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Abstract  

Many studies have sought to determine whether there is an association between air quality and 

acute deaths in the US. Additionally, many consider it plausible that current levels of air quality 

cause acute deaths. However, several factors call causation and even association into question. 

Multiple testing and multiple modeling and various biases can lead to false positive findings.  

Moreover, the fact that most data sets used in studies evaluating the relationships among air 

quality and public health outcomes are not publicly available makes reproducing the results 

nearly impossible. Here we have publicly available a dataset containing daily air quality levels, 

PM2.5 and ozone, daily temperature levels, minimum and maximum and daily relative humidity 

levels for the eight most populous California air basins. Over two million death certificates were 

obtained from the state of California and daily death counts in the eight air basins were derived. 

We analyzed the dataset using a standard time series analysis, a moving median analysis, and a 

prediction analysis in which we use leave-one-year-out cross validation analysis to evaluate 

predictions. Both standard time series analysis and the moving medians analysis found little 

evidence for association between air quality and acute deaths. The prediction analysis process 

was a run as a large factorial design using different models. We use holdout predictive mean 

square error to assess prediction. Among the variables used to predict acute death, most of the 

daily death variability was explained by time of year or weather variables. In summary, neither 

PM2.5 nor ozone added appreciably to the prediction of daily deaths. The empirical evidence is 

that current levels of air quality, ozone and PM2.5, are not causally related to acute deaths for 

California.  

  



some of the coefficients β2,…,βk are constrained to be equal; however, this usually has only 

minor impact on the important coefficient β1). Other common approaches use any of lags 0, 1, 2 

in a single-lag model, or averages over any combination of lags 0, 1, 2, 3. For the present study, 

we have tried different combinations of lags to look for the lag combination that best represents 

the air pollution effect. We believe this approach to be justified in view of the weak evidence for 

any air pollution effect in these dataset; however, in view of the selection bias inherent in such an 

approach, we caution against over-interpretation of such results, especially in cases where the p-

value is over 0.01 or the result highly depend on the selection of a particular combination of lags.  

South Coast Air Basin 

The approach outlined in the previous section is applied to data from each of eight California air 

basins, Figure. 1. Because they are the two most populated air basins, we concentrate initially on 

the South Coast air basin (which includes Los Angeles, Orange, Riverside and San Bernardino 

Counties) and the San Francisco Bay air basin (San Francisco, Marin, Sonoma, Napa, Solano, 

Contra Costa, Alameda, Santa Clara and San Mateo counties). For the response variable in this 

analysis, we use total non-accidental mortality among people aged 65 and over. 

 

Fitting the meteorological model alone, in Table 1 we tabulate the p-value associated with 

dropping each of the six terms in turn. Five of the meteorological variables are very highly 

significant; the only exception is current-day relative humidity. This result is based on the 

particular choices df0=7, df1=df2=6, but the overall conclusion is robust against alternative values 

of those three degree of freedom parameters. 

Variable Lags p-value 

   

Daily Max Temperature Current day 0 <1 e-16 

Daily Max Temperature Mean of 1,2,3 4.6 e-7 

Daily Min Temperature Current day 0 2.5 e-4 

Daily Min Temperature Mean of 1,2,3 2.4 e-5 

Mean Daily Relative Humidity Current day 0 0.18 

Mean Daily Relative Humidity Mean of 1,2,3 1.5 e-10 

 

Table. 1: Statistical significance of meteorological components: based on model (1) without air 

pollution component and with df0=7, df1=df2=6, fitted to nonaccidental mortality for ages 65 and 

up, South Coast air basin. 



In subsequent analyses, we have retained all six meteorology components; this is to ensure 

consistency across different air basins and to avoid the analysis being biased by overuse of 

statistical significance tests; however, Table. 1 is evidence that we have identified appropriate 

meteorological variables for the overall analysis. 

We now consider addition air pollution variables to the meteorological model in Table 1. 

Initially, we concentrate on ozone. Table 2 shows the coefficient estimates, standard error (SE), 

t-value and p-value associated with ozone at various combination of lags. The units here are 

percent rise in mortality per 10 ppb rise in ozone. The strongest positive coefficient is based on 

lags 0, 1, 2 and 3, for which the model predicts a 0.1% rise in mortality per 10 ppb rise in ozone. 

However, neither this nor any of the other values in the table comes anywhere close to being 

statistically significant. This is for 13 years of data over one of the most densely populated areas 

of the US – if there is an ozone-mortality effect in California, we ought to see it here. 

