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1 INTRODUCTION 

This document, Policy Assessment for the Review of the National Ambient Air Quality 

Standards for Particulate Matter (hereafter referred to as the PA), presents the policy assessment 

for the U.S. Environmental Protection Agency’s (EPA’s) current review of the national ambient 

air quality standards (NAAQS) for particulate matter (PM).  The overall plan for this review was 

presented in the Integrated Review Plan for the National Ambient Air Quality Standards for 

Particulate Matter (IRP; U.S. EPA, 2016). The IRP also identified key policy-relevant issues to 

be addressed in this review and discussed the key documents that generally inform NAAQS 

reviews, including an Integrated Science Assessment (ISA) and a PA.   

This document is organized into five chapters. Chapter 1 presents introductory 

information on the purpose of the PA, legislative requirements for reviews of the NAAQS, an 

overview of the history of the PM NAAQS, including background information on prior reviews, 

and a summary of the progress to date for the current review. Chapter 2 provides an overview of 

the available information on PM-related emissions, atmospheric chemistry, monitoring and air 

quality. Chapters 3 and 4 focus on policy-relevant aspects of the currently available health 

effects evidence and exposure/risk information, identifying and summarizing key considerations 

related to this review of the primary standards for PM2.5 and PM10, respectively. Chapter 5 

focuses on policy-relevant aspects of the currently available welfare evidence and associated 

quantitative analyses, identifying and summarizing key considerations related to this review of 

the PM secondary standards.1   

1.1 PURPOSE 

The PA evaluates the potential policy implications of the available scientific evidence, as 

assessed in the ISA, and the potential implications of the available air quality, exposure or risk 

analyses. The role of the PA is to help “bridge the gap” between the Agency’s scientific 

assessments and quantitative technical analyses, and the judgments required of the Administrator 

in determining whether it is appropriate to retain or revise the NAAQS.  

                                                 
1 The welfare effects considered in this review include visibility impairment, climate effects, and materials effects 

(i.e., damage and soiling). Ecological effects associated with PM, and the adequacy of protection provided by the 

secondary PM standards for them, are being addressed in the separate review of the secondary NAAQS for oxides 

of nitrogen, oxides of sulfur and PM in recognition of the linkages between oxides of nitrogen, oxides of sulfur, 

and PM with respect to atmospheric chemistry and deposition, and with respect to ecological effects. Information 

on the current review of the secondary NAAQS for oxides of nitrogen, oxides of sulfur and PM can be found at 

https://www.epa.gov/naaqs/nitrogen-dioxide-no2-and-sulfur-dioxide-so2-secondary-air-quality-standards. 

 

https://www.epa.gov/naaqs/nitrogen-dioxide-no2-and-sulfur-dioxide-so2-secondary-air-quality-standards
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In evaluating the question of adequacy of the current standards, and whether it may be 

appropriate to consider alternative standards, the PA focuses on information that is most 

pertinent to evaluating the standards and their basic elements: indicator, averaging time, form, 

and level.2 These elements, which together serve to define each standard, must be considered 

collectively in evaluating the health and welfare protection the standards afford.  

The PA is also intended to facilitate advice to the Agency and recommendations to the 

Administrator from an independent scientific review committee, the Clean Air Scientific 

Advisory Committee (CASAC), as provided for in the Clean Air Act (CAA). As discussed below 

in section 1.2, the CASAC is to advise on subjects including the Agency’s assessment of the 

relevant scientific information and on the adequacy of the current standards, and to make 

recommendations as to any revisions of the standards that may be appropriate. The EPA 

generally makes available to the CASAC and the public one or more drafts of the PA for 

CASAC review and public comment. 

In this PA, we3 take into account the available scientific evidence, as assessed in the 

Integrated Science Assessment for Particulate Matter (Final Report) (ISA [U.S. EPA, 2019]), 

and additional policy-relevant analyses of air quality and risks. Our approach to considering the 

available evidence and analyses in this PA has been informed by the advice received from the 

CASAC, based on its review of the draft IRP and the draft ISA, and also by public comment 

received thus far in the review. This final PA is also informed by the advice and 

recommendations received from the CASAC during its review of the draft PA, and also by 

public comments received. The final PA is intended to help the Administrator in considering the 

currently available scientific and technical information, and in formulating judgments regarding 

the adequacy of the current standards and regarding alternative standards, as appropriate. 

Beyond informing the Administrator and facilitating the advice and recommendations of 

the CASAC, the PA is also intended to be a useful reference to all parties interested in the review 

of the PM NAAQS. In these roles, it is intended to serve as a source of policy-relevant 

information that informs the Agency’s review of the NAAQS for PM, and it is written to be 

understandable to a broad audience. 

                                                 
2 The indicator defines the chemical species or mixture to be measured in the ambient air for the purpose of 

determining whether an area attains the standard. The averaging time defines the period over which air quality 

measurements are to be averaged or otherwise analyzed. The form of a standard defines the air quality statistic 

that is to be compared to the level of the standard in determining whether an area attains the standard. For 

example, the form of the annual NAAQS for fine particulate matter is the average of annual mean concentrations 

for three consecutive years, while the form of the 8-hour NAAQS for carbon monoxide is the second-highest 8-

hour average in a year. The level of the standard defines the air quality concentration used for that purpose. 

3 The terms “we,” “our,” and “staff” throughout this document refer to the staff in the EPA’s Office of Air Quality 

Planning and Standards (OAQPS).  
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1.2 LEGISLATIVE REQUIREMENTS 

Two sections of the Clean Air Act (CAA) govern the establishment and revision of the 

NAAQS. Section 108 (42 U.S.C. 7408) directs the Administrator to identify and list certain air 

pollutants and then to issue air quality criteria for those pollutants. The Administrator is to list 

those pollutants “emissions of which, in his judgment, cause or contribute to air pollution which 

may reasonably be anticipated to endanger public health or welfare”; “the presence of which in 

the ambient air results from numerous or diverse mobile or stationary sources”; and for which he 

“plans to issue air quality criteria….” (42 U.S.C. § 7408(a)(1)). Air quality criteria are intended 

to “accurately reflect the latest scientific knowledge useful in indicating the kind and extent of all 

identifiable effects on public health or welfare which may be expected from the presence of [a] 

pollutant in the ambient air….” 42 U.S.C. § 7408(a)(2). 

Section 109 [42 U.S.C. 7409] directs the Administrator to propose and promulgate 

“primary” and “secondary” NAAQS for pollutants for which air quality criteria are issued [42 

U.S.C. § 7409(a)]. Section 109(b)(1) defines primary standards as ones “the attainment and 

maintenance of which in the judgment of the Administrator, based on such criteria and allowing 

an adequate margin of safety, are requisite to protect the public health.”4 Under section 

109(b)(2), a secondary standard must “specify a level of air quality the attainment and 

maintenance of which, in the judgment of the Administrator, based on such criteria, is requisite 

to protect the public welfare from any known or anticipated adverse effects associated with the 

presence of [the] pollutant in the ambient air.”5 

In setting primary and secondary standards that are “requisite” to protect public health 

and welfare, respectively, as provided in section 109(b), the EPA’s task is to establish standards 

that are neither more nor less stringent than necessary. In so doing, the EPA may not consider the 

costs of implementing the standards. See generally, Whitman v. American Trucking Associations, 

531 U.S. 457, 465-472, 475-76 (2001). Likewise, “[a]ttainability and technological feasibility are 

not relevant considerations in the promulgation of national ambient air quality standards.” 

American Petroleum Institute v. Costle, 665 F.2d 1176, 1185 (D.C. Cir. 1981). At the same time, 

courts have clarified the EPA may consider “relative proximity to peak background … 

concentrations” as a factor in deciding how to revise the NAAQS in the context of considering 

                                                 
4 The legislative history of section 109 indicates that a primary standard is to be set at “the maximum permissible 

ambient air level . . . which will protect the health of any [sensitive] group of the population,” and that for this 

purpose “reference should be made to a representative sample of persons comprising the sensitive group rather 

than to a single person in such a group.” S. Rep. No. 91-1196, 91st Cong., 2d Sess. 10 (1970). 

5 Under CAA section 302(h) (42 U.S.C. § 7602(h)), effects on welfare include, but are not limited to, “effects on 

soils, water, crops, vegetation, manmade materials, animals, wildlife, weather, visibility, and climate, damage to 

and deterioration of property, and hazards to transportation, as well as effects on economic values and on personal 

comfort and well-being.” 
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standard levels within the range of reasonable values supported by the air quality criteria and 

judgments of the Administrator. American Trucking Associations, Inc. v. EPA, 283 F.3d 355, 379 

(D.C. Cir. 2002). 

The requirement that primary standards provide an adequate margin of safety was 

intended to address uncertainties associated with inconclusive scientific and technical 

information available at the time of standard setting. It was also intended to provide a reasonable 

degree of protection against hazards that research has not yet identified. See Lead Industries 

Association v. EPA, 647 F.2d 1130, 1154 (D.C. Cir 1980), cert. denied, 449 U.S. 1042 (1980); 

American Petroleum Institute v. Costle, 665 F.2d at 1186 (D.C. Cir. 1981), cert. denied, 455 U.S. 

1034 (1982); Coalition of Battery Recyclers Ass'n v. EPA, 604 F.3d 613, 617-18 (D.C. Cir. 

2010); Mississippi v. EPA, 744 F.3d 1334, 1353 (D.C. Cir. 2013). Both kinds of uncertainties are 

components of the risk associated with pollution at levels below those at which human health 

effects can be said to occur with reasonable scientific certainty. Thus, in selecting primary 

standards that include an adequate margin of safety, the Administrator is seeking not only to 

prevent pollution levels that have been demonstrated to be harmful but also to prevent lower 

pollutant levels that may pose an unacceptable risk of harm, even if the risk is not precisely 

identified as to nature or degree. The CAA does not require the Administrator to establish a 

primary NAAQS at a zero-risk level or at background concentration levels, see Lead Industries 

v. EPA, 647 F.2d at 1156 n.51, Mississippi v. EPA, 744 F.3d at 1351, but rather at a level that 

reduces risk sufficiently so as to protect public health with an adequate margin of safety. 

In addressing the requirement for an adequate margin of safety, the EPA considers such 

factors as the nature and severity of the health effects involved, the size of the sensitive 

population(s), and the kind and degree of uncertainties. The selection of any particular approach 

to providing an adequate margin of safety is a policy choice left specifically to the 

Administrator’s judgment. See Lead Industries Association v. EPA, 647 F.2d at 1161-62; 

Mississippi v. EPA, 744 F.3d at 1353. 

Section 109(d)(1) of the Act requires a review be completed every five years and, if 

appropriate, revision of existing air quality criteria to reflect advances in scientific knowledge on 

the effects of the pollutant on public health and welfare. Under the same provision, the EPA is 

also to review every five years and, if appropriate, revise the NAAQS, based on the revised air 

quality criteria.6 

Section 109(d)(2) addresses the appointment and advisory functions of an independent 

scientific review committee. Section 109(d)(2)(A) requires the Administrator to appoint this 

                                                 
6 This section of the Act requires the Administrator to complete these reviews and make any revisions that may be 

appropriate “at five-year intervals.” 
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committee, which is to be composed of “seven members including at least one member of the 

National Academy of Sciences, one physician, and one person representing State air pollution 

control agencies.” Section 109(d)(2)(B) provides that the independent scientific review 

committee “shall complete a review of the criteria…and the national primary and secondary 

ambient air quality standards…and shall recommend to the Administrator any new…standards 

and revisions of existing criteria and standards as may be appropriate….” Since the early 1980s, 

this independent review function has been performed by the Clean Air Scientific Advisory 

Committee (CASAC) of the EPA’s Science Advisory Board. A number of other advisory 

functions are also identified for the committee by section 109(d)(2)(C), which reads: 

Such committee shall also (i) advise the Administrator of areas in which 

additional knowledge is required to appraise the adequacy and basis of existing, 

new, or revised national ambient air quality standards, (ii) describe the research 

efforts necessary to provide the required information, (iii) advise the 

Administrator on the relative contribution to air pollution concentrations of 

natural as well as anthropogenic activity, and (iv) advise the Administrator of any 

adverse public health, welfare, social, economic, or energy effects which may 

result from various strategies for attainment and maintenance of such national 

ambient air quality standards. 

As previously noted, the Supreme Court has held that section 109(b) “unambiguously bars cost 

considerations from the NAAQS-setting process” (Whitman v. Am. Trucking Associations, 531 

U.S. 457, 471 [2001]). Accordingly, while some of these issues regarding which Congress has 

directed the CASAC to advise the Administrator are ones that are relevant to the standard setting 

process, others are not. Issues that are not relevant to standard setting may be relevant to 

implementation of the NAAQS once they are established.7  

1.3 HISTORY OF REVIEWS OF THE PM NAAQS  

This section summarizes the PM NAAQS that have been promulgated in past reviews 

(Table 1-1). Each of these reviews is discussed briefly below.  

 

                                                 
7 Some aspects of CASAC advice may not be relevant to EPA’s process of setting primary and secondary standards 

that are requisite to protect public health and welfare. Indeed, were EPA to consider costs of implementation 

when reviewing and revising the standards “it would be grounds for vacating the NAAQS.” Whitman, 531 U.S. at 

471 n.4. At the same time, the Clean Air Act directs CASAC to provide advice on “any adverse public health, 

welfare, social, economic, or energy effects which may result from various strategies for attainment and 

maintenance” of the NAAQS to the Administrator under section 109(d)(2)(C)(iv).  In Whitman, the Court 

clarified that most of that advice would be relevant to implementation but not standard setting, as it “enable[s] the 

Administrator to assist the States in carrying out their statutory role as primary implementers of the NAAQS.” Id. 

at 470 (emphasis in original). However, the Court also noted that CASAC’s “advice concerning certain aspects of 

‘adverse public health … effects’ from various attainment strategies is unquestionably pertinent” to the NAAQS 

rulemaking record and relevant to the standard setting process. Id. at 470 n.2. 
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Table 1-1. Summary of NAAQS promulgated for particulate matter 1971-2012.  

Review 
Completed 

Indicator 
Averaging 

Time 
Level Form 

1971 

Total 
Suspended 
Particles 
(TSP) 

24-hour 

260 µg/m3 
(primary) 
150 µg/m3 
(secondary) 

Not to be exceeded more than once per year 

Annual 

75 µg/m3 
(primary) 
60 µg/m3 
(secondary) 

Annual geometric mean 

1987 PM10 
24-hour 150 µg/m3 

Not to be exceeded more than once per year on 
average over a 3-year period 

Annual 50 µg/m3 Annual arithmetic mean, averaged over 3 years 

1997 

PM2.5 
24-hour 65 µg/m3 98th percentile, averaged over 3 years 

Annual 15.0 µg/m3 Annual arithmetic mean, averaged over 3 yearsa 

PM10 
24-hour 150 µg/m3 99th percentile, averaged over 3 yearsb 

Annual 50 µg/m3 Annual arithmetic mean, averaged over 3 years 

2006 

PM2.5 
24-hour 35 µg/m3 98th percentile, averaged over 3 years 

Annual 15.0 µg/m3 Annual arithmetic mean, averaged over 3 yearsc 

PM10 24-hourd 150 µg/m3 
Not to be exceed more than once per year on average 
over a 3-year period 

2012 
 

PM2.5 

24-hour 35 µg/m3 98th percentile, averaged over 3 years 

Annual 

12.0 µg/m3 
(primary) 
15.0 µg/m3 
(secondary) 

Annual mean, averaged over 3 yearse 

PM10 24-hour 150 µg/m3 
Not to be exceeded more than once per year on 
average over 3 years 

Note: When not specified, primary and secondary standards are identical. 
a The level of the 1997 annual PM2.5 standard was to be compared to measurements made at the community-
oriented monitoring site recording the highest concentration or, if specific constraints were met, measurements 
from multiple community-oriented monitoring sites could be averaged (i.e., “spatial averaging”) (62 FR 38652, 
July 18, 1997).  
b When the 1997 standards were vacated (see below), the form of the 1987 standards remained in place (i.e., not 
to be exceeded more than once per year on average over a 3-year period).  
c The EPA tightened the constraints on the spatial averaging criteria by further limiting the conditions under which 
some areas may average measurements from multiple community-oriented monitors to determine compliance (71 
FR 61144, October 17, 2006). 
d The EPA revoked the annual PM10 NAAQS in 2006 (71 FR 61144, October 17, 2006). 
e In the 2012 decision, the EPA eliminated the option for spatial averaging (78 FR 3086, January 15, 2013). 
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1.3.1 Reviews Completed in 1971 and 1987 

The EPA first established NAAQS for PM in 1971 (36 FR 8186, April 30, 1971), based 

on the original Air Quality Criteria Document (AQCD) (DHEW, 1969).8 The federal reference 

method (FRM) specified for determining attainment of the original standards was the high-

volume sampler, which collects PM up to a nominal size of 25 to 45 micrometers (µm) (referred 

to as total suspended particulates or TSP). The primary standards were set at 260 µg/m3, 24-hour 

average, not to be exceeded more than once per year, and 75 µg/m3, annual geometric mean. The 

secondary standards were set at 150 µg/m3, 24-hour average, not to be exceeded more than once 

per year, and 60 µg/m3, annual geometric mean.   

In October 1979 (44 FR 56730, October 2, 1979), the EPA announced the first periodic 

review of the air quality criteria and NAAQS for PM. Revised primary and secondary standards 

were promulgated in 1987 (52 FR 24634, July 1, 1987). In the 1987 decision, the EPA changed 

the indicator for particles from TSP to PM10, in order to focus on the subset of inhalable particles 

small enough to penetrate to the thoracic region of the respiratory tract (including the 

tracheobronchial and alveolar regions), referred to as thoracic particles.9 The level of the 24-hour 

standards (primary and secondary) was set at 150 µg/m3, and the form was one expected 

exceedance per year, on average over three years. The level of the annual standards (primary and 

secondary) was set at 50 µg/m3, and the form was annual arithmetic mean, averaged over three 

years.  

1.3.2 Review Completed in 1997 

In April 1994, the EPA announced its plans for the second periodic review of the air 

quality criteria and NAAQS for PM, and in 1997 the EPA promulgated revisions to the NAAQS 

(62 FR 38652, July 18, 1997). In the 1997 decision, the EPA determined that the fine and coarse 

fractions of PM10 should be considered separately. This determination was based on evidence 

that serious health effects were associated with short- and long-term exposures to fine particles in 

areas that met the existing PM10 standards. The EPA added new standards, using PM2.5 as the 

indicator for fine particles (with PM2.5 referring to particles with a nominal mean aerodynamic 

diameter less than or equal to 2.5 µm). The new primary standards were as follows: (1) an annual 

standard with a level of 15.0 µg/m3, based on the 3-year average of annual arithmetic mean 

                                                 
8 Prior to the review initiated in 2007 (see below), the AQCD provided the scientific foundation (i.e., the air quality 

criteria) for the NAAQS. Beginning in that review, the Integrated Science Assessment (ISA) has replaced the 

AQCD.   

9 PM10 refers to particles with a nominal mean aerodynamic diameter less than or equal to 10 µm. More specifically, 

10 µm is the aerodynamic diameter for which the efficiency of particle collection is 50 percent.  
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PM2.5 concentrations from single or multiple community-oriented monitors;10 and (2) a 24-hour 

standard with a level of 65 µg/m3, based on the 3-year average of the 98th percentile of 24-hour 

PM2.5 concentrations at each monitor within an area. Also, the EPA established a new reference 

method for the measurement of PM2.5 in the ambient air and adopted rules for determining 

attainment of the new standards. To continue to address the health effects of the coarse fraction 

of PM10 (referred to as thoracic coarse particles or PM10-2.5; generally including particles with a 

nominal mean aerodynamic diameter greater than 2.5 µm and less than or equal to 10 µm), the 

EPA retained the annual primary PM10 standard and revised the form of the 24-hour primary 

PM10 standard to be based on the 99th percentile of 24-hour PM10 concentrations at each monitor 

in an area. The EPA revised the secondary standards by setting them equal in all respects to the 

newly established primary standards.  

Following promulgation of the 1997 PM NAAQS, petitions for review were filed by 

several parties, addressing a broad range of issues. In May 1999, the U.S. Court of Appeals for 

the District of Columbia Circuit (D.C. Circuit) upheld the EPA’s decision to establish fine 

particle standards, holding that "the growing empirical evidence demonstrating a relationship 

between fine particle pollution and adverse health effects amply justifies establishment of new 

fine particle standards." American Trucking Associations v. EPA, 175 F. 3d at 1027, 1055-56 

(D.C. Cir. 1999). The D.C. Circuit also found "ample support" for the EPA's decision to regulate 

coarse particle pollution, but vacated the 1997 PM10 standards, concluding that the EPA had not 

provided a reasonable explanation justifying use of PM10 as an indicator for coarse particles. 

American Trucking Associations v. EPA, 175 F. 3d at 1054-55. Pursuant to the D.C. Circuit’s 

decision, the EPA removed the vacated 1997 PM10 standards, and the pre-existing 1987 PM10 

standards remained in place (65 FR 80776, December 22, 2000). The D.C. Circuit also upheld 

the EPA’s determination not to establish more stringent secondary standards for fine particles to 

address effects on visibility. American Trucking Associations v. EPA, 175 F. 3d at 1027.  

The D.C. Circuit also addressed more general issues related to the NAAQS, including 

issues related to the consideration of costs in setting NAAQS and the EPA’s approach to 

establishing the levels of NAAQS. Regarding the cost issue, the court reaffirmed prior rulings 

holding that in setting NAAQS the EPA is “not permitted to consider the cost of implementing 

those standards.” American Trucking Associations v. EPA, 175 F. 3d at 1040-41. Regarding the 

                                                 
10 The 1997 annual PM2.5 standard was to be compared with measurements made at the community-oriented 

monitoring site recording the highest concentration or, if specific constraints were met, measurements from 

multiple community-oriented monitoring sites could be averaged (i.e., “spatial averaging”). In the last review 

(completed in 2012) the EPA replaced the term “community-oriented” monitor with the term “area-wide” 

monitor. Area-wide monitors are those sited at the neighborhood scale or larger, as well as those monitors sited at 

micro- or middle-scales that are representative of many such locations in the same CBSA (78 FR 3236, January 

15, 2013).  
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levels of NAAQS, the court held that the EPA’s approach to establishing the level of the 

standards in 1997 (i.e., both for PM and for the ozone NAAQS promulgated on the same day) 

effected “an unconstitutional delegation of legislative authority.” American Trucking 

Associations v. EPA, 175 F. 3d at 1034-40. Although the court stated that “the factors EPA uses 

in determining the degree of public health concern associated with different levels of ozone and 

PM are reasonable,” it remanded the rule to the EPA, stating that when the EPA considers these 

factors for potential non-threshold pollutants “what EPA lacks is any determinate criterion for 

drawing lines” to determine where the standards should be set.  

The D.C. Circuit’s holding on the cost and constitutional issues were appealed to the 

United States Supreme Court. In February 2001, the Supreme Court issued a unanimous decision 

upholding the EPA’s position on both the cost and constitutional issues. Whitman v. American 

Trucking Associations, 531 U.S. 457, 464, 475-76. On the constitutional issue, the Court held 

that the statutory requirement that NAAQS be “requisite” to protect public health with an 

adequate margin of safety sufficiently guided the EPA’s discretion, affirming the EPA’s 

approach of setting standards that are neither more nor less stringent than necessary. 

The Supreme Court remanded the case to the Court of Appeals for resolution of any 

remaining issues that had not been addressed in that court’s earlier rulings. Id. at 475-76. In a 

March 2002 decision, the Court of Appeals rejected all remaining challenges to the standards, 

holding that the EPA’s PM2.5 standards were reasonably supported by the administrative record 

and were not “arbitrary and capricious” American Trucking Associations v. EPA, 283 F. 3d 355, 

369-72 (D.C. Cir. 2002).  

1.3.3 Review Completed in 2006 

In October 1997, the EPA published its plans for the third periodic review of the air 

quality criteria and NAAQS for PM (62 FR 55201, October 23, 1997). After the CASAC and 

public review of several drafts, the EPA’s NCEA finalized the AQCD in October 2004 (U.S. 

EPA, 2004a, U.S. EPA, 2004b). The EPA’s OAQPS finalized a Risk Assessment and Staff Paper 

in December 2005 (Abt Associates, 2005, U.S. EPA, 2005).11 On December 20, 2005, the EPA 

announced its proposed decision to revise the NAAQS for PM and solicited public comment on a 

broad range of options (71 FR 2620, January 17, 2006). On September 21, 2006, the EPA 

announced its final decisions to revise the primary and secondary NAAQS for PM to provide 

increased protection of public health and welfare, respectively (71 FR 61144, October 17, 2006). 

                                                 
11 Prior to the review initiated in 2007, the Staff Paper presented the EPA staff’s considerations and conclusions 

regarding the adequacy of existing NAAQS and, when appropriate, the potential alternative standards that could 

be supported by the evidence and information. More recent reviews present this information in the Policy 

Assessment.  
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With regard to the primary and secondary standards for fine particles, the EPA revised the level 

of the 24-hour PM2.5 standards to 35 µg/m3, retained the level of the annual PM2.5 standards at 

15.0 µg/m3, and revised the form of the annual PM2.5 standards by narrowing the constraints on 

the optional use of spatial averaging. With regard to the primary and secondary standards for 

PM10, the EPA retained the 24-hour standards, with levels at 150 µg/m3, and revoked the annual 

standards.12 The Administrator judged that the available evidence generally did not suggest a link 

between long-term exposure to existing ambient levels of coarse particles and health or welfare 

effects. In addition, a new reference method was added for the measurement of PM10-2.5 in the 

ambient air in order to provide a basis for approving federal equivalent methods (FEMs) and to 

promote the gathering of scientific data to support future reviews of the PM NAAQS. 

Several parties filed petitions for review following promulgation of the revised PM 

NAAQS in 2006. These petitions addressed the following issues: (1) selecting the level of the 

primary annual PM2.5 standard; (2) retaining PM10 as the indicator of a standard for thoracic 

coarse particles, retaining the level and form of the 24-hour PM10 standard, and revoking the 

PM10 annual standard; and (3) setting the secondary PM2.5 standards identical to the primary 

standards. On February 24, 2009, the U.S. Court of Appeals for the District of Columbia Circuit 

issued its opinion in the case American Farm Bureau Federation v. EPA, 559 F. 3d 512 (D.C. 

Cir. 2009). The court remanded the primary annual PM2.5 NAAQS to the EPA because the 

Agency failed to adequately explain why the standards provided the requisite protection from 

both short- and long-term exposures to fine particles, including protection for at-risk populations. 

American Farm Bureau Federation v. EPA, 559 F. 3d 512, 520-27 (D.C. Cir. 2009). With regard 

to the standards for PM10, the court upheld the EPA’s decisions to retain the 24-hour PM10 

standard to provide protection from thoracic coarse particle exposures and to revoke the annual 

PM10 standard. American Farm Bureau Federation, 559 F. 2d at 533-38. With regard to the 

secondary PM2.5 standards, the court remanded the standards to the EPA because the Agency 

failed to adequately explain why setting the secondary PM standards identical to the primary 

standards provided the required protection for public welfare, including protection from visibility 

impairment. American Farm Bureau Federation, 559 F. 2d at 528-32. The EPA responded to the 

                                                 
12 In the 2006 proposal, the EPA proposed to revise the 24-hour PM10 standard in part by establishing a new PM10-2.5 

indicator for thoracic coarse particles (i.e., particles generally between 2.5 and 10 µm in diameter). The EPA 

proposed to include any ambient mix of PM10-2.5 that was dominated by resuspended dust from high density 

traffic on paved roads and by PM from industrial sources and construction sources. The EPA proposed to exclude 

any ambient mix of PM10-2.5 that was dominated by rural windblown dust and soils and by PM generated from 

agricultural and mining sources. In the final decision, the existing PM10 standard was retained, in part due to an 

“inability…to effectively and precisely identify which ambient mixes are included in the [PM10-2.5] indicator and 

which are not” (71 FR 61197, October 17, 2006).  
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court’s remands as part of the next review of the PM NAAQS, which was initiated in 2007 

(discussed below).  

1.3.4 Review Completed in 2012 

In June 2007, the EPA initiated the fourth periodic review of the air quality criteria and 

the PM NAAQS by issuing a call for information in the Federal Register (72 FR 35462, June 28, 

2007). Based on the NAAQS review process, as revised in 2008 and again in 2009,13 the EPA 

held science/policy issue workshops on the primary and secondary PM NAAQS (72 FR 34003, 

June 20, 2007; 72 FR 34005, June 20, 2007), and prepared and released the planning and 

assessment documents that comprise the review process (i.e., IRP (U.S. EPA, 2008), ISA (U.S. 

EPA, 2009a), REA planning documents for health and welfare (U.S. EPA, 2009b, U.S. EPA, 

2009c), a quantitative health risk assessment (U.S. EPA, 2010a) and an urban-focused visibility 

assessment (U.S. EPA, 2010b), and PA (U.S. EPA, 2011)). In June 2012, the EPA announced its 

proposed decision to revise the NAAQS for PM (77 FR 38890, June 29, 2012).  

In December 2012, the EPA announced its final decisions to revise the primary NAAQS 

for PM to provide increased protection of public health (78 FR 3086, January 15, 2013). With 

regard to primary standards for PM2.5, the EPA revised the level of the annual PM2.5 standard14 to 

12.0 µg/m3 and retained the 24-hour PM2.5 standard, with its level of 35 µg/m3. For the primary 

PM10 standard, the EPA retained the 24-hour standard to continue to provide protection against 

effects associated with short-term exposure to thoracic coarse particles (i.e., PM10-2.5). With 

regard to the secondary PM standards, the EPA generally retained the 24-hour and annual PM2.5 

standards15 and the 24-hour PM10 standard to address visibility and non-visibility welfare effects.  

