANES II data can be
seen by examining table 6. Approximate 95
per cent confidence limits were calculated
as ± to.975 (N - 2 df) times the estimated
standard error of each regression coeffi-
cient. These confidence bounds are useful
for testing the hypothesis that a coefficient
differs from zero, but they are not as useful
for testing the equality of coefficients
across levels of grouping because the covar-
iance of two coefficients is not zero. Here
again, there appears to be no constant pat-
tern to the relation among the fl's, except
that P lies between ft, and ft,, as required by
expression 4. The order of ft, and (lw is,
however, not consistent: The ecological
regression coefficients may fluctuate
(weight-body mass index), increase (in-
come-education), or decrease (protein-fat)
with respect to the overall regression. As
for the correlation coefficients, nonsignifi-
cant individual level effects may produce
significant ecological regressions (height-
body mass index) and, conversely, signifi-
cant individual level effects may produce
nonsignificant ecological regressions (race-
income). This correspondence between the
regression and correlation occurs because
the significance of the coefficients is as-
sessed using equivalent tests. We note the
relative consistency of the dietary ecologi-
cal regressions in table 6, except at the
regional level for two of them, but can offer
no theoretical explanation for the observed
behavior. For most variables in table 6, f3w
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is close to j8, indicating that most of T^ is
due to Wn- Even when f)w is close to (8, the
ratio T^/Exx can be large, making ft. and
(3a, different (equation 5).

Examination of the confidence bounds
reveals that, in some cases such as height-
weight and income-education, the values of
Pe are not consistent with the values of flw.
In other words, the disparity between the
ecological and individual regression esti-
mates is not due solely to the larger varia-
bility of the former but is due, presumably,
to a confounding factor. For the protein-fat
pair, the ecological regression on regions
not only is inconsistent with the individual
coefficient but also has the wrong algebraic
sign. We note the particularly wide confi-
dence limits for ecological regression coef-
ficients when the independent variable is
the binary variable sex. This occurs because
the sex ratio differs little across groups,
suggesting that in such a situation ecologi-
cal regression is particularly unwise.

Finally, the results for regressions re-
versing the role of the dependent and in-
dependent variables may be deduced from
tables 5 and 6 since the correlation coeffi-
cient is the geometric mean of the regres-
sion coefficient for Y on X and that for X
on Y. The significance levels for the two
regressions are the same.

DISCUSSION

This paper shows that the relation be-
tween /8e and the individual level measure-
ments is not qualitatively constant but de-
pends on the effects of grouping. The case
/8 = )9e = fiw could arise only when the
grouping has no effect on the regression.
The emphasis here is, however, on obser-
vational studies in which individual level
data are unavailable, and hence the as-
sumption of no group effects cannot be
verified.

In the case of linearly related variables,
the ecological fallacy can be understood as
the incorrect equating of between-group ra-
tios of the sums of squares and cross-
products with the relations between the
totals (or within groups). When data are
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available on individuals and the groups to
which they were assigned, the ecological
analysis is seen to be a part of the usual
analysis of covariance. Ecological analyses
are, however, incomplete analyses of covar-
iance since, if the information on individ-
uals were available, it could be used to avoid
these problems, although covariance ad-
justment on unplanned experimental data
has its own difficulties (18). We believe that
the investigator is never justified in inter-
preting the results of ecological analyses in
terms of the individuals who give rise to
the data. This may seem to many readers
to be an overstatement; however, our the-
oretical and empirical analyses offer no
consistent guidelines for the interpretation
of ecological correlations or regressions
when data on individuals are unavailable.

We note that the literature on ecological
analysis, as well as our derivation above,
generally neglects the possibility of inter-
actions. If, after adjustment for confound-
ing, the regression coefficient for X is found
to differ significantly according to some
other variable, that variable and X are said
to have an interaction (on the scale of
measurement being used). In such a situa-
tion, one may well be interested in more
than the overall slope (whether individual
level or ecological) or the average within-
group slope. For example, if the effect of X
on Y were significantly different for males
compared with females, then in addition to
the coefficient for X, the interaction term
would also be important. This could only
be determined if sex were included in the
regression. While in theory this could be
done for both individual level and ecological
regression, in the latter situation the groups
would have to have different sex ratios as
well as different values of X in order to fit
the full regression.

Ecological analyses become flawed in ex-
actly the same circumstances that individ-
ual level analyses do, i.e., in the presence
of confounding. The consequences of con-
founding bias in the ecological analysis are
more severe, however. With respect to in-
ferences about individuals, the proper role

of ecological analyses is to generate new
hypotheses which must then be tested using
more appropriate experimental or obser-
vational methods. To interpret ecological
analyses sensibly, the investigator should
use outside information to judge the likeli-
hood of serious errors. Additionally, infer-
ences should be confined to the level of
observation (or experimentation). These
conclusions apply both to simple correla-
tion coefficients and to linear regression
slopes. While we are unaware of theory for
nonlinear response models, it seems likely
that similar problems might arise, and the
same caution should be used.
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APPENDIX 1

Theorem: For the data in table 1,

N2 + 1 - 2k'
P = N*-i • ( A 1 )

Proof: By definition, the overall correlation coefficient is

2 2 XvY.j - NX?

1(2 2 xi - NX2) (2 S yj -

Since 2 2 XI = 2 2 yj and X = 7,

We begin by calculating

2 2 X»YV ~ NX2

p = = — . (A.2)
2 2 XI - NX*

N/k k

2 2 xv Y,, = 2 2 ((» - Dfe + ;)(«* + 1 - i)-

Expanding the product and using the relations

™ . _ ro(m + 1)

and

+ l)(2m + 1)

,V = - 6 '
yields

S V V V — (A ^
D

Similarly,

NX2 = N* + 2N' + N
 t (A.4)

4

and

2̂  -̂ y ~ ^ • IA.OJ

Substituting expressions A.3-A.5 into A.2 yields equation A.I.

APPENDIX 2

To show that equation 3 is Robinson's result (3), define

2 _ Eyy

' yy

and
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These quantities, termed the correlation ratios, measure the degree of clustering in X and Y among areas (3, p.
355). We can write equation 3 in terms of rjl and IJ2, by noting

and

Therefore, equation 3 becomes

p = r,, Vy p€ + (1 - , ,»)" ( l - >,/)* PU, • (B. l )

Solving equation B.I for p, yields

which is the relation given by Robinson (3) without proof.

f Pw,
V, Vy J
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