Lags Included Estimate SE t-value p-value 

     

0 0.0870 0.1135 0.77 0.44 

1 -0.0472 0.1136 -0.42 0.68 

2 0.0471 0.1141 0.41 0.68 

0,1 0.0266 0.1315 0.20 0.84 

1,2 0.0002 0.1330 0.00 1.00 

0,1,2 0.0825 0.1507 0.55 0.58 

0,1,2,3 0.1222 0.1673 0.73 0.46 

0,1,2,3,4 0.0941 0.1802 0.52 0.60 

0,1,2,3,4,5 0.0096 0.1905 0.05 0.96 

0,1,2,3,4,5,6 -0.0479 0.1992 -0.24 0.81 

 

Table. 2: Statistical significance of ozone component with various combinations of lags: based 

on model (1) df0=7, df1=df2=6. Estimate is percent rise in mortality for 10 ppb rise in ozone. 

South Coast air basin; response variable is non-accidental mortality aged 65 and over. 

The same analysis was tried using PM2.5 in place of ozone, with results shown in Table 3. In this 

case, several of the estimates appear to be statistically significant with a p-value <0.05 (smallest 

value 0.017), but all the statistically significant values are negative, which is not biologically 

plausible. We conclude that either the small p-values are an artifact of the selection effect already 



mentioned, or there is some other biological mechanism, such as confounding by some other 

pollutant, that explains these results. 

Lags Included Estimate SE t-value p-value 

          

0 0.1261 0.0998 1.26 0.21 

1 -0.1966 0.0990 -1.99 0.05 

2 -0.2121 0.0995 -2.13 0.03 

0,1 -0.0425 0.1144 -0.37 0.71 

1,2 -0.2720 0.1151 -2.36 0.018 

0,1,2 -0.1133 0.1294 -0.88 0.38 

0,1,2,3 -0.1636 0.1409 -1.16 0.25 

0,1,2,3,4 -0.1611 0.1499 -1.07 0.28 

0,1,2,3,4,5 -0.2609 0.1582 -1.65 0.10 

0,1,2,3,4,5,6 -0.2435 0.1659 -1.47 0.14 

 

Table 3: Statistical significance of PM2.5 component with various combinations of lags: based on 

model (1) df0=7, df1=df2=6. Estimate is percent rise in mortality for 10 µg/m3 rise in PM2.5. 

South Coast air basin; response variable is non-accidental mortality aged 65 and over.  

 In these analyses, the overdispersion parameter was of the order of 1.07 – in other words, the 

variance of the mortality variables is inflated by a factor of 1.07 compared with the Poisson 

distribution. This is typical for this kind of analysis and does not indicate a problem. A much 

larger overdispersion parameter could indicate some important missing covariates. 

San Francisco Bay Air Basin 

So far, we have only considered one air basin. The second most populated is San Francisco Bay, 

which has substantially different weather patterns and demographics from the Los Angeles area. 

Therefore, the entire analysis has been repeated for this air basin, as a test of how robust the 

analyses are for different regions of the state. 

Table 4 shows the statistical significance of the individual meteorology components, analogous 

to Table 1 for the South Coast air basin. The main difference from Table 1 is that neither of the 

components due to relative humidity is statistically significant. (Although not reported in the 

table, if both relative humidity components – current day and the average of lags 1, 2, 3 – are 

dropped together, rather than one at a time, we also do not get a statistically significant 



component due to relative humidity.) In the following analyses, to maintain consistency of 

analysis methods across different air basins, the main results are still reported including relative 

humidity, but to assess the sensitivity to this component, some of the analyses have been 

repeated omitting relative humidity altogether. 

 

Variable Lags p-value 

      

Daily Max Temperature Current day 0 9.05E-11 

Daily Max Temperature Mean of 1,2,3 0.0071 

Daily Min Temperature Current day 0 0.0019 

Daily Min Temperature Mean of 1,2,3 0.043 

Mean Daily Relative Humidity Current day 0 0.41 

Mean Daily Relative Humidity Mean of 1,2,3 0.32 

 

Table 4: Statistical significance of meteorological components: based on model (1) without air 

pollution component and with df0=7, df1=df2=6, fitted to nonaccidental mortality for ages 65 and 

up, San Francisco Bay air basin. 

Table 5 shows the results when ozone is added to the analysis. As with our earlier analyses for 

the South Coast air basin, none of the estimates of the ozone effect at various lags is statistically 

significant at the 0.05 level. However, two of the analyses (with lag 0 alone, and with lags 0 and 

1 together) are statistically significant with a p-value of about .02 if the relative humidity 

component is omitted. This result illustrates the principle that if enough different models are 

tried, it is usually possible to find some model that gives a statistically significant result: it does 

not imply that the result is significant in any practical sense. It should also be noted, however, 

that all the coefficients of models that include lag 0 are similar in magnitude (between 0.3 and 

0.6): the variation in p-values is mostly due to their standard errors. 