As with previous reviews, petitioners challenged the EPA’s final rule. Petitioners argued 

that the EPA acted unreasonably in revising the level and form of the annual standard and in 

amending the monitoring network provisions. On judicial review, the revised standards and 

monitoring requirements were upheld in all respects. NAM v EPA, 750 F.3d 921 (D.C. Cir. 

2014).  

1.4 CURRENT REVIEW OF THE PM NAAQS  

In December 2014, the EPA announced the initiation of the current periodic review of the 

air quality criteria for PM and of the PM2.5 and PM10 NAAQS and issued a call for information 

                                                 
13 The history of the NAAQS review process, including revisions to the process, is discussed at 

http://www3.epa.gov/ttn/naaqs/review2.html.  

14 The EPA also eliminated the option for spatial averaging.  

15 Consistent with the primary standard, the EPA eliminated the option for spatial averaging with the annual 

standard.  

http://www3.epa.gov/ttn/naaqs/review2.html


 1-12  

in the Federal Register (79 FR 71764, December 3, 2014). On February 9 to 11, 2015, the EPA’s 

NCEA and OAQPS held a public workshop to inform the planning for the current review of the 

PM NAAQS (announced in 79 FR 71764, December 3, 2014). Workshop participants, including 

a wide range of external experts as well as EPA staff representing a variety of areas of expertise 

(e.g., epidemiology, human and animal toxicology, risk/exposure analysis, atmospheric science, 

visibility impairment, climate effects), were asked to highlight significant new and emerging PM 

research, and to make recommendations to the Agency regarding the design and scope of this 

review. This workshop provided for a public discussion of the key science and policy-relevant 

issues around which the EPA has structured the current review of the PM NAAQS and of the 

most meaningful new scientific information that would be available in this review to inform our 

understanding of these issues.  

The input received at the workshop guided the EPA staff in developing a draft IRP, 

which was reviewed by the CASAC Particulate Matter Panel and discussed on public 

teleconferences held in May 2016 (81 FR 13362, March 14, 2016) and August 2016 (81 FR 

39043, June 15, 2016). Advice from the CASAC, supplemented by the Particulate Matter Panel, 

and input from the public were considered in developing the final IRP for this review (U.S. EPA, 

2016). The final IRP discusses the approaches to be taken in developing key scientific, technical, 

and policy documents in this review and the key policy-relevant issues that will frame the EPA’s 

consideration of whether the current primary and/or secondary NAAQS for PM should be 

retained or revised.  

In May 2018, the Administrator issued a memorandum describing a “back-to-basics” 

process for reviewing the NAAQS (Pruitt, 2018). This memo announced the Agency’s intention 

to conduct the current review of the PM NAAQS in such a manner as to ensure that any 

necessary revisions are finalized by December 2020. Following this memo, on October 10, 2018 

the Administrator additionally announced that the role of reviewing the key science assessments 

developed as part of the ongoing review of the PM NAAQS (i.e., drafts of the ISA and PA) 

would be performed by the seven-member chartered CASAC (i.e., rather than the CASAC 

Particulate Matter Panel that reviewed the draft IRP).16  

The EPA released the draft ISA in October 2018 (83 FR 53471, October 23, 2018). The 

draft ISA was reviewed by the chartered CASAC at a public meeting held in Arlington, VA in 

December 2018 (83 FR 55529, November 6, 2018) and was discussed on a public teleconference 

in March 2019 (84 FR 8523, March 8, 2019). The CASAC provided its advice on the draft ISA 

in a letter to the EPA Administrator dated April 11, 2019 (Cox, 2019a). In that letter, the 

                                                 
16 Announcement available at: https://www.epa.gov/newsreleases/acting-administrator-wheeler-announces-science-

advisors-key-clean-air-act-committee   

https://www.epa.gov/newsreleases/acting-administrator-wheeler-announces-science-advisors-key-clean-air-act-committee
https://www.epa.gov/newsreleases/acting-administrator-wheeler-announces-science-advisors-key-clean-air-act-committee
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CASAC’s recommendations address both the draft ISA’s assessment of the science for PM-

related effects and the process under which this review of the PM NAAQS is being conducted. 

Regarding the assessment of the evidence, the CASAC letter states that “the Draft ISA 

does not provide a sufficiently comprehensive, systematic assessment of the available science 

relevant to understanding the health impacts of exposure to particulate matter (PM)” (Cox, 2019, 

p. 1 of letter). The CASAC recommends that this and other limitations (i.e., “[i]nadequate 

evidence for altered causal determinations” and the need for a “[c]learer discussion of causality 

and causal biological mechanisms and pathways”) be remedied in a revised ISA (Cox, 2019, p. 1 

of letter). The EPA has taken steps to address these comments in the Final PM ISA (U.S. EPA, 

2019). In particular, the final ISA includes additional text and a new appendix to clarify the 

comprehensive and systematic process employed by the EPA to develop the PM ISA. In 

addition, several causality determinations were re-examined and the final ISA reflects a revised 

causality determination for long-term ultrafine particle exposures and nervous system effects 

(i.e., from “likely to be causal” to “suggestive of, but not sufficient to infer, a causal 

relationship”). The final ISA also contains additional text to clarify the evidence for biological 

pathways of particular PM-related effects and the role of that evidence in causality 

determinations.  

Among its comments on the process, the chartered CASAC recommended “that the EPA 

reappoint the previous CASAC PM panel (or appoint a panel with similar expertise)” (Cox, 2019a). 

The Agency’s response to this advice was provided in a letter from the Administrator to the 

CASAC chair dated July 25, 2019.17 As indicated in that letter, on September 13, 2019 the 

Administrator announced the selection of a pool of non-member subject matter experts. These 

experts were intended to “provide technical expertise to help CASAC ensure a rigorous and 

timely review of the National Ambient Air Quality Standards for particulate matter and ozone.”18 

Input from members of this pool of experts informed the CASAC’s review of the draft PA.  

The EPA released the draft PA in September 2019 (84 FR 47944, September 11, 2019). 

The draft PA was reviewed by the chartered CASAC and discussed in October 2019 at a public 

meeting held in Cary, NC. Public comments were received via a separate public teleconference 

(84 FR 51555, September 30, 2019). A public meeting to discuss the chartered CASAC letter 

and response to charge questions on the draft PA was held in Cary, NC in December 2019 (84 

FR 58713, November 1, 2019), and the CASAC provided its advice on the draft PA, including its 

                                                 
17 Available at: 

https://yosemite.epa.gov/sab/sabproduct.nsf/0/6CBCBBC3025E13B4852583D90047B352/$File/EPA-CASAC-

19-002_Response.pdf    

18 Available at: https://www.epa.gov/newsreleases/administrator-wheeler-announces-new-casac-member-pool-

naaqs-subject-matter-experts   

https://yosemite.epa.gov/sab/sabproduct.nsf/0/6CBCBBC3025E13B4852583D90047B352/$File/EPA-CASAC-19-002_Response.pdf
https://yosemite.epa.gov/sab/sabproduct.nsf/0/6CBCBBC3025E13B4852583D90047B352/$File/EPA-CASAC-19-002_Response.pdf
https://www.epa.gov/newsreleases/administrator-wheeler-announces-new-casac-member-pool-naaqs-subject-matter-experts
https://www.epa.gov/newsreleases/administrator-wheeler-announces-new-casac-member-pool-naaqs-subject-matter-experts


 1-14  

advice on the current primary and secondary PM standards, in a letter to the EPA Administrator 

dated December 16, 2019 (Cox, 2019b).  

With regard to the primary standards, the CASAC recommends retaining the current 24-

hour PM2.5 and PM10 standards, but does not reach consensus on the adequacy of the current 

annual PM2.5 standard. With regard to the secondary standards, the CASAC recommends 

retaining the current standards. The CASAC’s advice on the primary and secondary PM 

standards is discussed in detail in chapters 3 (primary PM2.5 standards), 4 (primary PM10 

standards), and 5 (secondary standards) of this final PA.  

The CASAC additionally makes a number of recommendations regarding the information 

and analyses presented in the draft PA. Specifically, the CASAC recommends that a revised PA 

include (1) additional discussion of the current CASAC and NAAQS review process; (2) 

additional characterization of PM-related emissions, monitoring and air quality information, 

including uncertainties in that information; (3) additional discussion and examination of 

uncertainties in the PM2.5 health evidence and the risk assessment; (4) updates to reflect changes 

in the ISA’s causality determinations; and (5) additional discussion of the evidence for PM-

related welfare effects, including uncertainties (Cox, 2019b, pp. 2-3 in letter). In response to the 

CASAC’s comments, we have incorporated a number of changes into this final PA, including the 

following:   

(1) We have added text to Chapter 1 (see above) to clarify the process followed for this 

review of the PM NAAQS, including how the process has evolved since the initiation of 

the review.   

(2) We have added text and figures to Chapter 2 on emissions of PM and PM precursors, and 

we have added a section discussing uncertainty in emissions estimates. We have also 

added new discussion of measurement uncertainty for FRM, FEM, CSN, and IMPROVE 

monitors.  

(3) In Chapter 3 and Appendices B and C, we have made a number of changes:  

a. We have reduced the emphasis on evidence for long-term ultrafine particle exposures 

and nervous system effects to reflect the change in the final ISA’s causality 

determination from “likely to be causal” to “suggestive of, but not sufficient to infer, a 

causal relationship.”  

b. We have expanded the characterization and discussion of the evidence related to 

exposure measurement error, the potential confounders examined by key studies, the 

shapes of concentration-response functions, and the results of causal inference and 

quasi-experimental studies.  
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c. We have expanded and clarified the discussion of uncertainties in the risk 

assessment,19 and we have added additional air quality model performance evaluation 

for each of the urban study areas included in the risk assessment.  

d. We have provided additional detail on the procedure used to derive concentration-

response functions used in the risk assessment.  

(4) Throughout the document (Chapters 3, 4 and 5), we have added summaries of the CASAC 

advice on the PM standards, and we have expanded the discussion of data gaps and areas 

for future research in the health and welfare effects evidence.  

 

                                                 
19 The CASAC’s comments on the risk assessment include recommending additional analyses to quantify 

uncertainty in estimates of how PM2.5-related risks may change with changing ambient PM2.5 concentrations 

(Cox, 2019b, p. 7 of consensus responses). While this final PA includes additional discussion of sources of 

uncertainty in the risk assessment, and additional qualitative consideration of the potential impacts of those 

uncertainties on risk estimates, we have not conducted additional analyses to further quantify uncertainty. This 

approach to addressing the CASAC’s comments on the risk assessment reflects our consideration of the timeline 

for this review as well as the likely impact of such additional analyses on decision making.  
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2 PM AIR QUALITY  

This chapter provides an overview of recent ambient air quality with respect to PM. It 

summarizes information on the distribution of particle size in ambient air, including discussions 

about size fractions and components (section 2.1), ambient monitoring of PM in the U.S. (section 

2.2), ambient concentrations of PM in the U.S. (section 2.3), and background PM (section 2.4).  

2.1 DISTRIBUTION OF PARTICLE SIZE IN AMBIENT AIR 

In ambient air, PM is a mixture of substances suspended as small liquid and/or solid 

particles. Particle size is an important consideration for PM, as distinct health and welfare effects 

have been linked with exposures to particles of different sizes. Particles in the atmosphere range 

in size from less than 0.01 to more than 10 micrometers (m) in diameter (U.S. EPA, 2019a, 

section 2.2). When describing PM, subscripts are used to denote the aerodynamic diameter1 of 

the particle size range in micrometers (µm) of 50% cut points of sampling devices. The EPA 

defines PM2.5, also referred to as fine particles, as particles with aerodynamic diameters 

generally less than or equal to 2.5 μm. The size range for PM10-2.5, also called coarse or thoracic 

coarse particles, includes those particles with aerodynamic diameters generally greater than 2.5 

μm and less than or equal to 10 μm. PM10, which is comprised of both fine and coarse fractions, 

includes those particles with aerodynamic diameters generally less than or equal to 10 μm. 

Figure 2-1 provides perspective on these particle size fractions. In addition, ultrafine particles 

(UFP) are often defined as particles with a diameter of less than 0.1 μm based on physical size, 

thermal diffusivity or electrical mobility (U.S. EPA, 2019a, section 2.2).  

                                                 
1 Aerodynamic diameter is the size of a sphere of unit density (i.e., 1 g/cm3) that has the same terminal settling 

velocity as the particle of interest (U.S. EPA, 2018, U.S. EPA, 2019a, section 4.1.1).  
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Figure 2-1. Comparisons of PM2.5 and PM10 diameters to human hair and beach sand. 

(Adapted from: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics)  

Atmospheric distributions of particle size generally exhibit distinct modes that roughly 

align with the PM size fractions defined above. The nucleation mode is made up of freshly 

generated particles, formed either during combustion or by atmospheric reactions of precursor 

gases. The nucleation mode is especially prominent near sources like heavy traffic, industrial 

emissions, biomass burning, or cooking (Vu et al., 2015). While nucleation mode particles are 

only a minor contributor to overall ambient PM mass and surface area, they are the main 

contributors to ambient particle number (U.S. EPA, 2019a, section 2.2). By number, most 

nucleation mode particles fall into the UFP size range, though some fraction of the nucleation 

mode number distribution can extend above 0.1 μm in diameter. Nucleation mode particles can 

grow rapidly through coagulation or uptake of gases by particle surfaces, giving rise to the 

accumulation mode. The accumulation mode is typically the predominant contributor to PM2.5 

mass and surface area, though only a minor contributor to particle number (U.S. EPA, 2019a, 

section 2.2). PM2.5 sampling methods measure most of the accumulation mode mass, although a 

small fraction of particles that make up the accumulation mode are greater than 2.5 μm in 

diameter. Coarse mode particles are formed by mechanical generation, and through processes 

like dust resuspension and sea spray formation (Whitby et al., 1972). Most coarse mode mass is 

captured by PM10−2.5 sampling, but small fractions of coarse mode mass can be smaller than 2.5 

μm or greater than 10 μm in diameter (U.S. EPA, 2019a, section 2.2).  

Most particles are found in the lower troposphere, where they can have residence times 

ranging from a few hours to weeks. Particles are removed from the atmosphere by wet 

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
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deposition, such as when they are carried by rain or snow, or by dry deposition, when particles 

settle out of suspension due to gravity. Atmospheric lifetimes are generally longest for PM2.5, 

which often remains in the atmosphere for days to weeks (U.S. EPA, 2019a, Table 2-1) before 

being removed by wet or dry deposition. In contrast, atmospheric lifetimes for UFP and PM10−2.5 

are shorter. Within hours, UFP can undergo coagulation and condensation that lead to formation 

of larger particles in the accumulation mode, or can be removed from the atmosphere by 

evaporation, deposition, or reactions with other atmospheric components. PM10−2.5 are also 

generally removed from the atmosphere within hours, through wet or dry deposition (U.S. EPA, 

2019a, Table 2-1).  

2.1.1 Sources of PM Emissions 

PM is composed of both primary (directly emitted particles) and secondary chemical 

components. Primary PM is derived from direct particle emissions from specific PM sources 

while secondary PM originates from gas-phase chemical compounds present in the atmosphere 

that have participated in new particle formation or condensed onto existing particles (U.S. EPA, 

2019a, section 2.3). Primary particles, and gas-phase compounds contributing to secondary 

formation PM, are emitted from both anthropogenic and natural sources.  

Anthropogenic sources of PM include both stationary and mobile sources. Stationary 

sources include fuel combustion for electricity production and other purposes, industrial 

processes, agricultural activities, and road and building construction and demolition. Mobile 

sources of PM include diesel- and gasoline-powered highway vehicles and other engine-driven 

sources (e.g., ships, aircraft, and construction and agricultural equipment). Both stationary and 

mobile sources directly emit primary PM to ambient air, along with secondary PM precursors 

(e.g., SO2) that contribute to the secondary formation of PM in the atmosphere (U.S. EPA, 

2019a, section 2.3, Table 2-2).  

 Natural sources of PM include dust from the wind erosion of natural surfaces, sea salt, 

wildland fires, primary biological aerosol particles (PBAP) such as bacteria and pollen, oxidation 

of biogenic hydrocarbons such as isoprene and terpenes to produce secondary organic aerosol 

(SOA), and geogenic sources such as sulfate formed from volcanic production of SO2 (U.S. 

EPA, 2009, section 3.3, Table 3-2). While most of the above sources release or contribute 

predominantly to fine aerosol, some sources including windblown dust, and sea salt also produce 

particles in the coarse size range (U.S. EPA, 2019a, section 2.3.3). 

Generally, the sources of PM for different size fractions vary. While PM2.5 in ambient air 

is largely emitted directly by sources such as those described above or through secondary PM 

formation in the atmosphere, PM10-2.5 is almost entirely from primary sources (i.e., directly 

emitted) and is produced by surface abrasion or by suspension of sea spray or biological 
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materials such as microorganisms, pollen, and plant and insect debris (U.S. EPA, 2019a, section 

2.3.2.1).  

In sections 2.1.1.1 and 2.1.1.2 below, we describe the most recently available information 

on sources contributing to PM2.5 and PM10-2.5 emissions into ambient air, respectively, based on 

the U.S. EPA 2014 National Emissions Inventory (NEI).2 In section 2.1.1.3, we describe 

information on sources contributing to emissions of PM components and precursor gases.  

2.1.1.1 Sources Contributing to Primary PM2.5 Emissions  

The National Emissions Inventory (NEI) is a comprehensive and detailed estimate of air 

emissions of criteria pollutants, criteria precursors, and hazardous air pollutants from a 

comprehensive set of air emissions sources, including point sources (electric generating units, 

boilers, etc.), nonpoint (or area) sources (oil & gas, residential wood combustion, and many other 

dispersed sources), mobiles sources, and events (large fires). There are over 3,000 sources for 

which the NEI is developed. The NEI is released every three years based primarily upon data 

provided by State, Local, and Tribal air agencies for sources in their jurisdictions and 

supplemented by data developed by the U.S. EPA. The NEI is built using the Emissions 

Inventory System (EIS) first to collect the data from State, Local, and Tribal air agencies and 

then to blend that data with other data sources. 

Based on the 2014 NEI, approximately 5.4 million tons/year of PM2.5 were estimated to 

be directly emitted to the atmosphere from a number of source sectors in the U.S. This total 

excludes sources that are not a part of the NEI (e.g., windblown dust, geogenic sources). As 

shown in Figure 2-2, nearly half of the total primary PM2.5 emissions nationally are contributed 

by the dust and fire sectors together. Dust includes agricultural, construction, and road dust. Of 

these, agricultural dust and road dust in sum make the greatest contributions to PM2.5 emissions 

nationally. Fires include wildfires, prescribed fires, and agricultural fires, with wildfires and 

prescribed fires accounting for most of the fire-related primary PM2.5 emissions nationally (U.S. 

EPA, 2019a, section 2.3.1.1). Other lesser-contributing anthropogenic sources of PM2.5 

emissions nationally include stationary fuel combustion and agriculture sources (e.g., agricultural 

tilling). 

                                                 
2 These sections do not provide a comprehensive list of all sources, nor does it provide estimates of emission rates or 

emission factors for all source categories. Individual subsectors of source types were aggregated up to a sector 

level as used in Figure 2-2 and Figure 2-4. More information about the sectors and subsectors can be found as a 

part of the 2014 NEI available from https://www.epa.gov/sites/production/files/2018-

07/documents/nei2014v2_tsd_05jul2018.pdf. 

https://www.epa.gov/sites/production/files/2018-07/documents/nei2014v2_tsd_05jul2018.pdf.
https://www.epa.gov/sites/production/files/2018-07/documents/nei2014v2_tsd_05jul2018.pdf.
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Figure 2-2. Percent contribution of PM2.5 emissions by national source sectors. (Source: 

2014 NEI) 

The relative contributions of specific sources to annual emissions of primary PM2.5 can 

vary from location to location, with a notable difference in contributions of sources of PM2.5 

emissions in urban areas compared to national emissions. For example, the ISA illustrates this 

variation of primary PM2.5 emissions with data from five urban counties in the U.S. (U.S. EPA, 

2019a, Figure 2-3).3 Across the majority of these urban areas, the largest PM2.5-emitting sectors 

are mobile sources and fuel combustion. This is in contrast to fires, which account for the largest 

fraction of primary emissions nationally but make much smaller contributions in many urban 

counties (U.S. EPA, 2019a, section 2.3.1.2, Figure 2-3). While primary PM2.5 from mobile 

sources are a dominant contributor in some urban areas, accounting for an estimated 13 to 30% 

of the total primary PM2.5 emissions, mobile sources contribute only about 7% to total primary 

PM2.5 emissions nationally as shown in Figure 2-2. 

Another way to look at the emissions data shown in Figure 2-2 is by county. Figure 2-4 

presents county-based total PM2.5 emissions divided by the area of the county to normalize for 

                                                 
3 The five counties included in the ISA analysis include Queens County, NY, Philadelphia County, PA, Los Angeles 

County, CA, Sacramento County, CA, and Maricopa County (Phoenix), AZ (U.S. EPA, 2019a, section 2.3.1.2). 
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differences in county size. This “emissions density” map highlights regions of the country with 

the strongest emitting sectors for PM2.5.  

 

 

 

Figure 2-3. 2014 NEI PM2.5 Emissions Density Map, tons per square mile 

2.1.1.2 Sources Contributing to Primary PM10 Emissions  

Although the NEI does not estimate emissions of PM10-2.5 specifically, estimates of PM10 

emissions can provide insight into sources of coarse particles. Thus, the discussion below 

focuses on PM10 emissions. The relative contributions of key sources to national PM10 emissions, 

based on the 2014 NEI, are shown in Figure 2-4. Total PM10 emissions are estimated to be about 

13 million tons. National emissions of PM10 are dominated by dust and agriculture, contributing 

a combined 75% of the total emissions. Current NEI estimates of dust emissions across the U.S. 

are based on limited emissions profile and activity information. For a number of reasons, 

quantification of dust emissions is highly uncertain. Much like wildfires, dust emissions are 

common but intermittent emissions sources. Additionally, the suspension and resuspension of 

dust is difficult to quantify. Moreover, some dust particles in the PM10-2.5 size range are also 

transported internationally and considered as a part of the background component of PM as 

opposed to a primary emission of coarse PM (U.S. EPA, 2019a, section 2.3.3). 

As with PM2.5, the relative contributions of particular sources to total PM10 emissions 

varies from location to location (e.g., depending on local climate, geography, degree of 

urbanization, etc.). However, unlike with PM2.5, the sectors included in Figure 2-4 and found to 

be the largest contributors to coarse PM emissions are expected to be among the most important 

contributors at both the national and more regional levels, particularly given the sources of the 

particles in these source categories (e.g., mineral dust, primary biological aerosols (including 

pollen), sea spray). As noted previously, the NEI does not include sources such as pollen, sea 

spray, windblown dust, or geogenic sources, though those sources also likely contribute to PM10 
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emissions. Figure 2-4 shows the national contributions to PM10 emissions from particular source 

sectors and Figure 2-5 shows the emissions density map for PM10.  

 

 
Figure 2-4. Percent contribution of PM10 emissions by national source sectors. (Source: 

2014 NEI)   
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Figure 2-5. PM10 Emissions Density Map, tons per square mile 

2.1.1.3 Sources Contributing to Emissions of PM Components and Precursor Gases 

Understanding the components of PM is particularly important for providing insight into 

which sources contribute to PM mass, as well as for better understanding the health and welfare 

effects of particles. Major components of PM2.5 mass include sulfate (SO4
2-), nitrate (NO3

-), 

elemental or black carbon (EC or BC), organic carbon (OC), and crustal materials. Some of these 

PM components are emitted directly to the air (e.g., EC, BC) while others are formed secondarily 

through reactions by gaseous precursors (e.g., sulfate, nitrate). The following sections 

specifically discuss the sources that contribute to the specific PM2.5 components, including 

particulate carbon (section 2.1.1.3.1) and precursor gases (section 2.1.1.3.2). 

2.1.1.3.1 Sources Contributing to Emissions of Particulate Carbon  

Of the directly emitted components of PM2.5, emissions of elemental (or black) carbon 

and organic carbon often make up the largest percentage of directly emitted PM2.5 mass. Figure 

2-6 illustrates the sources that contribute to national emissions of elemental and organic carbon 

based on the 2014 NEI. The top panel of Figure 2-6 shows that fires account for most (i.e., 53%) 

of the 1.5 million tons of particulate OC emissions estimated in the 2014 NEI, while the bottom 

panel of Figure 2-6 shows that fires and mobile sources (mostly diesel sources) contribute 80% 

of the estimated 431,000 tons of particulate EC in the 2014 NEI. 
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Figure 2-6. Percent contribution to organic carbon (top panel) and elemental carbon 

(bottom panel) national emissions by source sectors. (Source: 2014 NEI)  
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Figure 2-7 shows the emissions density map for elemental carbon. This map illustrates 

that the elemental carbon emissions signals are strong in the Southeast U.S. and parts of the West 

and Northwest U.S., where fires make substantial contributions to PM2.5. In addition, areas 

where diesel off-road and on-road sources are a large part of the emissions mix also stand out 

(urban and highway corridors). The OC density map (not shown) shows the highest emissions 

density in locations with substantial biomass burning activity, consistent with most of the OC 

emissions coming from fires (Figure 2-6).  

 

 
Figure 2-7. Elemental Carbon Emissions Density Map, tons per square mile 

2.1.1.3.2 Sources Contributing to Emissions of Precursor Gases   

As discussed further in the ISA (U.S. EPA, 2019a, section 2.3.2.1), secondary PM is 

formed in the atmosphere by photochemical oxidation reactions of both inorganic and organic 

gas-phase precursors. Precursor gases include SO2, NOX, and volatile organic compound (VOC) 

gases of anthropogenic or natural origin (U.S. EPA, 2019a, section 2.3.2.1). Anthropogenic SO2 

and NOX are the predominant precursor gases in the formation of secondary PM2.5, and ammonia 

also plays an important role in the formation of nitrate PM by neutralizing sulfuric acid and nitric 

acid. In addition, atmospheric oxidation of VOCs, both anthropogenic and biogenic, is an 

important source of organic aerosols, particularly in summer. The semi-volatile and non-volatile 

products of VOC oxidation reactions can condense onto existing particles or can form new 

particles (U.S. EPA, 2009, section 3.3.2; U.S. EPA, 2019a, section 2.3.2).  

Emissions of each of the precursor gases noted above are estimated in the NEI and have 

unique source signatures at the national level. Figure 2-8 illustrates the source contributions at 

the national level for these PM2.5 precursor gases. As shown in Panel A in Figure 2-8, stationary 

fuel combustion sources contribute nearly 80% of the estimated total of 4.8 million tons of 

national SO2 national emissions. Within this source category, nearly all of the SO2 emitted to the 
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atmosphere comes from electricity generating units, or EGUs. NOX emissions, shown in panel B, 

are emitted by a range of combustion sources, including mobile sources (58%) and stationary 

fuel combustion sources (24%). In the 2014 NEI, there is an estimated total of 14.4 million tons 

of NOX emitted. Of the total estimate of 3.6 million tons of ammonia (NH3) emissions shown in 

panel C of Figure 2-8, NH3 emissions are dominated by the agriculture source categories. In 

these categories, NH3 is predominantly emitted by livestock waste from animal husbandry 

operations (55%) and fertilizer application (25%). In urban areas, on-road mobile sources may 

also contribute significantly to NH3 emissions (U.S. EPA, 2019a, Figure 2-3; Sun et al., 2014). 

Of the estimated 17 million tons of VOC emissions from anthropogenic sources, fires (26%) and 

mobile sources (24%) are the largest contributors to national VOC emissions, along with 

industrial processes (23%), as shown in panel D.  

 

 
Figure 2-8. Percent contribution to sulfur dioxide (panel A), oxides of nitrogen (panel B), 

ammonia (panel C), and anthropogenic volatile organic compounds (panel D) national 

emissions by source sectors. (Source: 2014 NEI)   
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Figure 2-9 to Figure 2-12 below show the emissions density maps corresponding to each 

of the PM2.5 precursors included in Figure 2-8.  

 

 
Figure 2-9. SO2 Emissions Density Map, tons per square mile 

 

 
Figure 2-10. NOX Emissions Density Map, tons per square mile 
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Figure 2-11. NH3 Emissions Density Map, tons per square mile 

 

 
Figure 2-12. Anthropogenic (including wildfires) VOC Emissions Density Map, tons per 

square mile 

2.1.1.3.3 Uncertainty in Emission Estimates 

Accuracy in an emissions inventory reflects the extent to which the inventory represents 

the actual emissions that occurred. Anthropogenic emissions of air pollutants result from a 

variety of sources such as power plants, industrial sources, motor vehicles and agriculture. The 

emissions from any individual source typically vary in both time and space. It is not practically 

possible to monitor each of the emission sources individually and, therefore, emission 

inventories necessarily contain assumptions, interpolation and extrapolation from a limited set of 

sample data.  

The NEI process is based on a “bottom up” approach to developing emission estimates. 

This means that a combination of activity and an appropriate emissions factor is used to estimate 

emissions for all processes. For the thousands of sources that make up the NEI, there is 

uncertainty in one or both of these factors. For some sources, such as EGUs, direct emission 

measurements enable the emission factors to be more certain than for sources without such direct 

measurements. For example, emission factors for residential wood combustion are taken from 

information available in the literature, regardless of its pedigree and direct applicability to the 
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source in question. Many of these issues related to the analysis of uncertainty in the NEI are 

discussed by Day et al., 2019).  

It is not clear how uncertainties in emission estimates affect air quality modeling, as there 

are no numerical empirical uncertainty estimates available for the NEI. However, by comparing 

modeled concentrations to ambient measurements, overall uncertainty in model outputs can be 

characterized. Some of this uncertainty in model outputs is likely due to uncertainty in emission 

estimates.  

2.2 AMBIENT PM MONITORING METHODS AND NETWORKS 

To promote uniform enforcement of the air quality standards set forth under the CAA and 

to achieve the degree of public health and welfare protection intended for the NAAQS, the EPA 

established PM Federal Reference Methods (FRMs)4 for both PM10 and PM2.5 (40 CFR 

Appendix J and L to Part 50) and performance requirements for approval of Federal Equivalent 

Methods (FEMs) (40 CFR Part 53). Amended following the 2006 and 2012 PM NAAQS 

reviews, the current PM monitoring network relies on FRMs and automated continuous FEMs, in 

part to support changes necessary for implementation of the revised PM standards. The 

requirements for measuring ambient air quality and reporting ambient air quality data and related 

information are the basis for 40 CFR Appendices A through E to Part 58.   

The EPA and its partners at state, local, and tribal monitoring agencies manage and 

operate the nation’s ambient air monitoring networks. The EPA provides minimum monitoring 

requirements for criteria pollutants and related monitoring (e.g., the Chemical Speciation 

Network (CSN)), including identification of an FRM for criteria pollutants and guidance 

documents to support implementation and operation of the networks. Monitoring agencies carry 

out and perform ambient air monitoring in accordance with the EPA’s requirements and 

guidance as well as often meeting their own state monitoring needs that may go beyond the 

minimum federal requirements. Data from the ambient air monitoring networks are available 

from two national databases: 1) the Air Quality System (AQS) database, which is the EPA’s 

long-term repository of ambient air monitoring data and 2) the AirNow database, which provides 

near real-time data used in public reporting and forecasting of the Air Quality Index (AQI).5  

                                                 
4 FRMs provide the methodological basis for comparison to the NAAQS and also serve as the “gold-standard” for 

the comparison of other methods being reviewed for potential approval as equivalent methods. The EPA keeps a 

complete list of designated reference and equivalent methods available on its Ambient Monitoring Technology 

Information Center (AMTIC) website (https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants).   

5 The AQI translates air quality data into numbers and colors to help people understand when to take action to 

protect their health against ambient air concentrations of criteria pollutants. 

https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants
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The EPA and monitoring agencies manage and operate robust national networks for both 

PM10 and PM2.5, as these are the two measurement programs directly supporting the PM 

NAAQS. PM10 measurements are based on gravimetric mass, while PM2.5 measurements include 

gravimetric mass and chemical speciation. A smaller network of stations is operating and 

reporting data for PM10-2.5 gravimetric mass and a few monitors are operated to support special 

projects, including pilot studies, for continuous speciation and particle count data. Monitoring 

networks and additional monitoring efforts for each of the various PM size fractions and for PM 

composition are discussed below.6 Section 2.2.1 provides information on monitoring for total 

suspended particulates (TSP), section 2.2.2 provides information on monitoring for PM10, section 

2.2.3 provides information on monitoring PM2.5, section 2.2.4 provides information on 

monitoring for PM10-2.5, and section 2.2.5 provides information on additional PM metrics. All 

sampler and monitor counts provided in these sections are based on data submitted to the EPA 

for calendar year 2018, unless otherwise noted. Figure 2-13 below illustrates the changes in PM 

monitoring stations reporting to the EPA’s AQS database by size fraction since 1970. 

 

 

Figure 2-13. PM Monitoring stations reporting to EPA’s AQS database by PM size 

fraction, 1970-2018. 

2.2.1 Total Suspended Particulates (TSP) Sampling 

The EPA first established NAAQS for PM in 1971, based on the original air quality 

criteria document (DHEW, 1969). The reference method specified for determining attainment of 

                                                 
6 More information on ambient monitoring networks can be found at https://www.epa.gov/amtic 

https://www.epa.gov/amtic
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the original standards was the high-volume sampler, which collects PM up to a nominal size of 

25 to 45 μm (referred to as total suspended particles or TSP). TSP was replaced by PM10 as the 

indicator for the PM NAAQS in the 1987 final rule (52 FR 24854, July 1, 1987). TSP sampling 

remains in operation at a limited number of locations primarily to provide aerosol collection for 

TSP lead (Pb) analysis as well as for instances where a state may continue to have state standards 

for TSP. The size of the TSP network peaked in the mid-1970s when over 4,300 TSP samplers 

were in operation. As of 2018, there were 164 TSP samplers still in operation as part of the Pb 

monitoring program; of these, 41 also report TSP mass.   

2.2.2 PM10 Monitoring 

To support the 1987 PM10 NAAQS, the EPA and its state and local partners implemented 

the first size-selective PM monitoring network in 1990 with the establishment of a PM10 network 

consisting of mainly high-volume samplers. The network design criteria emphasize monitoring at 

middle7 and neighborhood8 scales to effectively characterize the emissions from both mobile and 

                                                 
7 For PM10, middle-scale is defined as follows: Much of the short-term public exposure to PM10 is on this scale and 

on the neighborhood scale. People moving through downtown areas or living near major roadways or stationary 

sources, may encounter particulate pollution that would be adequately characterized by measurements of this 

spatial scale. Middle scale PM10 measurements can be appropriate for the evaluation of possible short-term 

exposure public health effects. In many situations, monitoring sites that are representative of micro-scale or 

middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic 

corridors or other locations in a residential district. In this case, one location is representative of a neighborhood 

of small scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the 

characteristic concentrations for other areas with dimensions of a few hundred meters such as the parking lot and 

feeder streets associated with shopping centers, stadia, and office buildings. In the case of PM10, unpaved or 

seldomly swept parking lots associated with these sources could be an important source in addition to the 

vehicular emissions themselves.  

8 For PM10, neighborhood scale is defined as follows: Measurements in this category represent conditions 

throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of 

generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, 

as well as the land use and land surface characteristics. In some cases, a location carefully chosen to provide 

neighborhood scale data would represent not only the immediate neighborhood but also neighborhoods of the 

same type in other parts of the city. Neighborhood scale PM10 sites provide information about trends and 

compliance with standards because they often represent conditions in areas where people commonly live and 

work for extended periods. Neighborhood scale data could provide valuable information for developing, testing, 

and revising models that describe the larger-scale concentration patterns, especially those models relying on 

spatially smoothed emission fields for inputs. The neighborhood scale measurements could also be used for 

neighborhood comparisons within or between cities. 
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stationary sources, although not ruling out microscale9 monitoring in some instances (40 CFR 

Part 58 Appendix D, 4.6 (b)). The PM10 monitoring network peaked in size in 1995 with 1,665 

stations reporting data.  

In 2018, there were 714 PM10 stations in operation to support comparison of the PM10 

data to the NAAQS, trends, and reporting and forecasting of the AQI. Though the PM10 network 

is relatively stable, monitoring agencies may continue divesting of some of the PM10 monitoring 

stations where concentration levels are low relative to the NAAQS.  

While the PM10 network is national in scope, there are areas of the west, such as 

California and Arizona, with substantially higher PM10 station density than the rest of the 

country. In the PM10 mass network, 365 of the stations operate automated continuous mass 

monitors approved as FEMs and 391 operate FRMs. About 40 of the PM10 stations have 

collocation with both continuous FEMs and FRMs. About two thirds of the PM10 stations with 

FRMs operate on a sample frequency of one in every sixth day, with about 70 operating every 

third day and 60 operating every day. 

2.2.3 PM2.5 Monitoring 

To support the 1997 PM2.5 NAAQS, the first PM standard with PM2.5 as an indicator, the 

EPA and states implemented a PM2.5 network consisting of ambient air monitoring sites with 

mass and/or chemical speciation measurements. Network operation began in 1999 with nearly 

1,000 monitoring stations operating FRMs to measure fine particle mass. The PM2.5 monitoring 

program remains one of the major ambient air monitoring programs operated across the country.  

For most urban locations PM2.5 monitors are sited at the neighborhood scale,10 where 

PM2.5 concentrations are reasonably homogeneous throughout an entire urban sub-region. In each 

                                                 
9 For PM10, microscale is defined as follows: This scale would typify areas such as downtown street canyons, traffic 

corridors, and fence line stationary source monitoring locations where the general public could be exposed to 

maximum PM10 concentrations. Microscale particulate matter sites should be located near inhabited buildings or 

locations where the general public can be expected to be exposed to the concentration measured. Emissions from 

stationary sources such as primary and secondary smelters, power plants, and other large industrial processes 

may, under certain plume conditions, likewise result in high ground level concentrations at the microscale. In the 

latter case, the microscale would represent an area impacted by the plume with dimensions extending up to 

approximately 100 meters. Data collected at microscale sites provide information for evaluating and developing 

hot spot control measures. 

10 For PM2.5, neighborhood scale is defined as follows: Measurements in this category would represent conditions 

throughout some reasonably homogeneous urban sub-region with dimensions of a few kilometers and of 

generally more regular shape than the middle scale. Homogeneity refers to the particulate matter concentrations, 

as well as the land use and land surface characteristics. Much of the PM2.5 exposures are expected to be associated 

with this scale of measurement. In some cases, a location carefully chosen to provide neighborhood scale data 

would represent the immediate neighborhood as well as neighborhoods of the same type in other parts of the city. 

PM2.5 sites of this kind provide good information about trends and compliance with standards because they often 

represent conditions in areas where people commonly live and work for periods comparable to those specified in 

the NAAQS. In general, most PM2.5 monitoring in urban areas should have this scale. 
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CBSA with a monitoring requirement, at least one PM2.5 monitoring station representing area-

wide air quality is to be sited in an area of expected maximum concentration. Sites that represent 

relatively unique microscale, localized hot-spot, or unique middle scale impact sites are only 

eligible for comparison to the 24-hour PM2.5 NAAQS.  

There are three main components of the current PM2.5 monitoring program: FRMs, PM2.5 

continuous mass monitors, and CSN samplers. The FRMs are primarily used for comparison to 

the NAAQS, but also serve other important purposes such as developing trends and evaluating 

the performance of PM2.5 continuous mass monitors. PM2.5 continuous mass monitors are 

automated methods primarily used to support forecasting and reporting of the AQI, but are also 

used for comparison to the NAAQS where approved as FEMs. The CSN and related Interagency 

Monitoring of Protected Visual Environments (IMPROVE) network are used to provide 

chemical composition of the aerosol which serve a variety of objectives. This section provides an 

overview of each of these components of the PM2.5 monitoring program and of recent changes to 

PM2.5 monitoring requirements.  

2.2.3.1 Federal Reference Method and Continuous Monitors 

As noted above, the PM2.5 monitoring network began operation in 1999 with nearly 1,000 

monitoring stations operating FRMs. The PM2.5 FRM network peaked in operation in 2001 with 

over 1,150 monitoring stations. In the PM2.5 network, in 2018 there were 624 FRM filter-based 

samplers that provide 24-hour PM2.5 mass concentration data. Of these operating FRMs, 70 are 

providing daily PM2.5 data, 422 every third day, and 132 every sixth day.  

As of 2018, there are 940 continuous PM2.5 mass monitors that provide hourly data on a 

near real-time basis reporting across the country. A total of 579 of the PM2.5 continuous monitors 

are FEMs and therefore used both for comparison with the NAAQS and to report the AQI. 

Another 361 monitors not approved as FEMs are operated primarily to report the AQI. These 

legacy PM2.5 continuous monitors were largely purchased prior to the availability of PM2.5 

continuous FEMs.  

The first method approved as a continuous PM2.5 FEM was the Met One BAM 1020. This 

method, approved in 2008, accounts for just over 50% of the operating PM2.5 continuous FEMs 

in the country. The EPA has approved a total of 11 PM2.5 continuous methods as FEMs. Other 

methods approved as continuous PM2.5 FEMs include beta attenuation from multiple instrument 

manufacturers; optical methods such as the GRIMM and Teledyne T640; and methods 

employing the Tapered Element Oscillating Microbalance (TEOM) with a Filter Dynamic 

Measurement System (FDMS) manufactured by Thermo Fisher Scientific.  

The quality of the data generated by PM2.5 FRMs and automated FEMs were analyzed for 

years 2016-2018.  Data quality terms for measurement uncertainty regularly assessed in the 
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PM2.5 monitoring program include precision and bias.  Precision is calculated by comparing data 

from collocated methods of the same make and model operated by the same monitoring 

organization.  Bias is calculated by comparing data from routinely operated FRMs or automated 

FEMs by the monitoring organization and comparing that to data from reference method audit 

samplers temporarily collocated and operated independently from the staff in the monitoring 

organization.  Goals for measurement uncertainty are defined in Appendix A to 40 CFR Part 58.  

They state “Measurement Uncertainty for Automated and Manual PM2.5 Methods. The goal for 

acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence 

limit for the coefficient of variation (CV) of 10 percent and ±10 percent for total bias.”  The most 

recent three-year average estimate of national aggregate PM2.5 FRM precision is 8.2% and bias is 

-4.7%.   

Automated PM2.5 FEMs include a wide variety of approved methods which can have 

different measurement principles. Data aggregated across all automated FEMs result in a 

collocated precision of 18.6% and a bias as compared to the reference method audit program of 

+7.6%.  When evaluating automated FEMs as individual methods, only two of the seven 

methods with available collocated precision data meet the measurement uncertainty goal; 

however, as explained in the Notice of Proposed Rulemaking, January 17, 200611 when 

considering a requirement for approval of candidate FEMs: “Statistical analyses based on the 

DQO model show that the precision of a candidate method is not, statistically, very important to 

annual concentration averages used for NAAQS attainment decisions, but would be important 

for a daily standard.”  When evaluating automated FEMs as individual methods for bias, eight of 

ten methods with data available to calculate a performance evaluation bias meet this goal.  In 

summary, PM2.5 automated FEMs tend to have higher collocated precision than FRMs and tend 

to have a positive bias relative to both State and local operated FRMs as well as performance 

evaluation audit FRMs.   

2.2.3.2 Chemical Speciation and IMPROVE Networks 

Due to the complex nature of fine particles, the EPA and states implemented the CSN to 

better understand the components of fine particle mass at selected locations across the country. 

The CSN was first piloted at 13 sites in 2000, and after the pilot phase, the program continued 

with deployment of the Speciation Trends Network (STN) later that year. The CSN ultimately 

grew to 54 trends sites and peaked in operation in 2005 with 252 stations: the 54 trends stations 

and nearly 200 supplemental stations. The original CSN program had multiple sampler 

configurations including the Thermo Andersen RAAS, Met One SASS/SuperSASS, and URG 

                                                 
11 https://www.govinfo.gov/content/pkg/FR-2006-01-17/pdf/06-177.pdf 

https://www.govinfo.gov/content/pkg/FR-2006-01-17/pdf/06-177.pdf
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MASS. During the 2000s, the EPA and states worked to align the network to one common 

sampler for elements and ions, which was the Met One SASS/SuperSASS. In 2005, the CASAC 

provided recommendations to the EPA for making changes to the CSN. These changes were 

intended to improve data comparability with the rural IMPROVE carbon concentration data. To 

accomplish this, the EPA replaced the existing carbon channel sampling and analysis methods 

with a new modified IMPROVE version III module C sampler, the URG 3000N. Implementation 

of the new carbon sampler and analysis was broken into three phases starting in May 2007 

through October 2009. 

In the 2018 PM2.5 CSN, long-term measurements are made at about 76 largely urban 

locations comprised of either the STN or the National Core (NCore) network.12 NCore is a 

multipollutant network measuring particles, gases, and basic meteorology that has been in formal 

operation since January 1, 2011. Particle measurements made at NCore include PM2.5 filter-based 

mass, which is largely the FRM, except in some rural locations that utilize the IMPROVE 

program PM2.5 mass filter-based measurement; PM2.5 speciation using either the CSN program or 

IMPROVE program; and PM10-2.5 mass utilizing an FRM, FEM or IMPROVE for some of the 

rural locations. As of 2018, the NCore network includes a total of 78 stations of which 63 are in 

urban or suburban stations designed to provide representative population exposure and another 

15 rural stations designed to provide background and transport information. The NCore network 

is deployed in all 50 States, DC, and Puerto Rico with at least one station in each state and two or 

more stations in larger population states (California, Florida, Illinois, Michigan, New York, 

North Carolina, Ohio, Pennsylvania, and Texas).  

Both the STN and NCore networks are intended to remain in operation indefinitely. The 

CSN measurements at NCore and STN stations operate every third day. Another approximately 

72 CSN stations, known as supplemental sites, are intended to be potentially less permanent 

locations used to support State Implementation Plan (SIP) development and other monitoring 

objectives.13 Supplemental CSN stations typically operate every sixth day. In January 2015, 38 

supplemental CSN stations that are largely located in the eastern half of the country stopped 

operations to ensure a sustainable CSN network moving forward.14  

                                                 
12 In most cases where a city has an STN station, it is located at the same site as the NCore station. In a few cases, a 

city may have an STN station located at a different location than the NCore station.  

13 See https://www3.epa.gov/ttn/amtic/speciepg.html for more information on the PM2.5 speciation monitoring 

program.  

14 Based on assessments of the CSN network and IMPROVE protocol sites, monitoring resources were redistributed 

to focus on new or high priorities. More information on the CSN and IMPROVE protocol assessments is 

available at https://www.sdas.battelle.org/CSNAssessment/html/Default.html.   

 

https://www3.epa.gov/ttn/amtic/speciepg.html
https://www.sdas.battelle.org/CSNAssessment/html/Default.html
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Specific components of fine particles are also measured through the IMPROVE 

monitoring program15 which supports regional haze characterization and tracks changes in 

visibility in Class I areas as well as many other rural and some urban areas. As of 2018, the 

IMPROVE network includes 110 monitoring locations that are part of the base network 

supporting regional haze and another 46 locations operated as IMPROVE protocol sites where a 

monitoring agency has requested participation in the program. These IMPROVE protocol sites 

operate the same way as the IMPROVE program, but they may serve several monitoring 

objectives (i.e., the same objectives as the CSN) and are not explicitly tied to the Regional Haze 

Program. Samplers at IMPROVE stations operate every third day. In January 2016, eight 

IMPROVE protocol stations stopped operating to ensure a sustainable IMPROVE program 

moving forward. Details on the process and outcomes of the CSN supplemental and IMPROVE 

protocol assessments used to identify sites that would no longer be funded are available on an 

interactive website.16 Together, the CSN and IMPROVE data provide chemical species 

information for fine particles that are critical for use in health and epidemiologic studies to help 

inform reviews of the primary PM NAAQS and can be used to better understand visibility 

through calculation of light extinction using the IMPROVE algorithm17 to support reviews of the 

secondary PM NAAQS.  

The quality of the data generated by the PM2.5 speciation networks (CSN and IMPROVE) 

is assessed regularly, using a variety of metrics. Overall network precision, including 

uncertainties associated with both field operations and laboratory analyses, is assessed using the 

subset of sites with collocated samplers. Fractional uncertainty is one metric that both speciation 

networks regularly calculates using collocated data pairs above the MDL and reflects the overall 

percent uncertainty for the measurements. For CSN data collected between November 2015 and 

December 2016, the fractional uncertainties range from 6.6% for sulfate to 31.4% for chlorine.18 

                                                 
15 Recognizing the importance of visual air quality, Congress included legislation in the 1977 Clean Air Act to 

prevent future and remedy existing visibility impairment in Class I areas. To aid the implementation of this 

legislation, the IMPROVE program was initiated in 1985 and substantially expanded in 2000-2003. This program 

implemented an extensive long-term monitoring program to establish the current visibility conditions, track 

changes in visibility and determine causal mechanism for the visibility impairment in the National Parks and 

Wilderness Areas. For more information, see https://www3.epa.gov/ttn/amtic/visdata.html.    

16 See the Chemical Speciation Network Assessment Interactive Website at: 

https://www.sdas.battelle.org/CSNAssessment/html/Default.html.  

17 The IMPROVE algorithm is an equation to estimate light extinction based on the measured concentration of 

several PM components and is used to track visibility progress in the Regional Haze Rule. More information 

about the IMPROVE algorithm is at available at: http://vista.cira.colostate.edu/Improve/the-improve-algorithm.  

18 https://airquality.ucdavis.edu/sites/g/files/dgvnsk1671/files/inline-

files/CSN_AnnualReport_2016Data_03.06.2019_FINAL_APPROVED.pdf  

 

https://www3.epa.gov/ttn/amtic/visdata.html
https://www.sdas.battelle.org/CSNAssessment/html/Default.html
http://vista.cira.colostate.edu/Improve/the-improve-algorithm
https://airquality.ucdavis.edu/sites/g/files/dgvnsk1671/files/inline-files/CSN_AnnualReport_2016Data_03.06.2019_FINAL_APPROVED.pdf
https://airquality.ucdavis.edu/sites/g/files/dgvnsk1671/files/inline-files/CSN_AnnualReport_2016Data_03.06.2019_FINAL_APPROVED.pdf
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For IMPROVE data collected in 2016 and 2017, the fractional uncertainties range from 2% for 

sulfur and sulfate to 27% for phosphorous.19 In general, uncertainties are higher for species with 

concentrations near the detection limit. Bias for the speciation networks can be assessed using 

reports from interlaboratory comparisons.20 

2.2.3.3 Recent Changes to PM2.5 Monitoring Requirements 

Key changes made to the EPA’s monitoring requirements as a result of the 2012 PM 

NAAQS review included the addition of PM2.5 monitoring at near-road locations in core-based 

statistical areas (CBSAs) over 1 million in population; the clarification of terms used in siting of 

PM2.5 monitors and their applicability to the NAAQS; and the provision of flexibility on data 

uses to monitoring agencies where their PM2.5 continuous monitors are not providing data that 

meets the performance criteria used to approve the continuous method as an FEM. The addition 

of PM2.5 monitoring at near-road locations was phased in from 2015 to 2017. On January 1, 

2015, 22 CBSAs with a population of 2.5 million or more were required to have a PM2.5 FRM or 

FEM operating at a near-road monitoring station. On January 1, 2017, 30 CBSAs with a 

population between 1 million and 2.5 million were required to have a PM2.5 FRM or FEM 

operating are a near-road monitoring station.  

The terms clarified as a part of the 2012 rulemaking ensure consistency with all other 

NAAQS and long-standing definitions used by the EPA (78 FR 3234, January 15, 2013). The 

flexibility provided to monitoring agencies ensures that the incentives of utilizing PM2.5 

continuous monitors (e.g., efficiencies in operation and availability of hourly data in near-real 

time) are realized without having potentially poor performing data be used in situations where 

the data is not applicable to the NAAQS (78 FR 3241, January 15, 2013). 

2.2.4 PM10-2.5 Monitoring 

In the 2006 PM NAAQS review, the EPA promulgated a new FRM for the measurement 

of PM10-2.5 mass in ambient air. Although the standard for coarse particles uses a PM10 indicator, 

a new FRM for PM10-2.5 mass was developed to provide a basis for approving FEMs and to 

promote the gathering of scientific data to support future reviews of the PM NAAQS. The 

PM10-2.5 FRM (or approved FEMs, where available) was implemented at required NCore stations 

by January 1, 2011. In addition to NCore, there are other collocated PM10 and PM2.5 low-volume 

FRMs operating across the country that are essentially providing the PM10-2.5 FRM measurement 

by the difference method.  

                                                 
19 http://vista.cira.colostate.edu/improve/wp-content/uploads/2019/11/IMPROVE_QAReport_11.15.2019.pdf    

20 https://www3.epa.gov/ttn/amtic/pmspec.html 

http://vista.cira.colostate.edu/improve/wp-content/uploads/2019/11/IMPROVE_QAReport_11.15.2019.pdf
https://www3.epa.gov/ttn/amtic/pmspec.html
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PM10--2.5 measurements are currently performed across the country at NCore stations, 

IMPROVE monitoring stations, and at a few additional locations where state or local agencies 

choose to operate a PM10-2.5 method. For urban NCore stations and other State and Local Air 

Monitoring Stations (SLAMS) the method employed is either a PM10-2.5 FRM, which is 

performed using a low-volume PM10 FRM collocated with a low volume PM2.5 FRM of the same 

make and model, or FEMs for PM10-2.5, including filter-based dichotomous methods and 

continuous methods of which several makes and models are approved. Filter-based PM10-2.5 

measurements at NCore (i.e., the FRM or dichotomous filter-based FEM) operate every third 

day, while continuous methods have data available every hour of every day. PM10-2.5 filter-based 

methods at other SLAMS typically operate every third or sixth day. For IMPROVE, which is 

largely a rural network, PM10-2.5 measurements are made with two sample channels; one each for 

PM10 and PM2.5. All IMPROVE program samplers operate every third day. All together there 

were 279 stations in 2018 where PM10-2.5 data were being reported to the AQS database.  

There is no operating chemical speciation network for characterizing the specific 

components of coarse particles. In 2015, Washington University at St. Louis, under contract to 

the U.S. EPA, reported on a coarse particle speciation pilot study with several objectives aimed 

at addressing this issue, such as evaluating a coarse particle species analyte list and evaluating 

sampling and analytical methods (U.S. EPA, 2015). The coarse particle speciation pilot study 

provides useful information for any organization wishing to pursue coarse particle speciation.  

2.2.5 Additional PM Measurements and Metrics 

There are additional PM measurements and metrics made at a much smaller number of 

stations. These measurements may be associated with special projects or are complementary 

measurements to other networks where the monitoring agency has prioritized having the 

measurements. None of these measurements are required by regulation. They include PM 

measurements such as particle counts, continuous carbon, and continuous sulfate. 

The EPA and state and local agencies have also been working together to pilot additional 

PM methods at near-road monitoring stations that may be of interest to data users. These 

methods include such techniques as particle counters, particle size distribution, and black carbon 

by aethalometer. These methods and their rationale for use at near-road monitoring stations are 

described in a Technical Assistance Document (TAD) on NO2 near-road monitoring (U.S. EPA, 

2012, section 16). 

Aethalometer measurements of the concentration of optically absorbing particles have 

been submitted to AQS for many years. Data uses include characterizing black carbon and wood 

smoke. Ambient air monitoring stations that may have aethalometers include some of the near-

road monitoring stations and National Air Toxics Trends Stations (NATTS). Data from about 72 
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monitoring sites across the county are being reported from aethalometers. While aethalometer 

data is available at high time resolutions (e.g., 5-minute data), it is typically reported to the AQS 

database in 1-hour periods. 

Continuous elemental and organic carbon data were monitored at select locations 

participating in a pilot of the Sunset EC/OC analyzer as well as a few additional sites that were 

already operating before the EPA initiated the pilot study.21 The Sunset EC/OC analyzer 

provides high time resolution carbon data, typically every hour, but in some remote locations the 

instrument is programmed to run every two hours to ensure collection of enough aerosol. The 

data from the Sunset EC/OC analyzer was compared to filter-based carbon methods from the 

carbon channel of the CSN program. The Sunset EC/OC analyzer was operated at each of the 

study sites for at least three years. Results from this pilot study are available in an EPA report 

(U.S. EPA, 2019b).  A key finding from the study suggests that when the Sunset instrument was 

working well, OC and optical EC were comparable to CSN OC and EC; however, the time and 

resources needed to keep a Sunset analyzer operational did not merit replacement of CSN OC 

and EC measurements. 

As of 2018, continuous sulfate is measured at four remaining monitoring sites, one in 

Maine and three in New York State. Several other stations have historical data but are no longer 

monitoring continuous sulfate. Discontinuing monitoring efforts for continuous sulfate is likely 

an outcome of the significantly lower sulfate concentrations throughout the east where these 

methods were operated. The continuous sulfate analyzer provides hourly data and these data can 

be readily compared to 24-hour sulfate data which are collected from the ion channel in both the 

CSN and IMPROVE programs. 

In addition, over the last few years, the EPA has investigated the use of several PM 

sensor technologies as one of several areas of research intended to address the next generation of 

air measurements. The investigation into air sensors is envisioned to work towards near real-time 

or continuous measurement options that are smaller, cheaper, and more portable than traditional 

FRM or FEM methods. These sensor devices have the potential to be used in several applications 

such as identifying hotspots, informing network design, providing personal exposure monitoring, 

supporting risk assessments, and providing background concentration data for permitting. The 

EPA has hosted workshops and published several documents and peer-reviewed articles on this 

work.22  

                                                 
21 The six sites that participated in the study were Washington, DC; Chicago, IL; St. Louis, MO; Houston, TX; Las 

Vegas, NV; and Los Angeles, CA. 

22 For more information, see https://www.epa.gov/sciencematters/epas-next-generation-air-measuring-research  and 

https://www.epa.gov/air-sensor-toolbox/air-sensor-toolbox-what-epa-doing#pane-1.  

https://www.epa.gov/sciencematters/epas-next-generation-air-measuring-research
https://www.epa.gov/air-sensor-toolbox/air-sensor-toolbox-what-epa-doing#pane-1


 2-25  

2.3 AMBIENT AIR CONCENTRATIONS 

This section summarizes available information on recent ambient PM concentrations. 

Section 2.3.1 presents trends in emissions of PM and precursor gases, while section 2.3.2 

presents trends in monitored ambient concentrations of PM in the U.S. Section 2.3.3 discusses 

approaches for predicting ambient PM2.5 by hybrid modeling approaches. 