 

 

 

 

 



Lags Included RH included? Estimate SE t-value p-value 

            

0 yes 0.4464 0.2471 1.81 0.071 

1 yes 0.1889 0.2413 0.78 0.43 

2 yes -0.1560 0.2442 -0.4 0.52 

0,1 yes 0.4909 0.3030 1.62 0.11 

1,2 Yes 0.0225 0.2947 0.08 0.94 

0,1,2 Yes 0.3281 0.3502 0.94 0.35 

0,1,2,3 Yes 0.4210 0.3927 1.07 0.28 

0,1,2,3,4 Yes 0.4716 0.4167 1.13 0.26 

0,1,2,3,4,5 Yes 0.4703 0.4310 1.09 0.28 

0,1,2,3,4,5,6 Yes 0.3325 0.4448 0.75 0.45 

0 No 0.4838 0.2121            2.28 0.023 

0,1 No 0.5948 0.2604 2.28 0.022 

 

Table 5: Statistical significance of ozone component with various combinations of lags: based 

on model (1) df0=7, df1=df2=6. Relative humidity is omitted from some of the analyses. Estimate 

is percent rise in mortality for 10 ppb rise in ozone. San Francisco Bay air basin; response 

variable is non-accidental mortality aged 65 and over. 

 

Table 6 shows the corresponding results for PM2.5, where again relative humidity has been 

omitted from some of the analyses to illustrate the sensitivity to this component. Our conclusions 

are similar: some rows of this table show a statistically significant effect with a p-value of the 

order 0.02, but taking account of the number of models examined in order to achieve this result, 

it is unlikely to be of practical significance. 

The overdispersion parameter for these analyses was around 1.05. 

 

 

 



Lags Included RH included? Estimate SE t-value p-value 

            

0 Yes 0.3031 0.2362 1.28 0.20 

1 Yes 0.1235 0.2373 0.52 0.60 

2 Yes 0.3769 0.2312 1.63 0.10 

0,1 Yes 0.3968 0.2700 1.47 0.14 

1,2 Yes 0.4614 0.2679 1.72 0.09 

0,1,2 Yes 0.5903 0.3067 1.92 0.05 

0,1,2,3 Yes 0.5688 0.3297 1.72 0.08 

0,1,2,3,4 Yes 0.5042 0.3482 1.45 0.15 

0,1,2,3,4,5 Yes 0.5500 0.3634 1.51 0.13 

0,1,2,3,4,5,6 Yes 0.4884 0.3767 1.30 0.19 

0,1,2,3 No 0.5712 0.3123 1.83 0.07 

0,1,2,3,4 No 0.6518 0.3341 1.95 0.05 

0,1,2,3,4,5 No 0.8169 0.3535 2.31 0.021 

0,1,2,3,4,5,6 No 0.7737 0.3702 2.09 0.037 

 

Table 6: Statistical significance of PM2.5 component with various combinations of lags: based on 

model (1) df0=7, df1=df2=6. Relative humidity is omitted from some of the analyses. Estimate is 

percent rise in mortality for 10 µg/m3 rise in PM2.5. San Francisco Bay air basin; response 

variable is non-accidental mortality aged 65 and over. 

 

 Combining Results Across Air Basins 

In the NMMAPS papers on ozone [9, 18], the single-city analyses were repeated for up to 98 US 

cities for which ozone and mortality data were available. They were then combined across cities 

using a hierarchical model analysis, based on an algorithm originally due to Everson and Morris 

[21] and coded by Roger Peng into the R function “tlnise” [22]. The same method is used here to 

produce estimates that are combined across all eight air basins in our study. It would not be 

practicable (or interpretable) to repeat all the analyses for every combination of meteorological 

variables, lags of the pollutant variable, or degrees of freedom for the spline components of the 



model. Therefore, some choices were made, guided by the analyses already conducted for the 

South Coast and San Francisco Bay air basins, as follows: 

1. All analyses used all six meteorological variables. 

2. The degree of freedom parameters were set to be respectively 7, 6 and 6, for df0, df1 and 

df2. 

3. For both ozone and PM2.5, only certain combinations of lags were tried.  

The results of this analysis are shown in Table 7. None of the analyses show a statistically 

significant effect when combined across all eight air basins. 