2.3.1 Trends in Emissions of PM and Precursor Gases 

 Direct emissions of PM have remained relatively unchanged in recent years, while 

emissions of some precursor gases have declined substantially.23 As illustrated in Figure 2-14, 24 

from 1990 to 2014, SO2 emissions have undergone the largest declines while NH3 emissions 

have undergone the smallest change. Declining SO2 emissions during this time period are 

primarily a result of reductions at stationary sources such as EGUs, with substantial reductions 

also from mobile sources (U.S. EPA, 2019a, section 2.3.2.1). In more recent years (i.e., 2002 to 

2014), emissions of SO2 and NOX have undergone the largest declines, while direct PM2.5 and 

NH3 emissions have undergone the smallest changes, as shown in Table 2-1. Regional trends in 

emissions can differ from the national trends illustrated in Figure 2-14 and Table 2-1.25 For 

example, Hand et al. (2012) studied reductions in EGU-related annual SO2 emissions during the 

2001−2010 period and found that while SO2 emissions decreased throughout the U.S. by an 

average of 6.2% per year, the amount of change varied across the U.S. with the largest percent 

reductions in the western U.S. at 20.1% per year.  

                                                 
23 More information on these trends, including details on methods and explanations on the noted changes over time 

is available at https://gispub.epa.gov/neireport/2014/.  

24 Emission trends in Figure 2-14 do not include wildfire emissions. 

25 State-specific emission trends data for 1990 to 2014 can be found at: https://www.epa.gov/air-emissions-

inventories/air-pollutant-emissions-trends-data.  

https://gispub.epa.gov/neireport/2014/
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
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Figure 2-14. National emission trends of PM2.5, PM10, and precursor gases from 1990 to 

2014. 

Table 2-1. Percent Changes in PM and PM precursor emissions in the NEI for the time 

periods 1990-2014 and 2002-2014. 

Pollutant 
Percent Change 
in Emissions: 
1990 to 2014 

Percent Change 
in Emissions: 
2002 to 2014 

Major Sources 

NH3 -21% -10% 
Agricultural Sources (Fertilizer and 
Livestock Waste), Fires 

NOX -50% -48% EGUs, Mobile Sources 

SO2 -80% -69% EGUs, other Stationary Sources 

VOCs -38% -15% Solvents, Fires, Mobile Sources 

PM2.5 -40% -4% Dust, Fires 

PM10 -38% -15% Dust, Fires 

 

2.3.2 Trends in Monitored Ambient Concentrations  

2.3.2.1 National Characterization of PM2.5 Mass  

At long-term monitoring sites in the U.S., annual PM2.5 concentrations from 2015 to 2017 

averaged 8.0 μg/m3 (ranging from 3.0 to 18.2 μg/m3) and the 98th percentiles of 24-hour 

concentrations averaged 20.9 μg/m3 (ranging from 9.2 to 111 μg/m3). Figure 2-15 (top panels) 

shows that the highest ambient PM2.5 concentrations occur in the west, particularly in California 

and the Pacific northwest. Much of the eastern U.S. has lower ambient concentrations, with 

annual average concentrations generally at or below 12.0 μg/m3 and 98th percentiles of 24-hour 

concentrations generally at or below 30 μg/m3.  
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 These concentrations are distinct from design values in part because they include days 

with episodic events like wildfires and dust storms which can have very high PM2.5 and/or PM10 

concentrations. The EPA’s Exceptional Events Rule,26 most recently updated in 2016, describes 

the process by which these events can be excluded from the design values used for comparison to 

the NAAQS. For the remainder of Chapter 2, episodic events are included in the calculations of 

PM concentrations. When design values are discussed in Chapter 2, regionally-concurred 

exceptional events (as of July 2019) have been excluded from the analysis.27

                                                 
26 The final version of the 2016 Exceptional Events Rule can be accessed at 

https://www.epa.gov/sites/production/files/2018-10/documents/exceptional_events_rule_revisions_2060-

as02_final.pdf. 

27 Regionally-concurred exceptional events are unusual or naturally-occurring events such as wildfires or high wind 

dust events that have 1) resulted in PM2.5 concentrations above the level of the NAAQS, 2) been submitted by 

tribal, state or local air agencies under the EPA’s Exceptional Events Rule to their respective EPA Region, and 3) 

received concurrence. 

 

https://www.epa.gov/sites/production/files/2018-10/documents/exceptional_events_rule_revisions_2060-as02_final.pdf
https://www.epa.gov/sites/production/files/2018-10/documents/exceptional_events_rule_revisions_2060-as02_final.pdf
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Figure 2-15. Annual average and 98th percentile PM2.5 concentrations (in g/m3) from 2015-2017 (top) and linear trends and 

their associated significance (based on p-values) in PM2.5 concentrations from 2000-2017 (bottom).
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Analysis of monthly data indicate distinct peaks in national ambient PM2.5 concentrations 

during the summer and the winter (U.S. EPA, 2019a, Figure 2-22). Through 2008, the summer 

peaks reflected the highest national average PM2.5 concentrations. These summer peaks in 

ambient PM2.5 concentrations were largely a consequence of summertime peaks in SO2 

emissions from power plants in the eastern U.S., and subsequent sulfate formation. However, 

substantial reductions in SO2 emissions (see above and U.S. EPA, 2019a, sections 2.5.1.1.1 and 

2.5.2.2.1) have changed this pattern. Starting in 2009, winter peaks in national average PM2.5 

concentrations have been higher than those in the summer (U.S. EPA, 2019a, section 2.5.2.2.1). 

This pattern is illustrated by data from 2013 to 2015, when average winter PM2.5 concentrations 

were about 11 μg/m3, average summer concentrations were about 9 μg/m3, and average spring 

and fall concentrations were about 7 μg/m3 (Chan et al., 2018).  

The ambient PM2.5 concentrations in Figure 2-15 reflect the substantial reductions that 

have occurred across much of the U.S. over recent years (Figure 2-15, bottom panels and Figure 

2-16). From 2000 to 2017, national annual average PM2.5 concentrations have declined from 13.5 

μg/m3 to 8.0 μg/m3, a 41% decrease (Figure 2-16).28 These declines have occurred at both urban 

and rural monitoring sites, although urban PM2.5 concentrations remain consistently higher than 

those in rural areas (Chan et al., 2018) due to the so-called “urban increment” of PM2.5 from 

local sources in an urban area that is additive to the regional and natural background PM2.5 

concentrations. 

 
Figure 2-16. Seasonally-weighted annual average PM2.5 concentrations in the U.S. from 

2000 to 2017 (429 sites). (Note: The white line indicates the mean concentration while the 

gray shading denotes the 10th and 90th percentile concentrations.)  

                                                 
28 See https://www.epa.gov/air-trends/particulate-matter-pm25-trends and https://www.epa.gov/air-

trends/particulate-matter-pm25-trends#pmnat for more information. 

https://www.epa.gov/air-trends/particulate-matter-pm25-trends
https://www.epa.gov/air-trends/particulate-matter-pm25-trends#pmnat
https://www.epa.gov/air-trends/particulate-matter-pm25-trends#pmnat
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Analyses at individual monitoring sites indicate that declines in ambient PM2.5 

concentrations have been most consistent across the eastern U.S. and in parts of coastal 

California, where both annual average and 98th percentiles of 24-hour concentrations have 

declined significantly (Figure 2-15, bottom panels). In contrast, trends in ambient PM2.5 

concentrations have been less consistent over much of the western U.S., with no significant 

changes since 2000 observed at some sites in the Pacific northwest, the northern Rockies and 

plains, and the southwest, particularly for 98th percentiles of 24-hour concentrations (Figure 2-

15, bottom panels). Trends in annual average PM2.5 concentrations have been highly correlated 

with trends in 98th percentiles of 24-hour concentrations at individual sites (Figure 2-17). Such 

correlations are highest across the eastern U.S. and in coastal California, and are somewhat 

lower, though still generally positive, at sites in the Central and Western U.S. (i.e., outside of 

coastal California).  

 

Figure 2-17. Pearson’s correlation coefficient between annual average and 98th percentile 

of 24-hour PM2.5 concentrations from 2000-2017.  

2.3.2.2 Characterization of PM2.5 Mass at Finer Spatial and Temporal Scales  

2.3.2.2.1 CBSA Maximum Annual Versus Daily Design Values  

 Analysis of recent air quality indicates that maximum annual and daily PM2.5 design 

values within a CBSA are positively correlated with some noticeable regional variability (Figure 

2-18). In the Southeast, Northeast, and Industrial Midwest regions, the annual design values are 

high relative to the daily design values due in part to the infrequent impacts of episodic events 
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like wildfire or dust storms. On the other hand, the Northwest region has very high daily design 

values relative to the annual design values. This is due to episodically high PM2.5 concentrations 

that affect the region, both from wintertime stagnation events and summer/fall wildfire smoke 

events.29 The relatively small population and low emissions in the region result in much lower 

PM2.5 concentrations during the other parts of the year not affected by these episodes. 

 

Figure 2-18. Scatterplot of CBSA maximum annual versus daily design values (2015-2017) 

with the solid black line representing the ratio of daily and annual NAAQS values. 

2.3.2.2.2 PM2.5 Near Major Roadways  

Because of its longer atmospheric lifetime (U.S. EPA, 2019a, section 2.2), PM2.5 is 

expected to exhibit less spatial variability on an urban scale than UFP or PM10−2.5 (U.S. EPA, 

2019a, section 2.5.1.2.1). Analyses in the 2009 ISA for PM indicated that correlations between 

PM2.5 monitoring sites up to a distance of 100 km from each other were greater than 0.75 in most 

                                                 
29 Due to the recent time period shown in Figure 2-18, it is likely that some of the annual and daily design values are 

affected by potential exceptional events associated with wildfire smoke that have yet to be regionally-concurred 

and removed from the design value calculations. The EPA defines exceptional events as unusual or natural-

occurring events that that affect air quality but are not reasonably controllable using techniques that tribal, state, 

or local air agencies may implement. This is especially likely for the daily design values in the Northwest region 

which experienced frequent wildfire smoke events during the 2015-2017 period. 
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urban areas. However, more substantial spatial variation has been reported for some urban areas, 

due in part to proximity between monitors and emissions sources (U.S. EPA, 2019a, section 

2.5.1.2.1). The recent deployment of PM2.5 monitors near major roads in large urban areas 

provides some insight into this spatial variation.  

As discussed above, in the last review of the PM NAAQS the EPA required monitoring 

of PM2.5, along with NO2 and CO, near major roads in CBSAs with populations greater than 1 

million. PM2.5 monitoring was required to start for the largest CBSAs at the beginning of 2015, 

and several years of data are now available for analysis at these sites. DeWinter et al. (2018) 

analyzed these data and found that the average near-road increment (difference between near-

road PM2.5 concentrations and the concentrations at other sites in the same CBSA) was 1.2 μg/m3 

for 2014 to 2015. The near-road increment has a diurnal cycle, with a peak during the morning 

rush hour (Figure 2-19). This near-road increment likely is additive to the urban increment of 

PM2.5 from local sources in the CBSA including mobile sources on the numerous non-highway 

roads that are not monitored by the near-road network. 

 

Figure 2-19. Network-wide average of the hourly near-road PM2.5 increment through 2017. 

 Analyses of recent data indicate that, of the 25 CBSAs with valid design values30 at the 

near-road site(s) from 2015 to 2017, 52% measured the highest annual design value at the near-

                                                 
30 A design value is considered valid if it meets the data handling requirements given in 40 CFR Appendix N to Part 

50. Several large CBSAs such as Chicago-Naperville-Elgin, IL-IN-WI and Houston-The Woodlands-Sugar Land, 

TX had near-road sites that did not have valid PM2.5 design values for the 2015-2017 period. 
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road site while 24% measured the highest 24-hour design value at the near-road site (Table 2-2). 

Of the CBSAs with highest annual design values at near-road sites, those design values were, on 

average, 0.7 g/m3 higher than at the highest measuring non-near-road sites (range is 0.1 to 2.0 

g/m3 higher at near-road sites).  

Table 2-2. Daily and annual PM2.5 design values for the near-road sites in major CBSAs 

(2015-2017). 

CBSA Name 

Maximum 
Near-Road 

Daily 
Design 
Value 

Maximum 
Non-Near-
Road Daily 

Design 
Value 

Maximum 
Near-Road 

Annual 
Design 
Value 

Maximum 
Non-Near-

Road 
Annual 
Design 
Value 

New York-Newark-Jersey City, NY-NJ-PA 22 23 NA 9.7 

Los Angeles-Long Beach-Anaheim, CA 33 39 12.6 12.1 

Dallas-Fort Worth-Arlington, TX 18 18 8.7 8.9 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 24 25 9.5 10.6 

Atlanta-Sandy Springs-Roswell, GA 23 20 10.5 9.9 

Boston-Cambridge-Newton, MA-NH 16 16 7 7.2 

San Francisco-Oakland-Hayward, CA 27 30 10.1 10.6 

Phoenix-Mesa-Scottsdale, AZ 18 27 7.9 9.6 

Riverside-San Bernardino-Ontario, CA 37 39 14.7 13.6 

Detroit-Warren-Dearborn, MI 22 28 8.5 11.2 

Seattle-Tacoma-Bellevue, WA 24 34 8.4 8.7 

Minneapolis-St. Paul-Bloomington, MN-WI 18 19 8 7.5 

St. Louis, MO-IL 19 21 8.7 9.8 

Baltimore-Columbia-Towson, MD 20 23 9.1 8.9 

Denver-Aurora-Lakewood, CO 23 20 8.5 7.1 

Portland-Vancouver-Hillsboro, OR-WA 25 28 7.4 7.4 

Kansas City, MO-KS 16 21 7.1 9.0 

Indianapolis-Carmel-Anderson, IN 22 22 10.5 10.2 

San Jose-Sunnyvale-Santa Clara, CA 28 27 9.4 9.3 

Providence-Warwick, RI-MA 20 18 9.1 7.1 

Louisville/Jefferson County, KY-IN 21 22 9.4 9.7 

New Orleans-Metairie, LA 18 19 8.2 8.5 

Hartford-West Hartford-East Hartford, CT 20 18 8.2 6.7 

Birmingham-Hoover, AL 22 22 11 10.4 

Buffalo-Cheektowaga-Niagara Falls, NY 17 18 7.8 7.6 

Rochester, NY 17 16 7 6.5 

 

Although most near-road monitoring sites do not have sufficient data to evaluate long-

term trends in near-road PM2.5 concentrations, analyses of the data at one near-road-like site in 
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Elizabeth, NJ, 31 show that the annual average increment has generally decreased between 1999 

and 2017 from about 2.0 μg/m3 to about 1.3 μg/m3 (Figure 2-20). The trend in the near-road 

increment of elemental carbon at the Elizabeth, NJ site has shown a similar reduction, with 

values of ~1.0 μg/m3 in 2000 decreasing to ~0.5 μg/m3 in 2017. These data are consistent with 

the timing of EPA emission standards for motor vehicles.32 Although long-term data are not 

available at other near-road sites, the national scope of the diesel vehicle controls suggests the 

near-road environment across the U.S. likely experienced similar decreasing trends in near-road 

PM2.5 increments. 

 

Figure 2-20. Annual average near-road increment for PM2.5 at the Elizabeth, NJ site.  

2.3.2.2.3 Sub-Daily Concentrations of PM2.5 

Ambient PM2.5 concentrations can exhibit a diurnal cycle that varies due to impacts from 

intermittent emission sources, meteorology, and atmospheric chemistry. The PM2.5 monitoring 

network in the U.S. has an increasing number of continuous FEM monitors reporting hourly 

PM2.5 mass concentrations that reflect this diurnal variation. The ISA describes a two-peaked 

diurnal pattern in urban areas, with morning peaks attributed to rush-hour traffic and afternoon 

peaks attributed to a combination of rush hour traffic, decreasing atmospheric dilution, and 

                                                 
31 The Elizabeth Lab site in Elizabeth, NJ is situated approximately 30 meters from travel lanes of the Interchange 

13 toll plaza of the New Jersey Turnpike and within 200 meters of travel lanes for Interstate 278 and the New 

Jersey Turnpike. 

32 See https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings#nonroad-diesel.  

 

Figure 3. Annual average near-road increment for a) PM2.5 and b) EC at the Elizabeth, NJ site. 

https://www.epa.gov/​diesel-fuel-standards/​diesel-fuel-standards-and-rulemakings#nonroad-diesel
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nucleation (U.S. EPA, 2019a, section 2.5.2.3, Figure 2-32). Because a focus on annual average 

and 24-hour average PM2.5 concentrations could mask sub-daily patterns, and because some 

health studies examine PM exposure durations shorter than 24-hours, it is useful to understand 

the broader distribution of sub-daily PM2.5 concentrations across the U.S. Figure 2-21 below 

presents the frequency distribution of 2-hour average PM2.5 mass concentrations from all FEM 

PM2.5 monitors in the U.S. for 2015-2017.33 At sites meeting the current primary PM2.5 

standards, these 2-hour concentrations generally remain below 11 μg/m3, and virtually never 

exceed 32 μg/m3. Two-hour concentrations are higher at sites violating the current standards, 

generally remaining below 19 μg/m3 and virtually never exceeding 69 μg/m3.  

  

Figure 2-21. Frequency distribution of 2015-2017 2-hour averages for sites meeting both or 

violating either PM2.5 NAAQS for October to March (blue) and April to September 

(red). 

The extreme upper end of the distribution of 2-hour PM2.5 concentrations is shifted higher 

during the warmer months (red in Figure 2-21), generally corresponding to the period of peak 

wildfire frequency (April to September) in the U.S. At sites meeting the current primary 

standards, the highest 2-hour concentrations measured virtually never occur outside of the period 

of peak wildfire frequency. Most of the sites measuring these very high concentrations are in the 

northwestern U.S. and California, where wildfires have been relatively common in recent years 

                                                 
33 As discussed further in section 3.2, PM2.5 controlled human exposure studies often examine 2-hour exposures. 

Thus, when evaluating those studies in the context of the current primary PM2.5 standards, it is useful to consider 

the distribution of 2-hour PM2.5 concentrations. Similar analyses of 5-hour PM2.5 concentrations are presented in 

Appendix A, Figure A-2.  
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(see Appendix A, Figure A-1). When the period of peak wildfire frequency is excluded from the 

analysis (blue in Figure 2-21), the extreme upper end of the distribution is reduced. 

2.3.2.3 Chemical Composition of PM2.5 

Based on recent air quality data, the major chemical components of PM2.5 have distinct 

spatial distributions. Sulfate concentrations tend to be highest in the eastern U.S., while in the 

Ohio Valley, Salt Lake Valley, and California nitrate concentrations are highest and relatively 

high concentrations of organic carbon are widespread across most of the Continental U.S., as 

shown in Figure 2-22. Elemental carbon, crustal material, and sea-salt are found to have the 

highest concentrations in the northeast U.S., southwest U.S., and coastal areas, respectively.   

 

Figure 2-22. Annual average PM2.5 sulfate, nitrate, organic carbon, and elemental carbon 

concentrations (in µg/m3) from 2015-2017. 

An examination of PM2.5 composition trends can provide insight into the factors 

contributing to overall reductions in ambient PM2.5 concentrations. The biggest change in PM2.5 

composition that has occurred in recent years is the reduction in sulfate concentrations due to 

reductions in SO2 emissions. Between 2000 and 2015, the nationwide annual average sulfate 

concentration decreased by 17% at urban sites and 20% at rural sites. This change in sulfate 
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concentrations is most evident in the eastern U.S. and has resulted in organic matter or nitrate 

now being the greatest contributor to PM2.5 mass in many locations (U.S. EPA, 2019a, Figure 2-

19). The overall reduction in sulfate concentrations has contributed substantially to the decrease 

in national average PM2.5 concentrations as well as the decline in the fraction of PM10 mass 

accounted for by PM2.5 (U.S. EPA, 2019a, section 2.5.1.1.6; section 2.3.1 above). 

2.3.2.4 National Characterization of PM10 Mass 

At long-term monitoring sites in the U.S., the 2015-2017 average of 2nd highest 24-hour 

PM10 concentration was 56 μg/m3 (ranging from 18 to 173 μg/m3) (Figure 2-23, top panels).34 

The highest PM10 concentrations tend to occur in the western U.S. Seasonal analyses indicate 

that ambient PM10 concentrations are generally higher in the summer months than at other times 

of year, though the most extreme high concentration events are more likely in the spring (U.S. 

EPA, 2019a, Table 2-5). This is due to fact that the major PM10 emission sources, dust and 

agriculture, are more active during the warmer and drier periods of the year.  

                                                 
34 The form of the current 24-hour PM10 standard is one-expected-exceedance, averaged over three years.  
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5   

  
Figure 2-23. Annual average and 2nd highest PM10 concentrations (in g/m3) from 2015-2017 (top) and linear trends and their 

associated significance in PM10 concentrations from 2000-2017 (bottom).
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Recent ambient PM10 concentrations reflect reductions that have occurred across much of the 

U.S. (Figure 2-23, bottom panels). From 2000 to 2017, 2nd highest 24-hour PM10 concentrations 

have declined by about 30% (Figure 2-24).35 Analyses at individual monitoring sites indicate that 

annual average PM10 concentrations have declined at most sites across the U.S., with much of the 

decrease in the eastern U.S. associated with reductions in PM2.5 concentrations. Annual second 

highest 24-hour PM10 concentrations have generally declined in the eastern U.S., while 

concentrations in the much of the midwest and western U.S. have remained unchanged or 

increased since 2000 (Figure 2-23, bottom panels).  

 

 
Figure 2-24. National trends in Annual 2nd Highest 24-Hour PM10 concentrations from 

2000 to 2017 (131 sites). (Note: The white line indicates the mean concentration while the 

gray shading denotes the 10th and 90th percentile concentrations.) 

Compared to previous reviews, data available from the NCore monitoring network in the 

current review allows a more comprehensive analysis of the relative contributions of PM2.5 and 

PM10−2.5 to PM10 mass. PM2.5 generally contributes more to annual average PM10 mass in the 

eastern U.S. than the western U.S. (Figure 2-25). At most sites in the eastern U.S., the majority 

of PM10 mass is comprised of PM2.5. Similar east-west patterns are observed for both 

urban/suburban and rural sites. As ambient PM2.5 concentrations have declined in the eastern 

U.S. (section 2.3.2.2, above), the ratios of PM2.5 to PM10 have also declined.  

                                                 
35 For more information, see https://www.epa.gov/air-trends/particulate-matter-pm10-trends#pmnat. 

https://www.epa.gov/air-trends/particulate-matter-pm10-trends#pmnat
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Figure 2-25. Annual average PM2.5/PM10 ratio for 2015-2017. 

For days with very high PM10 concentrations (Figure 2-26), the PM2.5/PM10 ratios are 

typically higher than the annual average ratios. This is particularly true in the northwestern U.S. 

where the high PM10 concentrations can occur during wildfires with high PM2.5. 

  

  

Figure 2-26. PM2.5/PM10 ratio for the second highest PM10 concentrations for 2015-2017. 

2.3.2.5 National Characterization of PM10-2.5 Mass 

Since the last review, the availability of PM10-2.5 ambient concentration data has greatly 

increased. As illustrated in Figure 2-2736 (top panels), annual average and 98th percentile PM10-2.5 

concentrations exhibit less distinct differences between the eastern and western U.S. than for 

either PM2.5 or PM10. Additionally, compared to PM2.5 and PM10, changes in PM10-2.5 

concentrations have been small in magnitude and inconsistent in direction (Figure 2-27, lower 

panels).

                                                 
36 The sites shown in Figure 2-27 have a data completeness of either 75% or ≥182 valid days in each year. 
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Figure 2-27. Annual average and 98th percentile PM10-2.5 concentrations (g/m3) from 2015-2017 (top) and linear trends and 

their associated significance in PM10-2.5 concentrations from 2000-2017 (bottom).
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2.3.2.6 Characterization of the Ultrafine Fraction of PM2.5 Mass 

 Compared to PM2.5 mass, there is relatively little data on U.S. particle number 

concentrations, which are dominated by UFP. In the published literature, annual average particle 

number concentrations reaching about 20,000 to 30,000 cm−3 have been reported in U.S. cities 

(U.S. EPA, 2019a). In addition, based on UFP measurements in two urban areas (New York 

City, Buffalo) and at a background site (Steuben County) in New York, there is a pronounced 

difference in particle number concentration between different types of locations (Figure 2-28; 

U.S. EPA, 2019a, Figure 2-18). Urban particle number counts were several times higher than at 

the background site, and the highest particle number counts in an urban area with multiple sites 

(Buffalo) were observed at a near-road location. Hourly data indicate that particle numbers 

remain fairly constant throughout the day at the background site, that they peak around 8:00 a.m. 

in Buffalo and New York City (NYC), and that they remain high into the evening hours with 

distinct rush hour and early afternoon peaks.  

 

Figure 2-28. Average hourly particle number concentrations from three locations in the 

State of New York for 2014 to 2015 (green is Steuben County, orange is Buffalo, red is 

New York City). (Source: Figure 2-18 in U.S. EPA, 2019a). 

Long-term trends in UFP are generally not available at U.S. monitoring sites. However, 

data on number size distribution have been reported for an 8-year period from 2002 to 2009 in 

Rochester, NY. Number concentrations averaged 4,730 cm−3 for 0.01 to 0.05 μm particles and 

1,838 cm−3 for 0.05 to 0.1 μm particles (Wang et al., 2011). On average over the 8 years that 

UFP data were collected in Rochester, total particle number concentrations declined from the 

earlier period evaluated (i.e., 2001 to 2005) to the later period (2006 to 2009). This decline was 
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most evident for particles between 0.01 and 0.1 μm and was attributed to changes in local 

sources resulting from the 2007 Heavy Duty Highway Rule, a reduction in local industrial 

activity, and the closure of a nearby coal-fired power plant (Wang et al., 2011; U.S. EPA, 2019a, 

section 2.5.2.1.4).  

In addition, at a site in Illinois the annual average particle number concentration declined 

between 2000 and 2017, closely matching the reductions in annual PM2.5 mass over that same 

period (Figure 2-29, below). Particle number concentrations at this site are closer to those of the 

background site in Figure 2-28 than the urban sites. A recent study found that particle number 

concentrations in an urban area (Pittsburgh, PA) decreased between 2001-2002 and 2016-2017 

along with decreases in PM2.5 associated with SO2 emission reductions (Saha et al., 2018). 

However, the relationship between changes in ambient PM2.5 and UFPs cannot be 

comprehensively characterized due to the high variability and limited monitoring of UFPs. 

 

 
Figure 2-29. Time series of annual average mass and number concentrations (left) and 

scatterplot of mass vs. number concentration (right) between 2000-2017 in Bondville, IL.  

2.3.3 Predicted Ambient PM2.5 Based on Hybrid Modeling Approaches 

Ambient concentrations of PM2.5 are often characterized using measurements from 

national monitoring networks due to the accuracy and precision of the measurements and the 

public availability of data. For applications requiring PM2.5 characterizations across urban areas, 

data averaging techniques such as area-wide and population-weighted averaging of monitors are 

sometimes used to provide complete coverage from the site measurements (U.S. EPA, 2019a, 

chapter 3). Yet data averaging methods may not adequately represent the spatial heterogeneity of 
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PM2.5 within an area and are not practical for large unmonitored areas or time periods. As a 

result, additional methods have been developed to improve PM2.5 characterizations in areas 

where monitoring is relatively sparse or unavailable. Methods include interpolation of monitored 

data, land-use regression models, chemical-transport models (CTMs), models based on satellite-

derived aerosol optical depth (AOD), and hybrid spatiotemporal models that combine 

information from the individual approaches (U.S. EPA, 2019a, chapter 3). A number of recent 

studies have employed such methods to estimate PM2.5 air quality concentrations across the U.S. 

and Canada, and to estimate population exposures for use in epidemiologic analyses (U.S. EPA, 

2019a, sections 3.3 and 3.4). Given the increasing availability and application of these methods, 

in this section we provide an overview of recently developed hybrid modeling methods, their 

predictions and performance, and how predictions from various methods compare to each other.  

2.3.3.1.1 Overview of Hybrid Methods  

Hybrid methods are broadly classified into four categories: (1) methods based primarily 

on interpolation of monitor data, (2) Bayesian statistical downscalers, (3) methods based 

primarily on satellite-derived AOD, and (4) methods based on machine-learning algorithms. 

Each method is discussed briefly below.  

Interpolation-based methods are the simplest approach for developing spatial fields of 

PM2.5 concentrations and rely on the moderate degree of spatial autocorrelation in PM2.5 in many 

areas of the U.S.  Interpolation methods often use inverse-distance or inverse-distance-squared 

weighted averaging of monitoring data to predict PM2.5 concentrations at unmonitored receptor 

points. Examples include the Voronoi neighbor averaging (VNA) approach and the enhanced 

VNA approach (eVNA). The VNA approach applies weighted averaging to the concentrations 

monitored in the Voronoi cells neighboring the cell containing the prediction point (Abt 

Associates, 2014).  In the eVNA approach, monitored data are further weighted by the ratio of 

CTM predictions in the grid-cell containing the prediction point to the grid-cell containing the 

monitor (Abt Associates, 2014).  

Bayesian statistical modeling has been used to calibrate CTM PM2.5 predictions or 

satellite-derived AOD estimates to surface measurements (Berrocal et al., 2012; Wang et al., 

2018b). This approach, commonly referred to as a Bayesian downscaler because it “downscales” 

grid-cell average values to points, first regresses the PM2.5 predictions or AOD estimates on 

monitoring data. The resulting relationships are then used to develop a gridded PM2.5 field from 

the CTM or AOD input field. Bayesian downscalers have been applied to develop gridded daily 

PM2.5 fields at 12-km resolution for the conterminous U.S. (Wang et al., 2018b; U.S. EPA, 

2017). An ensemble technique that optimally combines predictions of CTM and AOD 
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downscalers has also been developed to predict PM2.5 at high resolution over Colorado during 

the fire season (Geng et al., 2018).   

Surface PM2.5 concentrations can also be predicted based on satellite retrievals of AOD 

and the relationship between surface PM2.5 and AOD from CTM simulations (van Donkelaar et 

al., 2010). For example, in van Donkelaar et al. (2015a), satellite-based approaches (van 

Donkelaar et al., 2010; van Donkelaar et al., 2013) were used to estimate a gridded field of 

global mean PM2.5 concentration for the 2001-2010 period that was combined with information 

from radiometrically stable satellite instruments (Boys et al., 2014) to develop global PM2.5 

fields over the 1998-2012 period (van Donkelaar et al., 2015a). Motivated by the limited use of 

surface measurements in this approach, van Donkelaar et al. (2015b) developed an updated 

method that incorporates additional information from PM2.5 monitoring networks to improve 

performance. Specifically, geographically weighted regression (GWR) of residual PM2.5 (i.e., the 

difference between monitored PM2.5 and predictions based on satellite-derived AOD) with land-

use and other variables is performed to improve PM2.5 concentration estimates in areas such as 

North America where monitoring is relatively dense (van Donkelaar et al., 2019; van Donkelaar 

et al., 2015b). This approach has been used to create long-term PM2.5 fields globally and for 

North America at about 1-km resolution. However, the developers caution that PM2.5 gradients 

may not be fully resolved at 1-km resolution due to the influence of coarser-scale data used in 

the model37 and report that mean error variance decreases when averaging the 1-km fields to 

coarser resolution (van Donkelaar et al., 2019).   

Daily PM2.5 fields based on non-parametric (i.e., machine learning) methods have also 

been developed to characterize PM2.5 over the U.S. Non-parametric methods facilitate the use of 

large numbers of predictor variables that may have complex nonlinear relationships with PM2.5 

concentrations that would be challenging to specify with a parametric method. For example, a 

neural network algorithm was used to predict daily PM2.5 fields at 1-km resolution over the 

conterminous U.S. during 2000-2012 using more than 50 predictor variables including satellite-

derived AOD, CTM predictions, satellite-derived absorbing aerosol index, meteorological data, 

and land-use variables (Di et al., 2016). A random forest algorithm was also applied to develop 

daily PM2.5 fields at 12-km resolution over the conterminous U.S. in 2011 and provide variable 

importance information for about 40 predictor variables including CTM results and satellite-

derived AOD (Hu et al., 2017). Satellite-derived AOD and the convolution layer for nearby 

PM2.5 measurements are ranked among the top five most important predictor variables for the 

importance metrics considered. A wide range of parametric and non-parametric hybrid PM2.5 

models have recently been reviewed in Chapter 3 of the ISA (U.S. EPA, 2019a). 

                                                 
37 See http://fizz.phys.dal.ca/~atmos/martin/?page_id=140 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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2.3.3.1.2 Performance of the Methods 

The performance of hybrid modeling methods is often evaluated against surface 

measurements using n-fold cross validation (i.e., 1/n of the data are reserved for validation with 

the rest used for model training, and the process is repeated n times). Although model evaluation 

methods are not consistent across studies, ten-fold cross-validation statistics are often reported 

and support use of the hybrid methods just described. For example, the neural network achieved 

total R2 of 0.84 and root-mean-square error (RMSE) of 2.94 g m-3 for daily PM2.5 predictions at 

sites in the conterminous U.S. during 2000-2012 (Di et al., 2016). The random forest achieved 

total R2 of 0.80 and RMSE of 2.83 g m-3 for daily PM2.5 predictions at U.S. sites in 2011 (Hu et 

al., 2017). The satellite-derived AOD approach with GWR yielded an R2 of 0.79 and RMSE of 

1.7 g m-3 in cross validation for longer-term PM2.5 predictions at sites in North America (van 

Donkelaar et al., 2015b). The Bayesian downscalers had weaker performance in cross validation 

(e.g., national R2: 0.66-0.70; Wang et al., 2018b; Kelly et al., 2019) than the other methods, 

possibly due to the relatively small number of predictor variables. However, the downscalers 

have advantages of simplicity, computational efficiency, and lower potential for overfitting 

compared with the machine learning methods.   

Although model validation analyses often report favorable performance in terms of 

aggregate cross-validation statistics, studies have reported heterogeneity in performance by 

season, region, and concentration range. For example, several methods had relatively high cross-

validation R2 in summer compared with other seasons (Kelly et al., 2019; Hu et al., 2017; Di et 

al., 2016; van Donkelaar et al., 2015b). Also, studies have noted relatively weak performance in 

parts of the western U.S., possibly due to the complex terrain, low concentrations (and therefore 

signal-to-noise ratio), less dense monitoring, prevalence of wildfire, and challenges in satellite 

retrievals and CTM modeling (Di et al., 2016; Wang et al., 2018b; Hu et al., 2017; Kelly et al., 

2019). Predictive capability in terms of cross-validation R2 has also been reported to weaken 

with decreasing PM2.5 concentration in several studies (e.g., Kelly et al., 2019; Di et al., 2016; 

van Donkelaar et al., 2019). Trends in model performance associated with PM2.5 concentration 

(e.g., Figure 2-30) could be due in part to the relatively sparse monitoring in remote areas, where 

PM2.5 concentrations tend to be low. Consistent with this hypothesis, studies have reported 

degradation of model performance metrics with increasing distance to the nearest in-sample 

monitor, suggesting that predictions are most reliable in densely monitored urban areas (Jin et 

al., 2019; Huang et al., 2018; Kelly et al., 2019).   
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Figure 2-30. R2 for ten-fold cross-validation of daily PM2.5 predictions in 2015 from three 

methods for individual sites as a function of observed concentration. Text indicates the 

number of monitors in the PM2.5 concentration range. Downscaler: Bayesian downscaler of 

CMAQ predictions; VNA: Voronoi Neighbor Averaging; eVNA: enhanced-VNA. From 

Kelly et al. (2019). 

A limited number of studies have intercompared concentration predictions based on 

different PM2.5 characterization methods. Huang et al. (2018) compared PM2.5 concentrations 

from the method of Di et al., 2016 with concentrations from the CTM-based data fusion method 

of Friberg et al. (2016) and the satellite-derived AOD approach of Hu et al. (2014) for North 

Carolina. They reported general agreement in concentrations among methods, with some 

differences along the coast and in forested regions where monitoring is less dense. Yu et al. 

(2018) compared PM2.5 concentrations from fourteen approaches of varying complexity for 

developing PM2.5 spatial fields over the Atlanta, Georgia region. They reported that predictions 

of the methods can differ considerably, and the hybrid approaches that incorporate CTM 

predictions generally outperformed the simpler techniques (e.g., monitor interpolation). Also, 

model predictions appeared to be more reliable in the urban center based on relatively low cross 

validation R2 for sites away from the urban core. Jin et al. (2019) reported increasing uncertainty 

in hybrid model predictions with distance to the nearest AQS monitor. Keller and Peng (2019) 

reported that a prediction model incorporating CTM output outperformed a monitor averaging 

approach and error reduction could be achieved by restricting the study to areas near monitors. 

2.3.3.1.3 Comparison of PM2.5 Fields Across Approaches 

To illustrate features of the spatial fields reported in the literature, the annual mean PM2.5 

concentrations for 2011 from four methods is shown in Figure 2-31, where predictions from the 

methods were averaged to a common 12-km grid. The fields were developed using a Bayesian 

downscaler (downscaler, Berrocal et al., 2012), neural network (DI2016, Di et al., 2016), random 

forest (HU2017, Hu et al., 2017), and GWR of residuals from satellite-based PM2.5 estimates 

(VD2019; van Donkelaar et al., 2019). Annual mean concentrations were developed from daily 

PM2.5 predictions in the downscaler, DI2016, and HU2017 cases and from monthly PM2.5 

predictions in the VD2019 case. General features of the 2011 fields are in reasonable agreement 



 

 2-48  

across methods, with elevated concentrations across broad areas of the eastern U.S. and in the 

San Joaquin Valley and South Coast Air Basin of California. The national mean PM2.5 

concentration for the VD2019 case (7.06 g m-3) is slightly lower than those of the other cases 

(7.36-7.44 g m-3), possibly because the VD2019 fields were developed using monthly (rather 

than daily) PM2.5 measurements. Use of monthly averages provides greater influence on the 

annual mean of sites with less frequent monitoring that tend to be in rural areas with relatively 

low concentrations.  Mean PM2.5 concentrations predicted by the four methods in nine U.S. 

climate regions (Karl and Koss, 1984) are provided in Table 2-3.   

 

 

Figure 2-31. Comparison of 2011 annual average PM2.5 concentrations from four methods. 

(Note: These four methods include: downscaler (Berrocal et al., 2012), DI2016 (Di et al., 

2016), HU2017 (Hu et al., 2017), and VD2019 (van Donkelaar et al., 2019). Predictions have 

been averaged to a common 12-km grid for this comparison.    

 

Table 2-3. Mean 2011 PM2.5 concentration by region for predictions in Figure 2-24 

Region1 downscaler HU2017 DI2016 VD2019 

Northeast 8.5 8.0 8.2 7.5 

Southeast 9.9 10.0 9.4 9.8 

Ohio Valley 10.7 9.6 9.8 10.0 

Upper Midwest 8.8 7.9 7.9 7.1 
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South 8.8 8.9 9.0 8.7 

Southwest 5.0 5.3 5.2 5.1 

N. Rockies & Plains 5.6 5.9 5.6 4.5 

Northwest 5.0 5.3 6.1 4.9 

West 5.5 5.7 6.0 6.5 

1 U.S. climate region: https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php.  

 

In Figure 2-32, PM2.5 concentrations predicted by the four methods are shown at their 

native resolution for regions centered on California, New Jersey, and Arizona. Predictions span a 

wider range of concentrations for the western regions centered on California and Arizona (Figure 

2-32, panels a and c) than the eastern region centered on New Jersey (Figure 2-32, panel b). 

Despite general agreement among predictions for the California and the eastern U.S. areas, the 

spatial texture of the concentration fields differs among methods. For instance, the 12-km 

Bayesian downscaler produces the smoothest PM2.5 concentration field, and the 1-km neural 

network (DI2016) produces the field with the greatest variance. Some of the largest differences 

in PM2.5 concentration among methods occurred over southwest Arizona. The DI2016 and 

VD2019 methods predict higher concentrations in this area than the downscaler and HU2017 

methods, and the DI2016 approach predicts distinct spatial features associated with Interstate 40, 

10, and 8 that are not apparent in the other fields (Figure 2-32, panel c).  

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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Figure 2-32. Comparison of 2011 annual average PM2.5 concentrations from four methods 

for regions centered on the (a) California (b) New Jersey, and (c) Arizona.  Predictions 

are shown at their native resolution (i.e., about 1-km for DI2016 and VD2019 and 12-km for 

downscaler and HU2017). 

 

In Figure 2-33, the coefficient of variation (CV; i.e., the standard deviation divided by the 

mean) among methods is shown in percentage units based on predictions that were averaged to a 

common 12-km grid. The largest values occur in the western U.S. (Figure 2-33, panel a), where 

terrain is complex, wildfire is prevalent, monitoring is relatively sparse, and PM2.5 concentrations 

tend to be low. The distance from the grid-cell center to the nearest monitor is greater than 100 

km for broad areas of the west (Figure 2-34).  
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Figure 2-33. (a) Spatial distribution of the CV (i.e., standard deviation divided by mean) in 

percentage units for the four models in Figure 2-31.  (b) Boxplot distributions of CV for 

grid cells binned by the average PM2.5 concentration for the four models. (Note: The box 

brackets the interquartile range (IQR), the horizontal line within the box represents the 

median, the whiskers represent 1.5 times the IQR from either end of the box, and circles 

represent individual values less than and greater than the range of the whiskers.) 

 

 

Figure 2-34. Distance from the center of the 12-km grid cells to the nearest PM2.5 

monitoring site for PM2.5 measurements from the AQS database and IMPROVE 

network.  

 

 Concentrations less than 5 g m-3 occur exclusively in the western U.S. for the 

downscaler and HU2017 methods, and the western U.S. plus a few areas along the northern U.S. 

border in the eastern U.S. for the DI2016 and VD2019 methods (Figure 2-35, top row). 

Concentrations between 5 and 7 g m-3 are predicted in the western U.S. and parts of New 

England for all methods and over Florida by the downscaler and DI2016 approaches (Figure 2-

35, second row). The CV among methods increases with decreasing concentration (Figure 2-33 

above, panel b), and the median CV is about 15% for grid cells with mean concentrations less 

than 7 g m-3.  As illustrated by Figure 2-33 and Figure 2-35, the low-concentration areas with 
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relatively large CVs are in the western U.S. and along the northern and southern border of the 

eastern U.S. 

 

Figure 2-35. Location of PM2.5 predictions by range in annual average concentration for 

the four prediction methods at their native resolution. (Note: Concentration ranges: < 5 

g/m3, 5-7 g/m3, 7-9 g/m3, 9-11 g/m3, and >11 g/m3.) 

 

The comparison of PM2.5 concentrations across approaches was based on the 2011 period 

due to the availability of predictions from multiple methods for that year. As discussed earlier in 

this chapter, PM2.5 concentrations have declined over the U.S. in the last several decades. Annual 

mean PM2.5 concentrations predicted by the VD2019 method for 2011 are compared with 

predictions for 2001, 2006, and 2016 in Figure 2-36. The VD2019 fields capture the trend of 

decreasing PM2.5 over the U.S. during this period, and the areas with annual mean PM2.5 

concentration greater than 11 g m-3 in 2016 are limited to California and southwest Arizona. 
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Figure 2-36. Annual mean PM2.5 from the VD2019 method (van Donkelaar et al., 2019) for 

2001, 2006, 2011, and 2016.  

2.3.3.1.4 Summary 

Hybrid PM2.5 modeling methods have improved the ability to estimate PM2.5 exposure for 

populations throughout the conterminous U.S. compared with the earlier approaches based on 

monitoring data alone. Excellent performance in cross-validation tests suggests that hybrid 

methods are reliable for estimating PM2.5 exposure in many applications. As discussed in 

Chapter 3 of this PA, good agreement in health study results between monitor- and model-based 

methods for urban areas (McGuinn et al., 2017) and general consistency in results for the 

conterminous U.S. (Jerrett et al., 2017; Di et al., 2016) also suggests that the fields are reliable 

for use in health studies. However, there are also important limitations associated with the 

modeled fields. First, performance evaluations for the methods are weighted toward densely 

monitored urban areas at the scales of representation of the monitoring networks. Predictions at 

different scales or in sparsely monitored areas are relatively untested. Second, studies have 

reported heterogeneity in performance with relatively weak performance in parts of the western 

U.S., at low concentrations, at greater distance to monitors, and under conditions where the 

reliability and availability of key input datasets (e.g., satellite retrievals and air quality modeling) 

are limited.  Differences in predictions among different hybrid methods have also been reported 

and tend to be most important under conditions with the performance issues just noted. 

Differences in predictions could also be related to the different approaches used to create long-

term PM2.5 fields (e.g., averaging daily PM2.5 fields vs. developing long-term average fields), 

which is important due to variable monitoring schedules. More work on comprehensively 

characterizing the performance of modeled fields is warranted and will further inform our 

understanding of the implications of using these fields to estimate PM2.5 exposures in health 

studies.  

2.4 BACKGROUND PM 

For the purposes of this assessment, we define background PM as all particles that are 

formed by sources or processes that cannot be influenced by actions within the jurisdiction of 

concern. For this document, U.S. background PM is defined as any PM formed from emissions 
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other than U.S. anthropogenic (i.e. manmade) emissions. Potential sources of U.S. background 

PM include both natural sources (i.e. PM that would exist in the absence of any anthropogenic 

emissions of PM or PM precursors) and transboundary sources originating outside U.S. borders.  

Ambient monitoring networks provide long-term records of speciated PM concentrations 

across the U.S., which can inform estimates of individual source contributions to background PM 

levels in different parts of the country. However, even the most remote monitors within the U.S. 

can be periodically affected by U.S. anthropogenic emissions. Monitor data are also limited in 

more remote areas due to a sparser monitoring network where PM concentrations are more likely 

influenced by background sources. Chemical transport models (CTMs) offer complementary 

information to ambient monitor networks by providing more spatially and temporally 

comprehensive estimates of atmospheric composition. CTMs can also be applied to isolate 

contributions from specific emission sources to PM concentrations in different areas via source 

apportionment or “zero-out” modeling (i.e., estimating what the residual concentrations would be 

were emissions from the emission source of interest to be entirely removed).  

At annual and national scales, estimated background PM concentrations in the U.S. are 

small compared to contributions from domestic anthropogenic emissions. For example, based on 

zero-out modeling in the last review of the PM NAAQS, annual background PM2.5 

concentrations were estimated to range from 0.5 - 3 µg/m3 across the sites examined. The 

magnitude and sources of background PM can vary widely by region and time of year. Coastal 

sites may experience a consistent contribution of PM from sea spray aerosol, while other areas 

covered with dense vegetation may be impacted by biogenic aerosol production during the 

summertime. Sources of background PM also operate across a range of time scales. While some 

sources like biogenic aerosol vary at monthly to seasonal scales, many sources of background 

PM are episodic in nature. These episodic sources (e.g. large wildfires) can be characterized by 

infrequent contributions to high-concentration events occurring over shorter periods of time (e.g., 

hours to several days). Such episodic events are sporadic and do not necessarily occur in all 

years. While these exceptional episodes can lead to violations of the daily PM2.5 standard (35 µg 

m-3) in some cases (Schweizer et al., 2017), such events are routinely screened for and usually 

identifiable in the monitoring data. As described further below, contributions to background PM 

in the U.S. result mainly from sources within North America. Contributions from 

intercontinental events have also been documented (e.g., transport from dust storms occurring in 

deserts in North Africa and Asia), but these events are less common and represent a relatively 

small fraction of background PM in most places.  

While the potential sources of background PM discussed above include sources of both 

fine (PM2.5) and coarse (PM10) particles, background contributions to ambient UFP are less well 

characterized and are not discussed here due to lack of information. Section 2.4.1 below further 
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discusses background PM from natural sources inside the U.S. Section 2.4.2 characterizes the 

role of international transport of PM from sources outside U.S. borders.  

2.4.1 Natural Sources  

As noted in section 2.1.1, sources that contribute to natural background PM include dust 

from the wind erosion of natural surfaces, sea salt, wildland fires, primary biological aerosol 

particles (PBAP) such as bacteria and pollen, oxidation of biogenic hydrocarbons such as 

isoprene and terpenes to produce SOA, and geogenic sources such as sulfate formed from 

volcanic production of SO2 and oceanic production of dimethyl-sulfide (DMS). While most of 

the above sources release or contribute predominantly to fine aerosol, some sources including 

windblown dust, and sea salt also produce particles in the coarse size range (U.S. EPA, 2019a, 

section 2.3.3).  

Biogenic emissions from plants are perhaps the most ubiquitous sources of background 

PM in the U.S. Certain species of plants and trees can release large amounts of VOCs such as 

isoprene and monoterpenes that are oxidized in the atmosphere to form organic aerosol. SOA 

production from biogenic emissions is largest in the southeastern U.S., where conditions are 

warm, humid, and sunny for much of the year. Many of the processes involved with biogenic 

SOA formation are complex and remain highly uncertain. Results from radiocarbon techniques 

applied to distinguish modern (biogenic or fires) from fossil (anthropogenic) carbon fractions in 

organic aerosol have suggested comparable contributions from both carbon types in the 

Southeast where SOA concentrations are high (Schichtel et al., 2008). However, SOA formation 

from biogenic emission sources can also be facilitated by the presence of anthropogenic 

precursors (Xu et al., 2015). More work characterizing the interactions of anthropogenic and 

biogenic emissions is needed to determine the implications of such processes for background PM 

concentrations. 

Soil dust and sea salt have been estimated to account for less than 10% of urban PM2.5 on 

average in the U.S. (Karagulian et al., 2015), although episodic contributions from these sources 

can be much higher in some locations. For example, during a dust storm affecting Phoenix in 

July of 2011, peak hourly average PM10 concentrations were greater than 5,000 µg/m3, with area-

wide average hourly concentrations ranging from a few hundred to a few thousand µg/m3 

(Vukovic et al., 2014). Dust can also account for much of the PM that originates from outside the 

U.S., which we discuss further below (U.S. EPA, 2019a, section 2.5.4.2). In addition to sea salt 

aerosol, biological production of the sulfate precursor DMS can also occur in some marine 

environments, although the impact of DMS emissions on annual mean sulfate concentrations is 

likely very small in the U.S. (<0.2 µg/m3) and confined to coastal areas (Sarwar et al., 2018).  
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Wildfires release large amounts of particles and gaseous PM precursors. Invasive species, 

historical fire management practices, frequency of drought, and extreme heat have resulted in 

longer fire seasons (Jolly et al., 2015) and more large fires (Dennison et al., 2014) over time. In 

addition to emissions from fires in the U.S., emissions from fires in other countries can be 

transported to the U.S. Transport of smoke from fires in Canada, Mexico, Central America, and 

Siberia have been documented in multiple studies (U.S. EPA, 2009). According to the NEI, 

wildfire smoke contributes between 10 and 20% of primary PM emissions in the U.S. per year 

(U.S. EPA, 2019a, section 2.3.1), with much higher localized contributions near fire-affected 

areas.  

To illustrate how episodic impacts from a large natural source can affect PM 

concentrations in the U.S., Figure 2-37 and Figure 2-38 show an example from a recent wildfire 

event. In summer 2017, smoke from wildfires in British Columbia, Canada led to severe air 

quality degradation in parts of the Pacific Northwest. A NASA Worldview38 image from August 

4, 2017 (Figure 2-37) shows smoke from multiple fire detections across southern British 

Columbia crossing into northern Washington state. Smoke from these fires was also captured at 

the North Cascades IMPROVE monitor (Figure 2-38), where daily fine PM concentrations were 

increased from a typical baseline of less than 10 µg/m3 to ~100 µg/m3 during this time.  

 

Figure 2-37. Smoke and fire detections observed by the MODIS instrument onboard the 

Aqua satellite on August 4th, 2017 accessed through NASA Worldview.  

                                                 
38 Available from https://worldview.earthdata.nasa.gov.  

https://worldview.earthdata.nasa.gov/
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Figure 2-38. Fine PM mass time series during 2017 from the North Cascades IMPROVE 

site in north central Washington state.39  

 Later in August and September 2017, many other wildfires occurred in Washington state 

and Oregon, making this fire season one of the worst for the Pacific Northwest in recent history. 

The severe fires in British Columbia, Washington and Oregon during 2017 have been linked to 

the combination of usually hot temperatures in August/September in the region following a very 

wet preceding winter season. While many of the most severe wildfire events in the U.S. occur in 

the western part of the country during the late summer, most of the contiguous U.S. is affected 

by wildfire smoke during some part of the year (Kaulfus et al., 2017).   

2.4.2 International Transport 

 Background PM contributions from international sources include PM that is both natural 

and anthropogenic in origin crossing into U.S. borders from Canada and Mexico or from longer 

range intercontinental transport. While in general the biggest contributions to U.S. background 

PM from international sources come from nearby Canada and Mexico, large episodic events 

from intercontinental sources can sometimes occur (e.g., windblown dust from Asia or Africa). 

This section discusses transboundary PM transport within North America (section 2.4.2.1) as 

well as long range intercontinental transport from anthropogenic (section 2.4.2.2) and natural 

(section 2.4.2.3) sources.    

                                                 
39 Available at http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp. 



 

 2-58  

2.4.2.1 Transboundary Transport in North America 

As discussed above, some of the largest potential international sources of U.S. 

background PM originate elsewhere in North America. PM produced from fires in both Canada 

and Mexico can affect air quality in the U.S., particularly in border states (Park et al., 2007; 

Miller et al., 2011; Wang et al., 2018a). Anthropogenic emissions from Canada and Mexico can 

also influence U.S. PM air quality. An inverse modeling study by Henze et al. (2009) estimated 

that in 2001 anthropogenic SOX emissions from Canada and Mexico accounted for 6% and 4% 

respectively of total daily inorganic PM2.5 in the U.S. These authors also estimated that SOX 

emissions related to international shipping accounted for approximately 2% of total inorganic 

PM in the U.S. 

2.4.2.2 Long Range Transport from Anthropogenic Sources 

Due to the relatively short atmospheric lifetime of particles (~days to weeks), long range 

transport of aerosols does not contribute significant PM mass to the U.S. Heald et al. (2006) 

estimated that transport from Asia accounted for less than 0.2 µg/m3 of sulfate PM2.5 in the 

Northwestern U.S. in spring, and Leibensperger et al. (2011) estimated intercontinental 

contributions from Asian anthropogenic SO2 and NOX emissions of 0.1 - 0.25 µg/m3 annually in 

the western U.S. Leibensperger et al. (2011) also concluded that much of the intercontinental 

influence captured by the GEOS-Chem model was in fact local PM production attributable to 

domestic emissions in receptor countries arising from changes in global oxidant budgets, rather 

than impacts from PM directly transported across geopolitical boundaries. The studies above are 

also consistent with findings from other analyses. A report from the United Nations on global air 

quality synthesizing results across many studies estimated an annual average contribution of 

approximately 0.1 µg/m3 sulfate PM in North America due to transport from East Asia 

(TFHTAP, 2006). 

2.4.2.3 Long Range Transport from Natural Sources 

Long range transport of dust from both Asia (Vancuren and Cahill, 2002; Yu et al., 2008) 

and North Africa (Prospero, 1999a; Prospero, 1999b; Chiapello et al., 2005; McKendry et al., 

2007) has been shown to occasionally contribute to surface PM concentrations in some regions 

of the U.S. The likelihood of such long-range dust transport events depends on large-scale 

meteorological patterns, which can vary significantly across seasons and between years. Yu et al. 

(2015) found that the transport of North African dust across the Atlantic Ocean is strongly 

negatively correlated with precipitation in the Sahel during the preceding year. Dust from Africa 

has also shown a decreasing trend of approximately 10% per decade from 1982 to 2008 based on 

measurements of aerosol optical depth and surface concentrations in Barbados. This trend was 

attributed to a corresponding decrease in surface winds over source regions (Ridley et al., 2014). 
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Variability in springtime Asian dust transport to the U.S. has been linked to north-south shifts in 

trans-Pacific flow modulated by the El Nino-Southern Oscillation (Achakulwisut et al., 2017), as 

well as to variations in regional precipitation affecting both dust emissions in Asia and 

atmospheric residence times during transport (Fischer et al., 2009).    

On average, intercontinental dust transport is estimated to contribute about 1-2 µg/m3 to 

annual PM2.5 at some U.S. sites (Jaffe et al., 2005; TFHTAP, 2006; Creamean et al., 2014). 

However, daily concentrations can be substantially larger for individual events, especially for 

coarser particles. For example, Jaffe et al. (2003) found evidence of Asian dust events in 1998 

and 2001 contributing 30-40 µg/m3 to daily PM10 at sites throughout the U.S., although the 

authors also note that large events of this scale are rare and only occurred twice during their 15-

year study period. Similar magnitudes have also been reported for individual North African 

events; analysis of a multidecadal record of African dust reaching Miami indicated 

concentrations of PM ranging from ~10 to 120 µg/m3 (Prospero, 1999b; Prospero, 1999a).40  

2.4.3 Estimating Background PM with Recent Data 

 As discussed above, the 2009 PM ISA estimated background PM concentrations at 

several remote IMPROVE sites in different regions of the U.S. for 2004 using a combination of 

monitor data and zero-out air quality modeling. Revisiting the speciated IMPROVE PM data that 

the monitors included in the last assessment provides some insights into how contributions from 

different PM sources may have changed, and what those changes (or lack thereof) mean for our 

current understanding of background PM in the U.S. 

 Figure 2-39 shows observed annual average PM2.5 in 2004 and 2016 at the same remote 

monitors examined in the last ISA. The comparisons show decreases in both total PM2.5 and 

ammonium sulfate across all sites examined, consistent with decreases in anthropogenic SO2 and 

other PM precursors observed over this time period. It is likely that most of the remaining 

ammonium sulfate observed at these sites is also a result of domestic anthropogenic emissions 

and therefore not relevant for assessments of background PM.  

 Sea salt and dust aerosol are likely natural in origin at these remote sites. With the 

exception of REDW1, a coastal site in California, soil and sea salt aerosol together account for 

less than about 0.5 µg/m3 of the annual average PM2.5 at all monitors examined here, which is 

below the values cited from the literature for long range dust contributions discussed above. 

Contributions from ammonium nitrate and elemental carbon could be from either anthropogenic 

or natural sources, but together represent less than about 0.5 µg/m3 at most of the sites in 2016. 

                                                 
40 Sample collection began in 1974, before network PM10 and PM2.5 samplers were developed, and no size cut was 

specified (Prospero, 1999b). 
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The largest contribution from nitrate occurs at the BRIG1 monitor in New Jersey and is likely 

anthropogenic given the high density of NOX from vehicle emissions in that region. 

 After ammonium sulfate, the next largest contributing species for most of the sites is 

organic matter, which for many of the monitors in Figure 2-39 represents 50% or more of total 

PM in both 2004 and 2016. In addition to the IMPROVE sites from the last ISA, Figure 2-31 

also shows comparisons for three sites in the Southeast U.S. As a region, the Southeast has the 

highest levels of biogenic aerosol production in the country, so the organic matter contribution at 

these three sites likely represents an upper bound for the country of what natural biogenic 

organic aerosol production could be under present atmospheric conditions. The organic aerosol 

components shown in Figure 2-39 will also include the influence of fires for some monitors. The 

highest organic matter contribution for any of the sites shown in Figure 2-39, including the three 

Southeast monitors, is approximately 2 µg/m3. While contributions from ammonium sulfate have 

decreased substantially at some of the monitors, particularly the eastern sites, contributions from 

organic aerosol are roughly consistent between 2004 and 2016, as are the contributions from the 

other species assumed to be mostly natural in origin (soil and sea salt). Therefore, while no new 

zero-out modeling was done for the current review, revisiting these monitors with more recent 

data suggests that estimates of background concentrations at these monitors are still around 1-3 

µg/m3 and have not changed significantly since the last PM NAAQS Review. 