 

Variable Lags Estimate SE t-value p-value 

            

Ozone 0,1 0.3376 0.2434 1.39 0.17 

Ozone 0,1,2 0.3165 0.2466 1.28 0.20 

Ozone 0,1,2,3 0.4149 0.3260 1.28 0.20 

PM2.5 0,1 0.0126 0.2034 0.06 0.95 

PM2.5 0,1,2,3 -0.0006 0.2464 0.00 1.00 

PM2.5 0,1,2,3,4,5 0.0689 0.2799 0.25 0.81 

 

Table 7: Combined results across all eight air basins. 

 All the analyses in this paper so far are based on total non-accidental mortality for ages 65 and 

up. The analysis was repeated using (a) total non-accidental mortality for all ages, (b) respiratory 

deaths aged 65 and up, (c) circulatory deaths aged 65 and up, (b) combined respiratory and 

circulatory deaths aged 65 and up. None of these produced a statistically significant result in the 

combined analyses. 

The results of Table 7 were also repeated with the choices df0=7, df1=6, df2=6 replaced by (a) 

df0=10, df1=6, df2=6, (b) df0=7, df1=3, df2=3, (c) df0=10, df1=3, df2=3. The analysis of Table 7 

was also repeated with relative humidity omitted from the analysis. None of these changes 

produced a statistically significant result in any of the combined analyses. 

[Point to Sup 3.2 A and Sup 3.2 B here] 

 

 



Comparisons with NMMAPS 

We have pointed out that the statistical methods of this paper are similar to those of the 

NMMAPS study; see in particular [8, 15], but they are not identical. Those papers also included 

an interaction effect between age and long-term trend, and the meteorological variables were 

daily mean temperature and dewpoint, rather than those of the present paper. What happens if we 

use exactly the same methods for the two datasets? 

To investigate this question, we recompiled the NMMAPS dataset but using tmax, tmin and daily 

max relative humidity as the meteorological variables. (Those variables are all in the NMMAPS 

dataset, but were not used in the previously cited papers.) The dataset was analyzed using the 

same computer code as the other analyses in this paper, applied to deaths aged 65 and over 

analyzed as a single age group (no interactions). We took df0=7, df1=df2=6 as in most of the 

analyses in this paper, and the distributed lag structure based on lags 0 through 6.  

Since the rest of this paper is concerned with California data, we concentrated on the California 

cities in the NMMAPS database. Table 8 shows results for each city, and the combined result for 

all 12 California cities. Also shown in Table 8 is the national result, in which the 12 California 

cities were combined with 86 other US cities, reanalyzed using the software of the present paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 



City Estimate SE t-value p-value 

     

Bakersfield 0.7031 0.9970 0.71 0.48 

Fresno 0.1577 0.9520 0.17 0.87 

Los Angeles 0.1941 0.2199 0.88 0.38 

Modesto 0.3027 1.5057 0.20 0.84 

Oakland 0.8943 1.0210 0.88 0.38 

Riverside 0.0255 0.6019 0.04 0.97 

Sacramento -0.0913 0.8334 -0.11 0.91 

San Bernardino 0.7358 0.6330 1.16 0.25 

San Diego 0.1080 0.4717 0.23 0.82 

San Jose -0.0481 0.9756 -0.05 0.96 

Santa Ana Anaheim 0.1231 0.4815 0.26 0.80 

Stockton 0.9981 1.3775 0.72 0.47 

All CA 0.2485 0.2307 1.08 0.28 

National 0.2873 0.0915 3.14 0.0017 

 

Table 8: Estimates for the ozone effect in 12 California cities from the NMMAPS study (San 

Francisco omitted because of lack of ozone data). Also shown are the combined results from all 

12 cities under “All CA”, and the combined results of all 98 US cities included in the NMMAPS 

ozone study. Applied to all deaths aged 65 and up, using tmax, tmin and maximum relative 

humidity as the three meteorological variables, and a distributed lag model for ozone covering 

lags 0-6.  

 The last result shows a combined estimate of 0.287 (percent rise in mortality per 10 ppb rise in 

8-hour daily max ozone) and a standard error (more precisely, posterior standard deviation) of 

0.0915. By comparison, the result quoted in Smith [9] was a combined estimate of 0.411 and a 

posterior standard deviation of 0.080. Just to make a further comparison with the results of Smith 

[9], the method of the present paper was repeated with mortality data from all age groups 55 and 

up (the same as in the original NMMAPS analyses) – in this case our estimated combined 

national coefficient, using the meteorological model of the present paper, rises only very slightly, 

from 0.287 to 0.300. Therefore, the difference in combined estimates compared with Smith [9] 

appears to be due to the different meteorological variables used and not to the different 