 While estimates of total annual background concentrations have generally not changed 

significantly since the last review, our scientific understanding of organic aerosol formation has 

evolved. Organic aerosol can be produced from a variety of natural and anthropogenic processes, 

which presents a challenge for source attribution techniques. Additionally, new research over the 

past decade has identified a host of new sources and chemical pathways for SOA formation that 

have only recently begun to be implemented into CTMs. Further research implementing these 

new sources and pathways into CTMs is needed to understand 1) the behavior of these different 

algorithms under a range of possible atmospheric conditions, and 2) what the implications are for 

understanding SOA formation in the U.S.  
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Figure 2-39. Speciated annual average IMPROVE PM2.5 in µg/m3 at select remote monitors 

during 2004 and 2016. (Note: Monitor locations are shown in Figure 2-40.) 

 

  

Figure 2-40. Site locations for the IMPROVE monitors in Figure 2-39. (Note: Monitors also 

assessed in the 2009 ISA are shown in blue. Monitors only examined in this assessment are 

shown in red.) 
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3 REVIEW OF THE PRIMARY STANDARDS FOR PM2.5  

This chapter presents our key policy-relevant considerations and conclusions regarding 

the public health protection provided by the current suite of primary PM2.5 standards and the 

protection that could be provided by potential alternative standards. These considerations and 

conclusions are framed by a series of policy-relevant questions, including the following 

overarching questions:  

• Does the currently available scientific evidence, air quality and quantitative risk 

information support or call into question the adequacy of the public health 

protection afforded by the current annual and 24-hour PM2.5 standards? 

• What range of potential alternative standards could be supported by the available 

scientific evidence, air quality and risk information? 

The answers to these questions are informed by our evaluation of a series of more specific 

policy-relevant questions, which expand upon those presented at the outset of this review in the 

IRP (U.S. EPA, 2016). Answers to these questions are intended to inform decisions by the 

Administrator on whether, and if so how, to revise the current suite of primary fine particle 

standards.   

Section 3.1 presents our approach for reviewing the primary standards for PM2.5. Sections 

3.2 and 3.3 present our consideration of the available scientific evidence and our consideration of 

information from the PM2.5 risk assessment, respectively. Section 3.4 summarizes CASAC 

advice and public comments and section 3.5 summarizes our conclusions regarding the adequacy 

of the public health protection provided by the current primary PM2.5 standards and the 

protection that could be provided by potential alternative standards. Section 3.6 discusses areas 

for future research and data collection to improve our understanding of fine particle-related 

health effects in future reviews. 

3.1 APPROACH  

3.1.1 Approach Used in the Last Review  

The last review of the primary PM NAAQS was completed in 2012 (78 FR 3086, January 

15, 2013). As noted above (section 1.3), in the last review the EPA lowered the level of the 

primary annual PM2.5 standard from 15.0 to 12.0 g/m3,1 and retained the existing 24-hour PM2.5 

standard with its level of 35 g/m3. The 2012 decision to strengthen the suite of primary PM2.5 

                                                 
1 The Agency also eliminated spatial averaging provisions as part of the form of the annual standard. 
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standards was based on the Administrator’s consideration of the extensive body of scientific 

evidence assessed in the 2009 ISA (U.S. EPA, 2009); the quantitative risk analyses presented in 

the 2010 HREA (U.S. EPA, 2010);2 the advice and recommendations of the CASAC (e.g., 

Samet, 2009; Samet, 2010c; Samet, 2010b); and public comments on the proposed rule (78 FR 

3086, January 15, 2013; U.S. EPA, 2012). The Administrator particularly noted the “strong and 

generally robust body of evidence of serious health effects associated with both long- and short-

term exposures to PM2.5” (78 FR 3120, January 15, 2013). This included epidemiologic studies 

reporting health effect associations based on long-term average PM2.5 concentrations ranging 

from about 15.0 g/m3 or above (i.e., at or above the level of the then-existing annual standard) 

to concentrations “significantly below the level of the annual standard” (78 FR 3120, January 15, 

2013). The Administrator further observed that such studies were part of an overall pattern 

across a broad range of studies reporting positive associations, which were frequently 

statistically significant. Based on her “confidence in the association between exposure to PM2.5 

and serious public health effects, combined with evidence of such an association in areas that 

would meet the current standards” (78 FR 3120, January 15, 2013), the Administrator concluded 

that revision of the suite of primary PM2.5 standards was necessary in order to provide increased 

public health protection. Specifically, she concluded that the then-existing suite of primary PM2.5 

standards was not sufficient, and thus not requisite, to protect public health with an adequate 

margin of safety. This decision was consistent with advice received from the CASAC (Samet, 

2010c). 

The Administrator next considered what specific revisions to the existing primary PM2.5 

standards were appropriate, given the available evidence and quantitative risk information. She 

considered both the annual and 24-hour PM2.5 standards, focusing on the basic elements of those 

standards (i.e., indicator, averaging time, form, and level). These considerations, and the 

Administrator’s conclusions, are summarized in sections 3.1.1.1 to 3.1.1.4 below.  

3.1.1.1  Indicator 

In initially setting standards for fine particles in 1997, the EPA concluded it was 

appropriate to control fine particles as a group, based on PM2.5 mass, rather than singling out any 

particular component or class of fine particles (62 FR 38667, July 18, 1997). In the review 

completed in 2006, based on similar considerations, the EPA concluded that the available 

information supported retaining the PM2.5 indicator and remained too limited to support a distinct 

                                                 
2 In the last review, the EPA generated a quantitative health risk assessment for PM, and did not conduct a 

microenvironmental exposure assessment (U.S. EPA, 2010). To be consistent with our general process for 

reviewing the NAAQS (section 1.2, above), and with our discussion of potential quantitative analyses in the 

current review, we refer to the 2010 health risk assessment as the 2010 HREA.  
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standard for any specific PM2.5 component or group of components associated with particular 

source categories of fine particles (71 FR 61162 to 61164, October 17, 2006).  

In the last review, the EPA again considered issues related to the appropriate indicator for 

fine particles, with a focus on evaluating support for the existing PM2.5 mass-based indicator and 

for potential alternative indicators based on the ultrafine particle fraction or on fine particle 

composition (78 FR 3121, January 15, 2013).3 With regard to PM2.5 mass, as in the 1997 and 

2006 reviews, the health studies available during the last review continued to link adverse health 

outcomes (e.g., premature mortality, hospital admissions, emergency department visits) with 

long- and short-term exposures to fine particles indexed largely by PM2.5 mass (78 FR 3121, 

January 15, 2013). With regard to the ultrafine fraction of ambient PM, the PA noted the limited 

body of health evidence assessed in the ISA (summarized in U.S. EPA, 2009, section 2.3.5 and 

Table 2–6) and the limited monitoring information available to characterize ambient 

concentrations of ultrafine particles (U.S. EPA, 2011, section 1.3.2). With regard to PM 

composition, the ISA concluded that “the evidence is not yet sufficient to allow differentiation of 

those constituents or sources that are more closely related to specific health outcomes” (U.S. 

EPA, 2009, pp. 2-26 and 6-212; 78 FR 3123, January 15, 2013). The PA further noted that 

“many different constituents of the fine particle mixture as well as groups of components 

associated with specific source categories of fine particles are linked to adverse health effects” 

(U.S. EPA, 2011, p. 2–55; 78 FR 3123, January 15, 2013). Consistent with the considerations 

and conclusions in the PA, the CASAC advised that it was appropriate to consider retaining 

PM2.5 as the indicator for fine particles. The CASAC specifically stated that “[t]here [is] 

insufficient peer-reviewed literature to support any other indicator at this time” (Samet, 2010a, p. 

12). In light of the evidence and the CASAC’s advice, the Administrator concluded that it was 

“appropriate to retain PM2.5 as the indicator for fine particles” (78 FR 3123, January 15, 2013).  

3.1.1.2  Averaging Time 

In 1997, the EPA set an annual PM2.5 standard to provide protection from health effects 

associated with long- and short-term exposures to PM2.5, and a 24-hour standard to supplement 

the protection afforded by the annual standard (62 FR 38667 to 38668, July, 18, 1997). In the 

2006 review, the EPA retained both annual and 24-hour averaging times (71 FR 61164, October 

17, 2006).  

In the last review, the EPA again considered issues related to the appropriate averaging 

times for PM2.5 standards, with a focus on evaluating support for the existing annual and 24-hour 

                                                 
3 In the last review, the ISA defined ultrafine particles as generally including particles with a mobility diameter less 

than or equal to 0.1 µm. Mobility diameter is defined as the diameter of a particle having the same diffusivity or 

electrical mobility in air as the particle of interest, and is often used to characterize particles of 0.5 µm or smaller 

(U.S. EPA, 2009, pp. 3-2 to 3-3).  
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averaging times and for potential alternative averaging times based on sub-daily or seasonal 

metrics.  Based on the evidence assessed in the ISA, the PA noted that the overwhelming 

majority of studies that had been conducted since the 2006 review continued to utilize annual (or 

multi-year) or 24-hour PM averaging periods (U.S. EPA, 2011, section 2.3.2). With regard to 

potential support for an averaging time shorter than 24-hours, the PA noted that studies of 

cardiovascular effects associated with sub-daily PM concentrations had evaluated a variety of 

PM metrics (e.g., PM2.5, PM10, PM10-2.5, ultrafine particles), averaging periods (e.g., 1, 2, and 4 

hours), and health outcomes (U.S. EPA, 2011, section 2.3.2). The PA concluded that this 

evidence, when viewed as a whole, was too uncertain to serve as a basis for establishing a 

primary PM2.5 standard with an averaging time shorter than 24-hours (U.S. EPA, 2011, p. 2-57).4 

With regard to potential support for a seasonal averaging time, few studies were available to 

deduce a general pattern in PM2.5-related risk across seasons, and these studies did not provide 

information on health effects associated with season-long exposures to PM2.5 (U.S. EPA, 2011, 

p. 2-58; 78 FR 3124, January 15, 2013).  

The PA reached the overall conclusions that the available information provided strong 

support for considering retaining the current annual and 24-hour averaging times and did not 

provide support for considering alternative averaging times (U.S. EPA, 2011, p. 2-58). The 

CASAC agreed that these conclusions were reasonable (Samet, 2010a, p. 13). The Administrator 

concurred with the PA conclusions and with the CASAC’s advice. Specifically, she judged that it 

was “appropriate to retain the current annual and 24-hour averaging times for the primary PM2.5 

standards to protect against health effects associated with long- and short-term exposure periods” 

(78 FR 3124, January 15, 2013).  

3.1.1.3  Form 

In 1997, the EPA established the form of the annual PM2.5 standard as an annual 

arithmetic mean, averaged over 3 years, from single or multiple community-oriented monitors.5 

That is, the level of the annual standard was to be compared to measurements made at each 

community-oriented monitoring site or, if specific criteria were met, measurements from 

multiple community-oriented monitoring sites could be averaged together (i.e., spatial 

                                                 
4 For respiratory effects specifically, the Administrator further noted the ISA conclusion that the strongest 

associations were observed with 24-hour average or longer exposures, not with exposures less than 24-hours 

(U.S. EPA, 2009, section 6.3).  

5 As noted above (section 1.3), in the last review the EPA replaced the term “community-oriented” monitor with the 

term “area-wide” monitor. Area-wide monitors are those sited at the neighborhood scale or larger, as well as those 

monitors sited at micro- or middle scales that are representative of many such locations in the same core-based 

statistical area (CBSA; 78 FR 3236, January 15, 2013). CBSAs are required to have at least one area-wide 

monitor sited in the area of expected maximum PM2.5 concentration.  

 



 3-5   

 

averaging)6 (62 FR 38671 to 38672, July 18, 1997). In the 1997 review, the EPA also established 

the form of the 24-hour PM2.5 standard as the 98th percentile of 24-hour concentrations at each 

monitor within an area (i.e., no spatial averaging), averaged over three years (62 FR at 38671 to 

38674, July 18, 1997). In the 2006 review, the EPA retained these standard forms but tightened 

the criteria for using spatial averaging with the annual standard (71 FR 61167, October 17, 

2006).7  

In the last review, the EPA’s consideration of the form of the annual PM2.5 standard again 

included a focus on the issue of spatial averaging. An analysis of air quality and population 

demographic information indicated that the highest PM2.5 concentrations in a given area tended 

to be measured at monitors in locations where the surrounding populations were more likely to 

live below the poverty line and to include larger percentages of racial and ethnic minorities (U.S. 

EPA, 2011, p. 2-60). Based on this analysis, the PA concluded that spatial averaging could result 

in disproportionate impacts in at-risk populations, including minority populations and 

populations with lower socioeconomic status (SES). Therefore, the PA concluded that it was 

appropriate to consider revising the form of the annual PM2.5 standard such that it did not allow 

for the use of spatial averaging across monitors (U.S. EPA, 2011, p. 2-60). The CASAC agreed 

with the PA conclusions that it was “reasonable” for the EPA to eliminate the spatial averaging 

provisions (Samet, 2010c, p. 2), stating the following: “Given mounting evidence showing that 

persons with lower SES levels are a susceptible group for PM-related health risks, [the] CASAC 

recommends that the provisions that allow for spatial averaging across monitors be eliminated” 

(Samet, 2010a, p. 13).   

The Administrator concluded that public health would not be protected with an adequate 

margin of safety in all locations, as required by law, if disproportionately higher PM2.5 

concentrations in low income and minority communities were averaged together with lower 

concentrations measured at other sites in a large urban area. Therefore, she concluded that the 

form of the annual PM2.5 standard should be revised to eliminate spatial averaging provisions (78 

FR 3124, January 15, 2013). Thus, the level of the annual PM2.5 standard established in the last 

review is to be compared with measurements from each appropriate monitor in an area, with no 

allowance for spatial averaging.  

                                                 
6 The original criteria for spatial averaging included: (1) the annual mean concentration at each site shall be within 

20% of the spatially averaged annual mean, and (2) the daily values for each monitoring site pair shall yield a 

correlation coefficient of at least 0.6 for each calendar quarter (62 FR 38671 to 38672, July 18, 1997). 

7 Specifically, the Administrator revised spatial averaging criteria such that “(1) [t]he annual mean concentration at 

each site shall be within 10 percent of the spatially averaged annual mean, and (2) the daily values for each 

monitoring site pair shall yield a correlation coefficient of at least 0.9 for each calendar quarter (71 FR 61167, 

October 17, 2006).  
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In the last review, the EPA also considered the form of the 24-hour PM2.5 standard. The 

Agency recognized that the existing 98th percentile form for the 24-hour standard was originally 

selected to provide a balance between limiting the occurrence of peak 24-hour PM2.5 

concentrations and identifying a stable target for risk management programs.8 Updated air 

quality analyses in the last review provided additional support for the increased stability of the 

98th percentile PM2.5 concentration, compared to the 99th percentile (U.S. EPA, 2011, Figure 2-2, 

p. 2-62). Consistent with the PA conclusions based on this analysis, the Administrator concluded 

that it was appropriate to retain the 98th percentile form for the 24-hour PM2.5 standard (78 FR 

3127, January 15, 2013).  

3.1.1.4  Level  

The EPA’s approach to considering alternative levels of the PM2.5 standards in the last 

review was based on evaluating the public health protection afforded by the annual and 24-hour 

standards, taken together, against mortality and morbidity effects associated with long-term or 

short-term PM2.5 exposures. This approach recognized that there is no bright line clearly 

directing the choice of level. Rather, the choice of what is appropriate is a public health policy 

judgment entrusted to the Administrator. In the last review, this judgment included consideration 

of the strengths and limitations of the evidence and the appropriate inferences to be drawn from 

the evidence and the risk assessments.  

In evaluating alternative standards, the Agency considered the extent to which potential 

alternative annual and 24-hour standard levels would be expected to reduce the mortality and 

morbidity risks associated with both long-term and short-term PM2.5 exposures. Results of the 

2010 HREA indicated that, compared to revising the 24-hour standard level, lowering the level 

of the annual standard would result in more consistent risk reductions across urban study areas, 

thereby potentially providing a more consistent degree of public health protection across the U.S. 

(U.S. EPA, 2010, pp. 5-15 to 5-17; 78 FR 3128, January 15, 2013). Based on risk results, 

together with the available evidence, the Administrator concluded that it was appropriate to 

lower the level of the annual standard in order to increase protection against both long- and 

short-term PM2.5 exposures. She further concluded that it was appropriate to retain the 24-hour 

standard in order to provide supplemental protection, particularly for areas with high peak-to-

mean ratios of 24-hour PM2.5 concentrations (e.g., areas with important local or seasonal sources) 

and for PM2.5-related effects that may be associated with shorter-than daily exposure periods. 

The Administrator judged that this approach was the “most effective and efficient way to reduce 

                                                 
8 See ATA III, 283 F.3d at 374–376 which concludes that it is legitimate for the EPA to consider overall stability of 

the standard and its resulting promotion of overall effectiveness of NAAQS control programs in setting a standard 

that is requisite to protect the public health. 
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total PM2.5-related population risk and to protect public health with an adequate margin of 

safety” (78 FR 3158, January 15, 2013).  

In selecting the level of the annual PM2.5 standard, the Administrator recognized the 

substantial increase in the number and diversity of studies available in the last review, including 

extended analyses of seminal studies of long-term PM2.5 exposures (i.e., American Cancer 

Society (ACS) and Harvard Six Cities studies), important new long-term exposure studies, and 

new U.S. multi-city epidemiologic studies that greatly expanded and reinforced our 

understanding of mortality and morbidity effects associated with short-term PM2.5 exposures. 

She placed the greatest emphasis on health endpoints for which the evidence was strongest, 

based on the assessment of the evidence in the ISA and on the ISA’s causality determinations 

(U.S. EPA, 2009, section 2.3.1). She particularly noted that the evidence was sufficient to 

conclude a causal relationship exists between PM2.5 exposures and mortality and cardiovascular 

effects (i.e., for both long- and short-term exposures) and that the evidence was sufficient to 

conclude a causal relationship is “likely” to exist between PM2.5 exposures and respiratory 

effects (i.e., for both long- and short-term exposures). The Administrator also noted additional, 

but more limited, evidence for a broader range of health endpoints, including evidence 

“suggestive of a causal relationship” between long-term exposures and developmental and 

reproductive effects as well as carcinogenic effects (78 FR 3158, January 15, 2013).  

Based on information discussed and presented in the ISA, the Administrator recognized 

that health effects may occur over the full range of ambient PM2.5 concentrations observed in 

epidemiologic studies, since no discernible population-level threshold could be identified based 

on the evidence available in the last review (78 FR 3158, January 15, 2013; U.S. EPA, 2009, 

section 2.4.3). To inform her decisions on an appropriate level for the annual standard in the 

absence of a discernible population-level threshold, the Administrator considered the degree to 

which epidemiologic studies indicate confidence in the reported health effect associations over 

distributions of ambient PM2.5 concentrations. In doing so, she recognized that epidemiologic 

studies provide greater confidence in the observed associations for the part of the air quality 

distribution corresponding to the bulk of the health events evaluated, generally at and around the 

long-term mean PM2.5 concentrations. Accordingly, the Administrator weighed most heavily the 

long-term mean concentrations reported in key multi-city epidemiologic studies. She also took 

into account additional population-level information from a subset of studies, beyond the long-

term mean concentrations, to identify a broader range of PM2.5 concentrations to consider in 
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judging the need for public health protection.9 In doing so, the Administrator recognized that 

studies indicate diminished confidence in the magnitude and significance of observed 

associations in the lower part of the air quality distribution, corresponding to where a relatively 

small proportion of the health events are observed.  

In revising the level of the annual standard to 12.0 µg/m3, the Administrator noted that 

such a level was below the long-term mean PM2.5 concentrations reported in key epidemiologic 

studies that provided evidence of an array of serious health effects, including premature mortality 

and increased hospitalizations for cardiovascular and respiratory effects (78 FR 3161, January 

15, 2013). The Administrator further noted that 12.0 µg/m3 generally corresponded to the lower 

portions (i.e., about the 25th percentile) of distributions of health events in the limited number of 

epidemiologic studies for which population-level information was available. The Administrator 

viewed this population information as helpful in guiding her determination as to where her 

confidence in the magnitude and significance of the PM2.5 associations were reduced to such a 

degree that a standard set at a lower level was not warranted. The Administrator also recognized 

that a level of 12.0 µg/m3 reflected placing some weight on studies of reproductive and 

developmental effects, for which the evidence was more uncertain (78 FR 3161-3162, January 

15, 2013).10  

In conjunction with a revised annual standard with a level of 12.0 µg/m3, the 

Administrator concluded that the evidence supported retaining the 35 µg/m3 level of the 24-hour 

PM2.5 standard. Specifically, she judged that by lowering the level of the annual standard, the 

distribution of 24-hour PM2.5 concentrations would be lowered as well, affording additional 

protection against effects associated with short-term PM2.5 exposures.11 She noted that the 

existing 24-hour standard, with its 35 µg/m3 level and 98th percentile form, would provide 

supplemental protection, particularly for areas with high peak-to-mean ratios possibly associated 

with strong local or seasonal sources and for areas with PM2.5-related effects that may be 

associated with shorter than daily exposure periods (78 FR 3163, January 15, 2013).  

                                                 
9 This information characterized the distribution of health events in the studies, and the corresponding long-term 

mean PM2.5 concentrations (78 FR 3130 to 3134, January 15, 2013). The additional population-level data helped 

inform the Administrator’s judgment of how far below the long-term mean concentrations to set the level of the 

annual standard (78 FR 3160).  

10 With respect to cancer, mutagenic, and genotoxic effects, the Administrator observed that the PM2.5 

concentrations reported in studies evaluating these effects generally included ambient concentrations that are 

equal to or greater than ambient concentrations observed in studies that reported mortality and cardiovascular and 

respiratory effects (U.S. EPA, 2009, section 7.5). Therefore, the Administrator concluded that, in selecting a 

standard level that provides protection from mortality and cardiovascular and respiratory effects, it is reasonable 

to anticipate that protection will also be provided for carcinogenic effects (78 FR 3161-3162, January 15, 2013).  

11 This judgment is supported by risk results presented in the 2010 HREA. For example, see section 4.2.2, and 

Figures 4-4 and 4-6 (U.S. EPA, 2010).  
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The Administrator recognized that uncertainties remained in the scientific information. 

She specifically noted uncertainties related to understanding the relative toxicity of the different 

components in the fine particle mixture, the role of PM2.5 in the complex ambient mixture, 

exposure measurement errors in epidemiologic studies, and the nature and magnitude of 

estimated risks related to relatively low ambient PM2.5 concentrations. Furthermore, the 

Administrator noted that epidemiologic studies had reported heterogeneity in responses both 

within and between cities and in geographic regions across the U.S. She recognized that this 

heterogeneity may be attributed, in part, to differences in fine particle composition in different 

regions and cities. With regard to evidence for reproductive and developmental effects, the 

Administrator recognized that there were a number of limitations associated with this body of 

evidence, including the following: the limited number of studies evaluating such effects; 

uncertainties related to identifying the relevant exposure time periods of concern; and limited 

toxicological evidence providing little information on the mode of action(s) or biological 

plausibility for an association between long-term PM2.5 exposures and adverse birth outcomes.  

On balance, the Administrator found that the available evidence, interpreted in light of 

the remaining uncertainties (noted above), did not justify an annual standard level set below 12.0 

µg/m3 as being “requisite” (i.e., neither more nor less stringent than necessary) to protect public 

health with an adequate margin of safety. Thus, the Administrator concluded that the available 

evidence and information supported an annual standard with a level of 12.0 µg/m3, combined 

with a 24-hour standard with a level of 35 µg/m3. She noted that this combination of standard 

levels was consistent with the CASAC’s advice to consider an annual standard level within the 

range of 13 to 11 g/m3 and a 24-hour standard level from 35 to 30 g/m3 (Samet, 2010c). Taken 

together, the Administrator concluded that the revised annual PM2.5 standard, with its level of 

12.0 µg/m3 and a form that does not allow for spatial averaging, combined with the existing 24-

hour standard, would be requisite to protect the public health with an adequate margin of safety 

from effects associated with long- and short-term PM2.5 exposures.  

3.1.2 General Approach in the Current Review  

The approach for this review builds on the substantial body of work completed during the 

last review, taking into account the more recent scientific information and air quality data now 

available to inform our understanding of the key policy-relevant issues. The approach 

summarized below is most fundamentally based on using the EPA’s assessment of the current 

scientific evidence for health effects attributable to fine particle exposures (i.e., in the ISA, U.S. 

EPA, 2019), along with quantitative assessments of PM2.5-associated health risks and analyses of 

PM2.5 air quality, and CASAC advice, to inform the Administrator’s judgments regarding the 

primary standards for fine particles that are requisite to protect the public health with an adequate 
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margin of safety. In this PA, we seek to provide as broad an array of policy options as is 

supportable by the available scientific and technical information, recognizing that the selection 

of a specific approach to reaching final decisions on the primary PM2.5 standards will reflect the 

judgments of the Administrator as to what weight to place on the various types of information 

and associated uncertainties.  

In considering the public health protection provided by the current primary PM2.5 

standards, and the protection that could be provided by alternatives, we emphasize health 

outcomes for which the ISA determines that the evidence supports either a “causal” or a “likely 

to be causal” relationship with PM2.5 exposures (U.S. EPA, 2019). We consider the PM2.5-related 

health effects documented in studies that support these causality determinations and, together 

with other analyses (i.e., air quality analyses, risk assessment), what they may indicate regarding 

the primary PM2.5 standards. In doing so, we specifically focus on information from key 

epidemiologic and controlled human exposure studies.  

Epidemiologic studies represent a large part of the evidence base supporting several of 

the ISA’s “causal” and “likely to be causal” determinations. As discussed below in section 

3.2.3.2, the use of information from epidemiologic studies to inform conclusions on the primary 

PM2.5 standards is complicated by the fact that such studies evaluate associations between 

distributions of ambient PM2.5 and health outcomes and do not identify the specific exposures 

that cause reported effects. Rather, health effects can occur over the entire distributions of 

ambient PM2.5 concentrations evaluated, and epidemiologic studies do not identify a population-

level threshold below which it can be concluded with confidence that PM-associated health 

effects do not occur (U.S. EPA, 2019, section 1.5.3). In the absence of a discernible threshold, 

we use two approaches to consider information from epidemiologic studies (section 3.2.3.2).  

In one approach, we evaluate the PM2.5 air quality distributions over which epidemiologic 

studies support health effect associations and the degree to which such distributions are likely to 

occur in areas meeting the current (or alternative) standards. As discussed further in section 

3.2.3.2.1, epidemiologic studies generally provide the strongest support for reported health effect 

associations over the part of the air quality distribution corresponding to the bulk of the 

underlying data (i.e., estimated exposures and/or health events), often falling in the middle part 

of the distribution (i.e., rather than at the extreme upper or lower ends). In support of this, a 

number of epidemiologic studies report that confidence intervals around concentration-response 

functions are relatively narrow around the overall means of the PM2.5 concentrations examined 

and wider at the extreme upper and lower ends of the distributions. The observed narrowing of 

confidence intervals over the middle portions of these distributions likely reflects the relatively 

large amount of data available (i.e., the numerous “typical” daily or annual PM2.5 exposures 

estimated). As described in greater detail in section 3.2.3.2.1, in using PM2.5 air quality data from 
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epidemiologic studies to inform conclusions on standards we  evaluate study-reported means (or 

medians) of daily and annual average PM2.5 concentrations as proxies for the middle portions of 

the air quality distributions that support reported associations. When data are available, we also 

consider the broader PM2.5 air quality distributions around the overall mean concentrations, with 

a focus on the lower quartiles of data, to provide insight into the concentrations below which 

data supporting reported associations become relatively sparse.  

A key uncertainty in using study-reported PM2.5 concentrations to inform conclusions on 

the primary PM2.5 standards is that they reflect the averages of daily or annual PM2.5 air quality 

concentrations or exposure estimates in the study population over the years examined by the 

study, and are not the same as the PM2.5 design values used by the EPA to determine whether 

areas meet the NAAQS (section 3.2.3.2.1).12 Therefore, as described in section 3.2.3.2.2, in this 

review we also consider a second approach to evaluating information from epidemiologic 

studies. In this approach, we calculate study area air quality metrics similar to PM2.5 design 

values (i.e., referred to in this PA as “pseudo-design values”) and consider the degree to which 

such metrics indicate that study area air quality would likely have met or violated the current or 

alternative standards during study periods. When pseudo-design values in individual study 

locations are linked with the populations living in those locations, or with the number of study-

specific health events recorded in those locations, these values can provide insight into the 

degree to which reported health effect associations are based on air quality likely to have met or 

violated the current (or alternative) primary PM2.5 standards.   

To the extent the application of these two approaches indicates that health effect 

associations are based on PM2.5 air quality likely to have met the current or alternative standards, 

those standards are likely to allow the daily or annual average PM2.5 exposures that provide the 

foundation for reported associations. Alternatively, to the extent reported health effect 

associations reflect air quality violating the current or alternative standards, there is greater 

uncertainty in the degree to which those standards would allow the PM2.5 exposures that provide 

the foundation for reported associations. Sections 3.2.3.2.1 and 3.2.3.2.2 discuss each of these 

approaches in detail, and present our key observations based on their application. 

Beyond epidemiologic studies, we additionally consider what controlled human exposure 

studies may indicate regarding the current and alternative primary PM2.5 standards. Controlled 

human exposure studies examine short-term PM2.5 exposures (i.e., up to several hours) under 

                                                 
12 The design value is a statistic that describes the air quality status of a given area relative to the NAAQS. As 

discussed further in section 3.2.3.2.1, to determine whether areas meet or violate the NAAQS, the EPA measures 

air pollution concentrations at individual monitors (i.e., concentrations are not averaged across monitors) and 

calculates design values at monitors meeting appropriate data quality and completeness criteria. For an area to 

meet the NAAQS, all valid design values in that area, including the highest annual and 24-hour monitored values, 

must be at or below the levels of the standards. 
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carefully controlled laboratory conditions. Drawing from the ISA, such studies report PM2.5-

induced changes in markers of cardiovascular function and provide strong support for the 

biological plausibility of the more serious cardiovascular-related outcomes observed in 

epidemiologic studies (sections 3.2.1 and 3.2.3.1). Unlike most epidemiologic studies, available 

controlled human exposure studies provide support for effects following single, short-term PM2.5 

exposures to concentrations that typically correspond to the upper end of the PM2.5 air quality 

distribution in the U.S. (i.e., “peak” concentrations). In evaluating what such controlled human 

exposure studies may indicate regarding the primary standards, we consider the effects reported 

following PM2.5 exposures, the exposure concentrations/durations reported to cause those effects, 

and the degree to which air quality analyses indicate that such exposures are likely to occur in 

areas meeting the current or alternative PM2.5 standards.13  

Consideration of the evidence and related air quality analyses, as summarized above, 

informs our evaluation of the public health protection provided by the combination of the current 

annual and 24-hour primary PM2.5 standards, as well as the protection that could be provided by 

alternative annual and 24-hour standards with revised levels (section 3.4). There are various 

ways to combine an annual standard (based on arithmetic mean concentrations) and a 24-hour 

standard (based on 98th percentile concentrations), to achieve an appropriate degree of public 

health protection. The extent to which the standards are interrelated in any given area depends in 

large part on the relative levels of the standards, the peak-to-mean ratios that characterize air 

quality patterns in the area, and whether changes in air quality designed to meet a given suite of 

standards are likely to be of a more regional or more localized nature. In considering the 

combined effects of the standards, we recognize that changes in PM2.5 air quality designed to 

meet an annual standard would likely result not only in lower short- and long-term PM2.5 

concentrations near the middle of the air quality distribution (i.e., around the mean of the 

distribution), but also in fewer and lower short-term peak PM2.5 concentrations. Additionally, 

changes designed to meet a 24-hour standard, with a 98th percentile form, would result not only 

in fewer and lower peak 24-hour PM2.5 concentrations, but also in lower annual average PM2.5 

concentrations.  

However, while either standard could be viewed as providing some measure of protection 

against both average exposures and peak exposures, the 24-hour and annual standards are not 

expected to be equally effective at limiting both types of exposures. Specifically, the 24-hour 

standard (with its 98th percentile form) is more directly tied to short-term peak PM2.5 

concentrations than to the more typical concentrations that make up the middle portion of the air 

                                                 
13 As discussed further in section 3.2.3.1, animal toxicology studies can be similarly evaluated, though there is 

greater uncertainty in extrapolating the effects seen in animals, and the PM2.5 exposures and doses that cause 

those effects, to human populations.  
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quality distribution, and thus more likely to appropriately limit exposures to peak concentrations. 

Compared to a standard that is directly tied to the middle of the air quality distribution, the 24-

hour standard is less likely to appropriately limit the typical exposures that are most strongly 

associated with the health effects observed in epidemiologic studies. In contrast, the annual 

standard, with its form based on the arithmetic mean concentration, is more likely to effectively 

limit the PM2.5 concentrations that comprise the middle portion of the air quality distribution, 

affording protection against the daily and annual PM2.5 exposures that strongly support 

associations with the most serious PM2.5-related effects in epidemiologic studies (e.g., mortality, 

hospitalizations).  

For these reasons, as in the last review (78 FR 3161-3162, January 15, 2013), we focus 

on the annual PM2.5 standard as the principle means of providing public health protection against 

the bulk of the distribution of short- and long-term PM2.5 exposures, and thus protecting against 

the exposures that provide strong support for associations with mortality and morbidity in key 

epidemiologic studies. We additionally consider the 24-hour standard, with its 98th percentile 

form, as a means of providing supplemental protection against the short-term exposures to peak 

PM2.5 concentrations that can occur in areas with strong contributions from local or seasonal 

sources, even when overall mean PM2.5 concentrations remain relatively low (section 3.4).  

Figure 3-1 summarizes our general approach to informing conclusions on the current 

primary standards and on potential alternatives. Subsequent sections of this chapter provide 

additional detail on this general approach.   
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Figure 3-1.  Overview of general approach for review of primary PM2.5 standards.  
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In adopting the approach outlined above, we recognize that decisions on the primary 

PM2.5 standards are largely public health policy judgments to be made by the Administrator. The 

Administrator’s final decisions will draw upon the scientific evidence for PM-related health 

effects, information from the quantitative assessment of population health risks, information 

from analyses of air quality, and judgments about how to consider the uncertainties and 

limitations that are inherent in the evidence and information. To inform the Administrator’s 

public health policy judgments and decisions, the PA considers support for, and the potential 

implications of, placing more or less weight on various aspects of this evidence, air quality and 

risk information, and associated uncertainties and limitations.  

This approach is consistent with the requirements of the NAAQS provisions of the CAA 

and with how the EPA and the courts have historically interpreted these CAA provisions. The 

CAA requires primary standards that, in the judgment of the Administrator, are requisite to 

protect public health with an adequate margin of safety. In setting primary standards that are 

“requisite” to protect public health, the EPA’s task is to establish standards that are neither more 

nor less stringent than necessary for this purpose. The requirement that primary standards 

provide an “adequate margin of safety” is meant to address uncertainties associated with 

inconclusive scientific and technical information. Thus, as discussed in section 1.1 of this PA, 

the CAA does not require that primary standards be set at a zero-risk level, but rather at a level 

that, in the judgment of the Administrator, limits risk sufficiently so as to protect public health 

with an adequate margin of safety.  

3.2 EVIDENCE-BASED CONSIDERATIONS  

In this section, we draw from the EPA’s synthesis and assessment of the scientific 

evidence presented in the ISA (U.S. EPA, 2019) to consider the following policy-relevant 

question:  

• To what extent does the currently available scientific evidence, as assessed in the 

ISA, support or call into question the public health protection afforded by the 

current suite of PM2.5 standards? 

The ISA uses a weight-of-evidence framework for characterizing the strength of the available 

scientific evidence for health effects attributable to PM exposures (U.S. EPA, 2015, Preamble, 

Section 5). This framework provides the basis for robust, consistent, and transparent evaluation 

of the scientific evidence, including its uncertainties, and for drawing conclusions on PM-related 

health effects. As in the last review (U.S. EPA, 2009), the ISA for this review has adopted a five-

level hierarchy to classify the overall weight of evidence into one of the following categories: 

causal relationship; likely to be a causal relationship; suggestive of, but not sufficient to infer, a 

causal relationship; inadequate to infer a causal relationship; and not likely to be a causal 



 3-16   

 

relationship (U.S. EPA, 2015, Preamble Table II). In using the weight-of-evidence approach to 

inform judgments about the likelihood that various health effects are caused by PM exposures, 

evidence is evaluated for major outcome categories or groups of related outcomes (e.g., 

respiratory effects), integrating evidence from across disciplines, including epidemiologic, 

controlled human exposure, and animal toxicological studies and evaluating the coherence of 

evidence across a spectrum of related endpoints (U.S. EPA, 2015, Preamble, Section 5.c.). In this 

PA, we consider the full body of health evidence, placing the greatest emphasis on the health 

effects for which the evidence has been judged in the ISA to demonstrate a “causal” or a “likely 

to be causal” relationship with PM exposures. The ISA defines these causality determinations as 

follows (U.S. EPA, 2019, p. p-20):  

• Causal relationship: the pollutant has been shown to result in health effects at relevant 

exposures based on studies encompassing multiple lines of evidence and chance, 

confounding, and other biases can be ruled out with reasonable confidence.  

• Likely to be a causal relationship: there are studies in which results are not explained by 

chance, confounding, or other biases, but uncertainties remain in the health effects evidence 

overall. For example, the influence of co-occurring pollutants is difficult to address, or 

evidence across scientific disciplines may be limited or inconsistent. 

In the sections below, we consider the nature of the health effects attributable to long- 

and short-term fine particle exposures (Section 3.2.1), the populations potentially at increased 

risk for PM-related effects (Section 3.2.2), and the PM2.5 concentrations at which effects have 

been shown to occur (Section 3.2.3).  

3.2.1 Nature of Effects  

In considering the available evidence for health effects attributable to PM2.5 exposures 

presented in the ISA, this section poses the following policy-relevant questions:  

• To what extent does the currently available scientific evidence strengthen, or otherwise 

alter, our conclusions from the last review regarding health effects attributable to long- 

or short-term fine particle exposures? Have previously identified uncertainties been 

reduced? What important uncertainties remain and have new uncertainties been 

identified? 

In answering these questions, as noted above, we consider the full body of evidence assessed in 

the ISA, placing particular emphasis on health outcomes for which the evidence supports either a 

“causal” or a “likely to be causal” relationship. While the strongest evidence focuses on PM2.5, 

the ISA also assesses the evidence for the ultrafine fraction of PM2.5 (ultrafine particles or UFP), 
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generally considered as particulates with a diameter less than or equal to 0.1 μm14 (typically 

based on physical size, thermal diffusivity or electrical mobility) (U.S. EPA, 2019, Preface, p. 

11). Table 3-1 lists  the health outcomes for which the ISA concludes the evidence supports 

either a causal, a likely to be causal, or a suggestive relationship (adapted from U.S. EPA, 2019, 

Table 1-4).  

  

                                                 
14 Though definitions of UFP vary across the scientific literature and, as discussed in sections 3.2.1.5 and 3.2.1.6, 

UFP exposures in animal toxicological and controlled human exposure studies typically use a particle 

concentrator, which can result in exposures to particles > 0.1 μm in diameter in some studies of UFP-related 

health effects.  
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Table 3-1. Key causality determinations for PM2.5 and UFP exposures.  

Health Outcome Size 
Fraction 

Exposure 
Duration 

2009 PM ISA 2019 PM ISA 

Mortality PM2.5 
Long-term 

Causal Causal 
Short-term 

Cardiovascular 
effects 

PM2.5 
Long-term 

Causal Causal 
Short-term 

UFP Short-term 
Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer 

Respiratory 
effects 

PM2.5 
Long-term 

Likely to be causal Likely to be causal 
Short-term 

UFP 
Short-term 

Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer 

Cancer PM2.5 
Long-term Suggestive of, but not 

sufficient to infer 
Likely to be causal 

Nervous 
System effects 

PM2.5 

Long-term --- Likely to be causal 

Short-term Inadequate 
Suggestive of, but not 
sufficient to infer 

UFP 

Long-term --- 
Suggestive of, but not 
sufficient to infer 

Short-term Inadequate 
Suggestive of, but not 
sufficient to infer 

Metabolic effects PM2.5 

Long-term --- 
Suggestive of, but not 
sufficient to infer 

Short-term --- 
Suggestive of, but not 
sufficient to infer 

Reproduction 
and Fertility  

PM2.5 
Long-, 

Short-term 
Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer Pregnancy and 

Birth Outcomes 

Table 3-1 lists the health outcomes for which the ISA concludes the evidence supports either a causal, a likely 
to be causal, or a suggestive relationship. For other health outcomes, the ISA concludes the evidence is 
inadequate to infer a causal relationship (U.S. EPA, 2019, Table 1-4). 

The 2009 ISA (U.S. EPA, 2009) made causality determinations for the broad category of “Reproductive and 
Developmental Effects.” Causality determinations for 2009 represent this broad category and not specifically 
for “Male and Female Reproduction and Fertility” and “Pregnancy and Birth Outcomes”. 

For reproductive and developmental effects, the ISA’s causality determinations reflect the combined evidence 
for both short- and long-term exposures (U.S. EPA, 2019, Chapter 9). 
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Sections 3.2.1.1 to 3.2.1.5 summarize the evidence supporting the ISA’s “causal” and “likely to 

be causal” determinations for PM2.5 (bold, italics in Table 3-1). Section 3.2.1.6 briefly 

summarizes the evidence supporting the ISA’s “suggestive” determinations. Each of these 

sections focuses on addressing the policy-relevant questions posed above. Section 3.2.1.7 

summarizes the evidence in preceding sections and revisits the policy-relevant questions posed 

above.  

3.2.1.1  Mortality  

Long-term PM2.5 exposures 

In the last review, the 2009 PM ISA reported that the evidence was “sufficient to 

conclude that the relationship between long-term PM2.5 exposures and mortality is causal” (U.S. 

EPA, 2009, p. 7-96). The strongest evidence supporting this conclusion was provided by 

epidemiologic studies, particularly those examining two seminal cohort, the American Cancer 

Society (ACS) and the Harvard Six Cities cohorts. Analyses of the Harvard Six Cities cohort 

included demonstrations that reductions in ambient PM2.5 concentrations are associated with 

reduced mortality risk (Laden et al., 2006) and with increases in life expectancy (Pope et al., 

2009). Further support was provided by other cohort studies conducted in North America and 

Europe that also reported positive associations between long-term PM2.5 exposures and risk of 

mortality (U.S. EPA, 2009).  

Recent cohort studies, which have become available since the 2009 ISA, continue to 

provide consistent evidence of positive associations between long-term PM2.5 exposures and 

mortality. These studies add support for associations with total and non-accidental mortality,15 as 

well as with specific causes of death, including cardiovascular disease and respiratory disease 

(U.S. EPA, 2019, section 11.2.2). Many of these recent studies have extended the follow-up 

periods originally evaluated in the ACS and Harvard Six Cities cohorts and continue to observe 

positive associations between long-term PM2.5 exposures and mortality (U.S. EPA, 2019, section 

11.2.2.1; Figures 11-18 and 11-19). Adding to recent evaluations of the ACS and Six Cities 

cohorts, studies conducted in other cohorts also demonstrate consistent, positive associations 

between long-term PM2.5 exposure and mortality across various demographic groups (e.g., age, 

sex, occupation), spatial and temporal extents, exposure assessment metrics, and statistical 

techniques (U.S. EPA, 2019, sections 11.2.2.1, 11.2.5). This includes some of the largest cohort 

studies conducted to date, with analyses of the U.S. Medicare cohort that include nearly 

61 million enrollees (Di et al., 2017b) and studies that control for a range of individual and 

                                                 
15 The majority of these studies examined non-accidental mortality outcomes, though some Medicare studies lack 

cause-specific death information and, therefore, examine total mortality.  
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ecological covariates, such as race, age, socioeconomic status, smoking status, body mass index, 

and annual weather variables (e.g., temperature, humidity).  

A recent series of  retrospective studies has additionally tested the hypothesis that past 

reductions in ambient PM2.5 concentrations have been associated with increased life expectancy 

or a decreased mortality rate (U.S. EPA, 2019, section 11.2.2.5). In their original study, Pope et 

al. (2009) used air quality data in a cross-sectional analysis from 51 metropolitan areas across the 

U.S., beginning in the 1970s through the early 2000s, to demonstrate that a 10 µg/m3 decrease in 

long-term PM2.5 concentration was associated with a 0.61-year increase in life expectancy. In a 

subsequent analysis, these authors extended the period of analysis to include 2000 to 2007 

(Correia et al., 2013), a time period with lower ambient PM2.5 concentrations. In this follow-up 

study, a decrease in long-term PM2.5 concentration continued to be associated with an increase in 

life expectancy, though the magnitude of the increase was smaller than during the earlier time 

period (i.e., a 10 µg/m3 decrease in long-term PM2.5 concentration was associated with a 

0.35-year increase in life expectancy). Additional studies conducted in the U.S. or Europe 

similarly report that reductions in ambient PM2.5 are associated with improvements in longevity 

(U.S. EPA, 2019, section 11.2.2.5).  

The ISA specifically evaluates the degree to which recent studies that examine the 

relationship between long-term PM2.5 exposure and mortality have addressed key policy-relevant 

issues and/or previously identified data gaps in the scientific evidence. For example, based on its 

assessment of the evidence, the ISA concludes that positive associations between long-term 

PM2.5 exposures and mortality are robust across recent analyses using various approaches to 

estimate PM2.5 exposures (e.g., based on monitors, modeling, satellites, or hybrid methods that 

combine information from multiple sources) (U.S. EPA, 2019, section 11.2.5.1). This includes a 

recent study (Hart et al. (2015) reporting that correction for bias due to exposure measurement 

error increases the magnitude of the hazard ratios (confidence intervals widen but the association 

remains statistically significant), suggesting that failure to correct for exposure measurement 

error could result in attenuation or underestimation of risk estimates. The ISA additionally 

concludes that positive associations between long-term PM2.5 exposures and mortality are robust 

across statistical models that use different approaches to control for confounders or different sets 

of confounders (U.S. EPA, 2019, sections 11.2.3 and 11.2.5), across diverse geographic regions 

and populations, and across a range of temporal periods including the periods of declining PM 

concentrations (U.S. EPA, 2019, sections 11.2.2.5 and 11.2.5.3). Recent evidence further 

demonstrates that associations with mortality remain robust in copollutants analyses (U.S. EPA, 

2019, section 11.2.3), and that associations persist in analyses restricted to long-term exposures 

below 12 g/m3 (Di et al., 2017b) or 10 g/m3 (Shi et al., 2016) (i.e., indicating that risks are not 

disproportionately driven by the upper portions of the air quality distribution).  
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An emerging group of studies explores the use of causal inference methods to further 

evaluate the causal nature of relationships between long-term PM2.5 exposure and mortality (U.S. 

EPA, 2019, section 11.2.2.4). The goal of these methods is to “estimate the difference (or ratio) 

in the expected value of [an] outcome in the population under the exposure they received versus 

what it would have been had they received an alternative exposure” (Schwartz et al., 2015). For 

example, Wang et al. (2016)) observe a positive and statistically significant relationship between 

long-term exposure to PM2.5 and total (nonaccidental) mortality in New Jersey using a 

difference-in-difference approach to control for geographical differences, long-term temporal 

trends, and temperature. Additionally, a few recent studies use statistical techniques to reduce 

uncertainties related to potential confounding in order to further inform conclusions on causality 

for long-term PM2.5 exposure and mortality. For example, studies by Greven et al. (2011) and 

Pun et al. (2017) decompose ambient PM2.5 into “spatial” and “spatiotemporal” components in 

order to evaluate the potential for bias due to unmeasured spatial confounding. The results of 

these analyses suggest the presence of unmeasured confounding for several health outcomes, 

though they do not indicate the direction or magnitude of the bias that could result.16 17 

An additional important consideration in characterizing the public health impacts 

associated with PM2.5 exposure is whether concentration-response relationships are linear across 

the range of concentrations or if nonlinear relationships exist along any part of this range. Several 

recent studies examine this issue, and continue to provide evidence of linear, no-threshold 

relationships between long-term PM2.5 exposures and all-cause and cause-specific mortality (U.S. 

EPA, 2019, section 11.2.4). Though available studies have not systematically evaluated 

alternatives to a linear fitted model of concentration-response relationships, potential deviations 

from linearity have been assessed in individual studies using a variety of approaches (U.S. EPA, 

2019, Table 11-7). However, interpreting the shapes of these relationships, particularly at PM2.5 

concentrations near the lower end of the air quality distribution, can be complicated by relatively 

low data density in the lower concentration range, the possible influence of exposure measurement 

error, and variability among individuals with respect to air pollution health effects. These sources 

                                                 
16 In public comments on the draft PA, the authors of the Pun et al. study further note that “the presence of 

unmeasured confounding…was expected given that we did not control for several potential confounders that may 

impact PM2.5-mortality associations, such as smoking, socio-economic status (SES), gaseous pollutants, PM2.5 

components, and long-term time trends in PM2.5” and that “spatial confounding may bias mortality risks both 

towards and away from the null” (Docket ID EPA-HQ-OAR-2015-0072-0065; accessible in 

https://www.regulations.gov/) 

17 In its letter on the draft PA, the CASAC cites the study by Eum et al. (2018), which evaluates approaches similar 

to those in Greven et al. (2011) and Pun et al. (2017). Eum et al. (2018) concludes that associations between 1-

year PM2.5 exposures and mortality “were likely confounded by long-term temporal trends in PM2.5” but that 

controlling for this confounding still resulted in a statistically significant “11.7% increase in all-cause mortality 

among Medicare beneficiaries for a 10 μg/m3 increase in PM2.5.”  

https://www.regulations.gov/
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of variability and uncertainty tend to smooth and “linearize” population-level concentration-

response functions, and thus could obscure the existence of a threshold or nonlinear relationship 

(U.S. EPA, 2015, section 6.c).   

The biological plausibility of PM2.5-attributable mortality is supported by the coherence 

of effects across scientific disciplines (i.e., animal toxicological, controlled human exposure 

studies, and epidemiologic), including in recent studies evaluating the morbidity effects that are 

the largest contributors to total (nonaccidental) mortality. The ISA outlines the available 

evidence for plausible pathways by which inhalation exposure to PM2.5 could progress from 

initial events (e.g., pulmonary inflammation, autonomic nervous system activation) to endpoints 

relevant to population outcomes, particularly those related to cardiovascular diseases such as 

ischemic heart disease, stroke and atherosclerosis (U.S. EPA, 2019, section 6.2.1), and to 

metabolic disease and diabetes (U.S. EPA, 2019, section 7.3.1). The ISA notes “more limited 

evidence from respiratory morbidity” (U.S. EPA, 2019, p. 11-101) such as exacerbation of 

COPD (U.S. EPA, 2019, section 5.2.1) to support the biological plausibility of mortality due to 

long-term PM2.5 exposures (U.S. EPA, 2019, section 11.2.1).  

Taken together, recent studies reaffirm and further strengthen the body of evidence from 

the 2009 ISA for the relationship between long-term PM2.5 exposure and mortality. Recent 

epidemiologic studies consistently report positive associations with mortality across different 

geographic locations, populations, and analytic approaches. Such studies reduce key 

uncertainties identified in the last review, including those related to potential copollutant 

confounding, and provide additional information on the shape of the concentration-response 

curve. Recent experimental and epidemiologic evidence for cardiovascular effects, and 

respiratory effects to a more limited degree, supports the plausibility of mortality due to long-

term PM2.5 exposures. The ISA concludes that, “collectively, this body of evidence is sufficient 

to conclude that a causal relationship exists between long-term PM2.5 exposure and total 

mortality” (U.S. EPA, 2019, section 11.2.7; p. 11-102).  

Short-term PM2.5 exposures 

The 2009 PM ISA concluded that “a causal relationship exists between short-term 

exposure to PM2.5 and mortality” (U.S. EPA, 2009). This conclusion was based on the evaluation 

of both multi- and single-city epidemiologic studies that consistently reported positive 

associations between short-term PM2.5 exposure and non-accidental mortality. These associations 

were strongest, in terms of magnitude and precision, primarily at lags of 0 to 1 days. 

Examination of the potential confounding effects of gaseous copollutants was limited, though 

evidence from single-city studies indicated that gaseous copollutants have minimal effect on the 

PM2.5-mortality relationship (i.e., associations remain robust to inclusion of other pollutants in 

copollutant models). The evaluation of cause-specific mortality found that effect estimates were 



 3-23   

 

larger in magnitude, but also had larger confidence intervals, for respiratory mortality compared 

to cardiovascular mortality. Although the largest mortality risk estimates were for respiratory 

mortality, the interpretation of the results was complicated by the limited coherence from studies 

of respiratory morbidity. However, the evidence from studies of cardiovascular morbidity 

provided both coherence and biological plausibility for the relationship between short-term PM2.5 

exposure and cardiovascular mortality.  

Recent multicity studies evaluated since the 2009 ISA continue to provide evidence of 

primarily positive associations between daily PM2.5 exposures and mortality, with percent 

increases in total mortality ranging from 0.19% (Lippmann et al., 2013) to 2.80% (Kloog et al., 

2013)18 at lags of 0 to 1 days in single-pollutant models. Whereas most studies rely on assigning 

exposures using data from ambient monitors, associations are also reported in recent studies that 

employ hybrid modeling approaches using additional PM2.5 data (i.e., from satellites, land use 

information, and modeling, in addition to monitors), allowing for the inclusion of more rural 

locations in analyses (Kloog et al., 2013, Shi et al., 2016, Lee et al., 2015).  

Some recent studies have expanded the examination of potential confounders, including 

long-term temporal trends, weather, and co-occurring pollutants. Mortality associations were 

found to remain positive, although in some cases were attenuated, when using different 

approaches to account for temporal trends or weather covariates (U.S. EPA, 2019, section 

11.1.5.1). For example,  Sacks et al. (2012) examined the influence of model specification using 

the approaches for confounder adjustment from models employed in several recent multicity 

studies within the context of a common data set (U.S. EPA, 2019, section 11.1.5.1). These 

models use different approaches to control for long-term temporal trends and the potential 

confounding effects of weather. The authors report that associations between daily PM2.5 and 

cardiovascular mortality were similar across models, with the percent increase in mortality 

ranging from 1.5−2.0% (U.S. EPA, 2019, Figure 11-4). Thus, alternative approaches to 

controlling for long-term temporal trends and for the potential confounding effects of weather 

may influence the magnitude of the association between PM2.5 exposures and mortality but have 

not been found to influence the direction of the observed association (U.S. EPA, 2019, section 

11.1.5.1). Taken together, the ISA concludes that recent multicity studies conducted in the U.S., 

Canada, Europe, and Asia continue to provide consistent evidence of positive associations 

between short-term PM2.5 exposures and total mortality across studies that use different 

approaches to control for the potential confounding effects of weather (e.g., temperature) (U.S. 

EPA, 2019, section 1.4.1.5.1).  

                                                 
18 As detailed in the Preface to the ISA, risk estimates are for a 10 µg/m3 increase in 24-hour avg PM2.5 

concentrations, unless otherwise noted (U.S. EPA, 2019). 
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With regard to copollutants, recent studies provide additional evidence that associations 

between short-term PM2.5 exposures and mortality remain positive and relatively unchanged in 

copollutant models with both gaseous pollutants and PM10-2.5 (U.S. EPA, 2019, Section 11.1.4). 

Additionally, the low (r < 0.4) to moderate correlations (r = 0.4-0.7) between PM2.5 and gaseous 

pollutants and PM10−2.5 increase the confidence in PM2.5 having an independent effect on 

mortality (U.S. EPA, 2019, section 11.1.4). 

 The generally positive associations reported with mortality are supported by a small group 

of studies employing causal inference or quasi-experimental statistical approaches (U.S. EPA, 

2019, section 11.1.2.1). For example, two studies by Schwartz et al. (Schwartz et al., 2015; 

Schwartz et al., 2017) report associations between PM2.5 instrumental variables and mortality 

(U.S. EPA, 2019, Table 11-2), including in an analysis limited to days with 24-hour average 

PM2.5 concentrations <30 μg/m3 (Schwartz et al., 2017). In addition to the main analyses, these 

studies conducted Granger-like causality tests as sensitivity analyses to examine whether there 

was evidence of an association between mortality and PM2.5 after the day of death, which would 

support the possibility that unmeasured confounders were not accounted for in the statistical 

model. Neither study reports evidence of an association with PM2.5 after death (i.e., they do not 

indicate unmeasured confounding). A recent quasi-experimental study examines whether a 

specific regulatory action in Tokyo, Japan (i.e., a diesel emission control ordinance) resulted in a 

subsequent reduction in daily mortality (Yorifuji et al., 2016). The authors report a reduction in 

mortality in Tokyo due to the ordinance, compared to Osaka, which did not have a similar diesel 

emission control ordinance in place.  

The positive associations for total mortality reported across the majority of studies 

evaluated are further supported by analyses reporting generally consistent, positive associations 

with both cardiovascular and respiratory mortality (U.S. EPA, 2019, section 11.1.3). For both 

cardiovascular and respiratory mortality, there has been only limited assessment of potential 

copollutant confounding, though initial evidence indicates that associations remain positive and 

relatively unchanged in models with gaseous pollutants and PM10-2.5. This evidence further 

supports the copollutant analyses conducted for total mortality. The strong evidence for ischemic 

events and heart failure, as detailed in the assessment of cardiovascular morbidity (U.S. EPA, 

2019, Chapter 6), provides biological plausibility for PM2.5-related cardiovascular mortality, 

which comprises the largest percentage of total mortality (i.e., ~33%) (NHLBI, 2017). Although 

there is evidence for exacerbations of COPD and asthma, the collective body of respiratory 

morbidity evidence provides only limited biological plausibility for PM2.5-related respiratory 

mortality (U.S. EPA, 2019, Chapter 5).  

In the 2009 ISA, one of the main uncertainties identified was the regional and city-to-city 

heterogeneity in PM2.5-mortality associations. Recent studies examine both city-specific as well 
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as regional characteristics to identify the underlying contextual factors that could contribute to 

this heterogeneity (U.S. EPA, 2019, section 11.1.6.3). Analyses focusing on effect modification 

of the PM2.5-mortality relationship by PM2.5 components, regional patterns in PM2.5 components 

and city-specific differences in composition and sources indicate some differences in the PM2.5 

composition and sources across cities and regions, but these differences do not fully explain the 

observed heterogeneity. Additional studies find that factors related to potential exposure 

differences, such housing stock and commuting, as well as city-specific factors (e.g., land-use, 

port volume, and traffic information), may explain some of the observed heterogeneity (U.S. 

EPA, 2019, section 11.1.6.3). Collectively, recent studies indicate that the heterogeneity in 

PM2.5-mortality risk estimates cannot be attributed to one factor, but instead a combination of 

factors including, but not limited to, PM composition and sources as well as community 

characteristics that could influence exposures (U.S. EPA, 2019, section 11.1.12).  

A number of recent studies conducted systematic evaluations of the lag structure of 

associations for the PM2.5-mortality relationship by examining either a series of single-day or 

multiday lags and these studies continue to support an immediate effect (i.e., lag 0 to 1 days) of 

short-term PM2.5 exposures on mortality (U.S. EPA, 2019, section 11.1.8.1). Recent studies also 

conducted analyses comparing the traditional 24-hour average exposure metric with a sub-daily 

metric (i.e., 1-hour max). These initial studies provide evidence of a similar pattern of 

associations for both the 24-hour average and 1-hour max metric, with the association larger in 

magnitude for the 24-hour average metric.  

Recent multicity studies indicate that positive and statistically significant associations 

with mortality persist in analyses restricted to short-term PM2.5 exposures below 35 g/m3 (Lee 

et al., 2015),19 below 30 g/m3 (Shi et al., 2016), and below 25 g/m3 (Di et al., 2017a), 

indicating that risks associated with short-term PM2.5 exposures are not disproportionately driven 

by the peaks of the air quality distribution. Additional studies examine the shape of the 

concentration-response relationship and whether a threshold exists specifically for PM2.5 (U.S. 

EPA, 2019, section 11.1.10). These studies have used various statistical approaches and 

consistently demonstrate a linear relationship with no evidence of a threshold. Recent analyses 

provide initial evidence indicating that PM2.5-mortality associations persist and may be stronger 

(i.e., a steeper slope) at lower concentrations (e.g., Di et al., 2017a; Figure 11-12 in U.S. EPA, 

2019). However, given the limited data available at the lower end of the distribution of ambient 

PM2.5 concentrations, the shape of the concentration-response curve remains uncertain at these 

low concentrations and, to date, studies have not conducted extensive analyses exploring 

                                                 
19 Lee et al. (2015) also report that positive and statistically significant associations between short-term PM2.5 

exposures and mortality persist in analyses restricted to areas with long-term concentrations below 12 g/m3.  
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alternatives to linearity when examining the shape of the PM2.5-mortality concentration-response 

relationship.  

Overall, recent epidemiologic studies build upon and extend the conclusions of the 2009 

ISA for the relationship between short-term PM2.5 exposures and total mortality. Supporting 

evidence for PM2.5-related cardiovascular morbidity, and more limited evidence from respiratory 

morbidity, provides biological plausibility for mortality due to short-term PM2.5 exposures. The 

primarily positive associations observed across studies conducted in diverse geographic locations 

is further supported by the results from co-pollutant analyses indicating robust associations, 

along with evidence from analyses of the concentration-response relationship. The ISA states 

that, collectively, “this body of evidence is sufficient to conclude that a causal relationship exists 

between short-term PM2.5 exposure and total mortality” (U.S. EPA, 2019, pp. 11-58).  

3.2.1.2  Cardiovascular Effects 

Long-term PM2.5 exposures 

The scientific evidence reviewed in the 2009 PM ISA was “sufficient to infer a causal 

relationship between long-term PM2.5 exposure and cardiovascular effects” (U.S. EPA, 2009). 

The strongest line of evidence comprised findings from several large epidemiologic studies of 

U.S. cohorts that consistently showed positive associations between long-term PM2.5 exposure 

and cardiovascular mortality (Pope et al., 2004, Krewski et al., 2009, Miller et al., 2007, Laden et 

al., 2006). Studies of long-term PM2.5 exposure and cardiovascular morbidity were limited in 

number. Biological plausibility and coherence with the epidemiologic findings were provided by 

studies using genetic mouse models of atherosclerosis demonstrating enhanced atherosclerotic 

plaque development and inflammation, as well as changes in measures of impaired heart 

function, following 4- to 6-month exposures to PM2.5 concentrated ambient particles (CAPs), and 

by a limited number of studies reporting CAPs-induced effects on coagulation factors, vascular 

reactivity, and worsening of experimentally induced hypertension in mice (U.S. EPA, 2009).  

Consistent with the evidence assessed in the 2009 PM ISA, the 2019 ISA concludes that 

recent studies, together with the evidence available in previous reviews, support a causal 

relationship between long-term exposure to PM2.5 and cardiovascular effects. As discussed above 

(section 3.2.1.1), results from recent U.S. and Canadian cohort studies consistently report 

positive associations between long-term PM2.5 exposure and cardiovascular mortality (U.S. EPA, 

2019, Figure 6-19) in evaluations conducted at varying spatial scales and employing a variety of 

exposure assessment and statistical methods (U.S. EPA, 2019, section 6.2.10). Positive 

associations between long-term PM2.5 exposures and cardiovascular mortality are generally 

robust in copollutant models adjusted for ozone, NO2, PM10-2.5, or SO2. In addition, most of the 

results from analyses examining the shape of the concentration-response relationship for 
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cardiovascular mortality support a linear relationship with long-term PM2.5 exposures and do not 

identify a threshold below which effects do not occur (U.S. EPA, 2019, section 6.2.16; Table 6-

52).20  

The body of literature examining the relationship between long-term PM2.5 exposure and 

cardiovascular morbidity has greatly expanded since the 2009 PM ISA, with positive 

associations reported in several cohorts (U.S. EPA, 2019, section 6.2). Though results for 

cardiovascular morbidity are less consistent than those for cardiovascular mortality (U.S. EPA, 

2019, section 6.2), recent studies provide some evidence for associations between long-term 

PM2.5 exposures and the progression of cardiovascular disease. Positive associations with 

cardiovascular morbidity (e.g., coronary heart disease, stroke) and atherosclerosis progression 

are observed in several epidemiologic studies (U.S. EPA, 2019, sections 6.2.2. to 6.2.9). 

Associations in such studies are supported by toxicological evidence for increased plaque 

progression in mice following long-term exposure to PM2.5 collected from multiple locations 

across the U.S. (U.S. EPA, 2019, section 6.2.4.2). A small number of epidemiologic studies also 

report positive associations between long-term PM2.5 exposure and heart failure, changes in 

blood pressure, and hypertension (U.S. EPA, 2019, sections 6.2.5 and 6.2.7). Associations with 

heart failure are supported by animal toxicological studies demonstrating decreased cardiac 

contractility and function, and increased coronary artery wall thickness following long-term 

PM2.5 exposure (U.S. EPA, 2019, section 6.2.5.2). Similarly, a limited number of animal 

toxicological studies demonstrating a relationship between long-term exposure to PM2.5 and 

consistent increases in blood pressure in rats and mice are coherent with epidemiologic studies 

reporting positive associations between long-term exposure to PM2.5 and hypertension.  

Longitudinal epidemiologic analyses also report positive associations with markers of 

systemic inflammation (U.S. EPA, 2019, section 6.2.11), coagulation (U.S. EPA, 2019, section 

6.2.12), and endothelial dysfunction (U.S. EPA, 2019, section 6.2.13). These results are coherent 

with animal toxicological studies generally reporting increased markers of systemic 

inflammation, oxidative stress, and endothelial dysfunction (U.S. EPA, 2019, section 6.2.12.2 

and 6.2.14). 

In summary, the ISA concludes that there is consistent evidence from multiple 

epidemiologic studies illustrating that long-term exposure to PM2.5 is associated with mortality 

from cardiovascular causes. Associations with CHD, stroke and atherosclerosis progression were 

observed in several additional epidemiologic studies providing coherence with the mortality 

findings. Results from copollutant models generally support the independence of the PM2.5 

associations. Additional evidence of the independent effect of PM2.5 on the cardiovascular 

                                                 
20 As noted above for mortality, uncertainty in the shape of the concentration-response relationship increases near 

the upper and lower ends of the distribution due to limited data.  
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system is provided by experimental studies in animals, which demonstrate biologically plausible 

pathways by which long-term inhalation exposure to PM2.5 could potentially result in outcomes 

such as CHD, stroke, CHF and cardiovascular mortality. The combination of epidemiologic and 

experimental evidence results in the ISA conclusion that “a causal relationship exists between 

long-term exposure to PM2.5 and cardiovascular effects” (U.S. EPA, 2019, section 6.2.18).  

Short-term PM2.5 exposures 

The 2009 PM ISA concluded that “a causal relationship exists between short-term 

exposure to PM2.5 and cardiovascular effects” (U.S. EPA, 2009). The strongest evidence in the 

2009 PM ISA was from epidemiologic studies of ED visits and hospital admissions for IHD and 

HF, with supporting evidence from epidemiologic studies of cardiovascular mortality (U.S. EPA, 

2009). Animal toxicological studies provided coherence and biological plausibility for the 

positive associations reported with myocardial ischemia ED visit and hospital admissions. These 

included studies reporting reduced myocardial blood flow during ischemia and studies indicating 

altered vascular reactivity. In addition, effects of PM2.5 exposure on a potential indicator of 

ischemia (i.e., ST segment depression on an electrocardiogram) were reported in both animal 

toxicological and epidemiologic panel studies.21 Key uncertainties from the last review resulted 

from inconsistent results across disciplines with respect to the relationship between short-term 

exposure to PM2.5 and changes in blood pressure, blood coagulation markers, and markers of 

systemic inflammation. In addition, while the 2009 PM ISA identified a growing body of 

evidence from controlled human exposure and animal toxicological studies, uncertainties 

remained with respect to biological plausibility.   

A large body of recent evidence confirms and extends the evidence from the 2009 ISA 

indicating that there is a causal relationship between short-term PM2.5 exposure and 

cardiovascular effects. This includes generally positive associations observed in multicity 

epidemiologic studies of emergency department visits and hospital admissions for ischemic heart 

disease (IHD), heart failure (HF), and combined cardiovascular-related endpoints. In particular, 

nationwide studies of older adults (65 years and older) using Medicare records report positive 

associations between PM2.5 exposures and hospital admissions for HF (U.S. EPA, 2019, 

section 6.1.3.1). Additional multicity studies conducted in the northeast U.S. report positive 

associations between short-term PM2.5 exposures and emergency department visits or hospital 

admissions for IHD (U.S. EPA, 2019, section 6.1.2.1) while studies conducted in the U.S. and 

Canada reported positive associations between short-term PM2.5 exposures and emergency 

department visits for HF. Epidemiologic studies conducted in single cities contribute some 

                                                 
21 Some animal studies included in the 2009 PM ISA examined exposures to mixtures, such as motor vehicle 

exhaust or woodsmoke. In these studies, it was unclear if the resulting cardiovascular effects could be attributed 

specifically to the particulate components of the mixture. 
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support, though associations reported in single-city studies are less consistently positive than in 

multicity studies, and include a number of studies reporting null associations (U.S. EPA, 2019, 

sections 6.1.2 and 6.1.3). When considered as a whole; however, the recent body of IHD and HF 

epidemiologic evidence supports the evidence from previous ISAs reporting mainly positive 

associations between short-term PM2.5 concentrations and emergency department visits and 

hospital admissions.  

In addition, a number of more recent controlled human exposure, animal toxicological, 

and epidemiologic panel studies provide evidence that PM2.5 exposure could plausibly result in 

IHD or HF through pathways that include endothelial dysfunction, arterial thrombosis, and 

arrhythmia (U.S. EPA, 2019, section 6.1.1). The most consistent evidence from recent controlled 

human exposure studies is for endothelial dysfunction, as measured by changes in brachial artery 

diameter or flow mediated dilation. All but one of the available controlled human exposure 

studies examining the potential for endothelial dysfunction report an effect of PM2.5 exposure on 

measures of blood flow (U.S. EPA, 2019, section 6.1.13.2). These studies report variable results 

regarding the timing of the effect and the mechanism by which reduced blood flow occurs 

(i.e., availability vs sensitivity to nitric oxide). Some controlled human exposure studies using 

CAPs report evidence for small increases in blood pressure (U.S. EPA, 2019, section 6.1.6.3). In 

addition, although not entirely consistent, there is also some evidence across controlled human 

exposure studies for conduction abnormalities/arrhythmia (U.S. EPA, 2019, section 6.1.4.3), 

changes in heart rate variability (HRV) (U.S. EPA, 2019, section 6.1.10.2), changes in 

hemostasis that could promote clot formation (U.S. EPA, 2019, section 6.1.12.2), and increases 

in inflammatory cells and markers (U.S. EPA, 2019, section 6.1.11.2). Thus, when taken as a 

whole, controlled human exposure studies are coherent with epidemiologic studies in that they 

demonstrate short-term exposures to PM2.5 may result in the types of cardiovascular endpoints 

that could lead to emergency department visits and hospital admissions in some people.  

Animal toxicological studies published since the 2009 ISA also support a relationship 

between short-term PM2.5 exposure and cardiovascular effects. A recent study demonstrating 

decreased cardiac contractility and left ventricular pressure in mice is coherent with the results of 

epidemiologic studies reporting associations between short-term PM2.5 exposure and heart failure 

(U.S. EPA, 2019, section 6.1.3.3). In addition, and as with controlled human exposure studies, 

there is generally consistent evidence in animal toxicological studies for indicators of endothelial 

dysfunction (U.S. EPA, 2019, section 6.1.13.3). Studies in animals also provide evidence for 

changes in a number of other cardiovascular endpoints following short-term PM2.5 exposure. 

Although not entirely consistent, these studies provide some evidence of conduction 

abnormalities and arrhythmia (U.S. EPA, 2019, section 6.1.4.4), changes in HRV (U.S. EPA, 
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2019, section 6.1.10.3), changes in blood pressure (U.S. EPA, 2019, section 6.1.6.4), and 

evidence for systemic inflammation and oxidative stress (U.S. EPA, 2019, section 6.1.11.3).  

In summary, recent evidence further supports and extends the conclusions of the evidence 

base reported in the 2009 ISA. In support of epidemiologic studies reporting robust associations 

in copollutant models, direct evidence for an independent effect of PM2.5 on cardiovascular 

effects can be found in a number of controlled human exposure and animal toxicological studies. 

Coherent with these results are epidemiologic panel studies reporting that PM2.5 exposure is 

associated with some of the same cardiovascular endpoints reported in experimental studies. For 

these effects, there are inconsistencies in results across some animal toxicological, controlled 

human exposure, and epidemiologic panel studies, though this may be due to substantial 

differences in study design and/or study populations. Overall, the results from epidemiologic 

panel, controlled human exposure, and animal toxicological studies, in particular those related to 

endothelial dysfunction, impaired cardiac function, ST segment depression, thrombosis, 

conduction abnormalities, and changes in blood pressure provide coherence and biological 

plausibility for the consistent results from epidemiologic studies observing positive associations 

between short-term PM2.5 concentrations and IHD and HF, and ultimately cardiovascular 

mortality. The ISA concludes that, overall, “there continues to be sufficient evidence to conclude 

that a causal relationship exists between short-term PM2.5 exposure and cardiovascular effects” 

(U.S. EPA, 2019, p. 6-138).  

3.2.1.3  Respiratory Effects 

Long-term PM2.5 exposures 

The 2009 PM ISA concluded that “a causal relationship is likely to exist between 

long-term PM2.5 exposure and respiratory effects” (U.S. EPA, 2009). This conclusion was based 

mainly on epidemiologic evidence demonstrating associations between long-term PM2.5 

exposure and changes in lung function or lung function growth in children. Biological 

plausibility was provided by a single animal toxicological study examining pre- and post-natal 

exposure to PM2.5 CAPs, which found impaired lung development. Epidemiologic evidence for 

associations between long-term PM2.5 exposure and other respiratory outcomes, such as the 

development of asthma, allergic disease, and COPD; respiratory infection; and the severity of 

disease was limited, both in the number of studies available and the consistency of the results. 

Experimental evidence for other outcomes was also limited, with one animal toxicological study 

reporting that long-term exposure to PM2.5 CAPs results in morphological changes in nasal 

airways of healthy animals. Other animal studies examined exposure to mixtures, such as motor 

vehicle exhaust and woodsmoke, and effects were not attributed specifically to the particulate 

components of the mixture.  
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Recent cohort studies provide additional support for the relationship between long-term 

PM2.5 exposure and decrements in lung function growth (as a measure of lung development), 

indicating a robust and consistent association across study locations, exposure assessment 

methods, and time periods (U.S. EPA, 2019, section 5.2.13). This relationship is further 

supported by a recent retrospective study that reports an association between declining PM2.5 

concentrations and improvements in lung function growth in children (U.S. EPA, 2019, 

section 5.2.11). Epidemiologic studies also examine asthma development in children (U.S. EPA, 

2019, section 5.2.3), with recent prospective cohort studies reporting generally positive 

associations, though several are imprecise (i.e., they report wide confidence intervals). 

Supporting evidence is provided by studies reporting associations with asthma prevalence in 

children, with childhood wheeze, and with exhaled nitric oxide, a marker of pulmonary 

inflammation (U.S. EPA, 2019, section 5.2.13). A recent animal toxicological study showing the 

development of an allergic phenotype and an increase in a marker of airway responsiveness 

provides biological plausibility for allergic asthma (U.S. EPA, 2019, section 5.2.13). Other 

epidemiologic studies report a PM2.5-related acceleration of lung function decline in adults, while 

improvement in lung function was observed with declining PM2.5 concentrations (U.S. EPA, 

2019, section 5.2.11). A recent longitudinal study found declining PM2.5 concentrations are also 

associated with an improvement in chronic bronchitis symptoms in children, strengthening 

evidence reported in the 2009 ISA for a relationship between increased chronic bronchitis 

symptoms and long-term PM2.5 exposure (U.S. EPA, 2019, section 5.2.11). A common 

uncertainty across the epidemiologic evidence is the lack of examination of copollutants to 

assess the potential for confounding. While there is some evidence that associations remain 

robust in models with gaseous pollutants, a number of these studies examining copollutant 

confounding were conducted in Asia, and thus have limited generalizability due to high annual 

pollutant concentrations.  

When taken together, the ISA concludes that the “epidemiologic evidence strongly 

supports a relationship with decrements in lung function growth in children” and “with asthma 

development in children, with increased bronchitic symptoms in children with asthma, with an 

acceleration of lung function decline in adults, and with respiratory mortality and cause-specific 

respiratory mortality for COPD and respiratory infection” (U.S. EPA, 2019, p. 1-34). In support 

of the biological plausibility of such associations reported in epidemiologic studies of respiratory 

health effects, animal toxicological studies continue to provide direct evidence that long-term 

exposure to PM2.5 results in a variety of respiratory effects. Recent animal studies show 

pulmonary oxidative stress, inflammation, and morphologic changes in the upper (nasal) and 

lower airways. Other results show that changes are consistent with the development of allergy 

and asthma, and with impaired lung development. Overall, the ISA concludes that “the collective 



 3-32   

 

evidence is sufficient to conclude that a causal relationship is likely to exist between long-term 

PM2.5 exposure and respiratory effects” (U.S. EPA, 2019, section 5.2.13).  

Short-term PM2.5 exposures 

The 2009 PM ISA (U.S. EPA, 2009) concluded that a “causal relationship is likely to 

exist” between short-term PM2.5 exposure and respiratory effects. This conclusion was based 

mainly on the epidemiologic evidence demonstrating positive associations with various 

respiratory effects. Specifically, the 2009 ISA described epidemiologic evidence as consistently 

showing PM2.5-associated increases in hospital admissions and emergency department visits for 

chronic obstructive pulmonary disease (COPD) and respiratory infection among adults or people 

of all ages, as well as increases in respiratory mortality. These results were supported by studies 

reporting associations with increased respiratory symptoms and decreases in lung function in 

children with asthma, though the epidemiologic evidence was inconsistent for hospital 

admissions or emergency department visits for asthma. Studies examining copollutant models 

showed that PM2.5 associations with respiratory effects were robust to inclusion of CO or SO2 in 

the model, but often were attenuated (though still positive) with inclusion of O3 or NO2. In 

addition to the copollutant models, evidence supporting an independent effect of PM2.5 exposure 

on the respiratory system was provided by animal toxicological studies of PM2.5 CAPs 

demonstrating changes in some pulmonary function parameters, as well as inflammation, 

oxidative stress, injury, enhanced allergic responses, and reduced host defenses. Many of these 

effects have been implicated in the pathophysiology for asthma exacerbation, COPD 

exacerbation, or respiratory infection. In the few controlled human exposure studies conducted in 

individuals with asthma or COPD, PM2.5 exposure mostly had no effect on respiratory 

symptoms, lung function, or pulmonary inflammation. Available studies in healthy people also 

did not clearly demonstrate respiratory effects following short-term PM2.5 exposures.  

Recent epidemiologic studies provide evidence for a relationship between short-term 

PM2.5 exposure and several respiratory-related endpoints, including asthma exacerbation (U.S. 

EPA, 2019, section 5.1.2.1), COPD exacerbation (U.S. EPA, 2019, section 5.1.4.1), and 

combined respiratory-related diseases (U.S. EPA, 2019, section 5.1.6), particularly from studies 

examining emergency department visits and hospital admissions. The generally positive 

associations between short-term PM2.5 exposure and asthma and COPD emergency department 

visits and hospital admissions are supported by epidemiologic studies demonstrating associations 

with other respiratory-related effects such as symptoms and medication use that are indicative of 

asthma and COPD exacerbations (U.S. EPA, 2019, sections 5.1.2.2 and 5.4.1.2). The collective 

body of epidemiologic evidence for asthma exacerbation is more consistent in children than in 

adults. Additionally, epidemiologic studies examining the relationship between short-term PM2.5 
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exposure and respiratory mortality provide evidence of consistent positive associations, 

demonstrating a continuum of effects (U.S. EPA, 2019, section 5.1.9).  

Building off the studies evaluated in the 2009 ISA, recent epidemiologic studies expand 

the assessment of potential copollutant confounding. There is some evidence that PM2.5 

associations with asthma exacerbation, combined respiratory-related diseases, and respiratory 

mortality remain relatively unchanged in copollutant models with gaseous pollutants (i.e., O3, 

NO2, SO2, with more limited evidence for CO) and other particle sizes (i.e., PM10−2.5) (U.S. EPA, 

2019, section 5.1.10.1).  

The uncertainty related to whether there is an independent effect of PM2.5 on respiratory 

health is also partially addressed by findings from animal toxicological studies. Specifically, 

short-term exposure to PM2.5 enhanced asthma-related responses in an animal model of allergic 

airways disease and enhanced lung injury and inflammation in an animal model of COPD (U.S. 

EPA, 2019, sections 5.1.2.4.4 and 5.1.4.4.3). The experimental evidence provides biological 

plausibility for some respiratory-related endpoints, including limited evidence of altered host 

defense and greater susceptibility to bacterial infection as well as consistent evidence of 

respiratory irritant effects. Animal toxicological evidence for other respiratory effects is 

inconsistent.  

 The ISA concludes that “[t]he strongest evidence of an effect of short-term PM2.5 

exposure on respiratory effects is provided by epidemiologic studies of asthma and COPD 

exacerbation. While animal toxicological studies provide biological plausibility for these 

findings, some uncertainty remains with respect to the independence of PM2.5 effects” (U.S. 

EPA, 2019, p. 5-155). When taken together, the ISA concludes that this evidence “is sufficient to 

conclude that a causal relationship is likely to exist between short-term PM2.5 exposure and 

respiratory effects” (U.S. EPA, 2019, p. 5-155).  

3.2.1.4  Cancer – Long-term PM2.5 Exposures 

The 2009 ISA concluded that the overall body of evidence was “suggestive of a causal 

relationship between relevant PM2.5 exposures and cancer” (U.S. EPA, 2009). This conclusion 

was based primarily on positive associations observed in a limited number of epidemiologic 

studies of lung cancer mortality. The few epidemiologic studies that had evaluated PM2.5 

exposure and lung cancer incidence or cancers of other organs and systems generally did not 

show evidence of an association. Toxicological studies did not focus on exposures to specific 

PM size fractions, but rather investigated the effects of exposures to total ambient PM, or other 

source-based PM such as wood smoke. Collectively, results of in vitro studies were consistent 

with the larger body of evidence demonstrating that ambient PM and PM from specific 

combustion sources are mutagenic and genotoxic. However, animal inhalation studies found 
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little evidence of tumor formation in response to chronic exposures. A small number of studies 

provided preliminary evidence that PM exposure can lead to changes in methylation of DNA, 

which may contribute to biological events related to cancer.  

Since the 2009 ISA, additional cohort studies provide evidence that long-term PM2.5 

exposure is positively associated with lung cancer mortality and with lung cancer incidence, and 

provide initial evidence for an association with reduced cancer survival (U.S. EPA, 2019, section 

10.2.5). Reanalyses of the ACS cohort using different years of PM2.5 data and follow-up, along 

with various exposure assignment approaches, provide consistent evidence of positive 

associations between long-term PM2.5 exposure and lung cancer mortality (U.S. EPA, 2019, 

Figure 10-3). Additional support for positive associations with lung cancer mortality is provided 

by recent epidemiologic studies using individual-level data to control for smoking status, by 

studies of people who have never smoked (though such studies generally report wide confidence 

intervals due to the small number of lung cancer mortality cases within this population), and in 

analyses of cohorts that relied upon proxy measures to account for smoking status (U.S. EPA, 

2019, section 10.2.5.1.1). Although studies that have evaluated lung cancer incidence, including 

studies of people who have never smoked, are limited in number, recent studies generally report 

positive associations with long-term PM2.5 exposures (U.S. EPA, 2019, section 10.2.5.1.2). A 

subset of the studies focusing on lung cancer incidence also examined histological subtype, 

providing some evidence of positive associations for adenocarcinomas, the predominate subtype 

of lung cancer observed in people who have never smoked (U.S. EPA, 2019, section 10.2.5.1.2). 

Associations between long-term PM2.5 exposure and lung cancer incidence were found to remain 

relatively unchanged, though in some cases confidence intervals widened, in analyses that 

attempted to reduce exposure measurement error by accounting for length of time at residential 

address or by examining different exposure assignment approaches (U.S. EPA, 2019, section 

10.2.5.1.2).  

The ISA evaluates the degree to which recent epidemiologic studies have addressed the 

potential for confounding by copollutants and the shape of the concentration-response 

relationship. To date, relatively few studies have evaluated the potential for copollutant 

confounding of the relationship between long-term PM2.5 exposure and lung cancer mortality or 

incidence. The small number of such studies have generally focused on O3 and report that PM2.5 

associations remain relatively unchanged in copollutant models (U.S. EPA, 2019, section 

10.2.5.1.3). However, available studies have not systematically evaluated the potential for 

copollutant confounding by other gaseous pollutants or by other particle size fractions (U.S. 

EPA, 2019, section 10.2.5.1.3). Compared to total (non-accidental) mortality (see section 

3.2.1.1), fewer studies have examined the shape of the concentration-response curve for 

cause-specific mortality outcomes, including lung cancer. Several studies have reported no 
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evidence of deviations from linearity in the shape of the concentration-response relationship 

(Lepeule et al., 2012; Raaschou-Nielsen et al., 2013; Puett et al., 2014), though authors provided 

only limited discussions of results (U.S. EPA, 2019, section 10.2.5.1.4).  

In support of the biological plausibility of an independent effect of PM2.5 on cancer, the 

ISA notes evidence from recent experimental and epidemiologic studies demonstrating that 

PM2.5 exposure can lead to a range of effects indicative of mutagenicity, genotoxicity, and 

carcinogenicity, as well as epigenetic effects (U.S. EPA, 2019, section 10.2.7). For example, 

both in vitro and in vivo toxicological studies have shown that PM2.5 exposure can result in DNA 

damage (U.S. EPA, 2019, section 10.2.2). Although such effects do not necessarily equate to 

carcinogenicity, the evidence that PM exposure can damage DNA, and elicit mutations, provides 

support for the plausibility of epidemiologic associations with lung cancer mortality and 

incidence. Additional supporting studies indicate the occurrence of micronuclei formation and 

chromosomal abnormalities (U.S. EPA, 2019, section 10.2.2.3), and differential expression of 

genes that may be relevant to cancer pathogenesis, following PM exposures. Experimental and 

epidemiologic studies that examine epigenetic effects indicate changes in DNA methylation, 

providing some support for PM2.5 exposure contributing to genomic instability (U.S. EPA, 2019, 

section 10.2.3). 

Epidemiologic evidence for associations between PM2.5 and lung cancer mortality and 

incidence, together with evidence supporting the biological plausibility of such associations, 

contributes to the ISA’s conclusion that the evidence “is sufficient to conclude that a causal 

relationship is likely to exist between long-term PM2.5 exposure and cancer” (U.S. EPA, 2019, 

section 10.2.7).  

3.2.1.5  Nervous System Effects 

Long-term PM2.5 exposures 

Reflecting the very limited evidence available in the last review, the 2009 ISA did not 

make a causality determination for long-term PM2.5 exposures and nervous system effects (U.S. 

EPA, 2009). Since the last review, this body of evidence has grown substantially (U.S. EPA, 

2019, section 8.2). Recent animal toxicology studies report that long-term PM2.5 exposures can 

lead to morphologic changes in the hippocampus and to impaired learning and memory. This 

evidence is consistent with epidemiologic studies reporting that long-term PM2.5 exposure is 

associated with reduced cognitive function (U.S. EPA, 2019, section 8.2.5). Further, while the 

evidence is limited, the presence of early markers of Alzheimer’s disease pathology has been 

demonstrated in rodents following long-term exposure to PM2.5 CAPs. These findings support 

reported associations with neurodegenerative changes in the brain (i.e., decreased brain volume), 

all-cause dementia, or hospitalization for Alzheimer’s disease in a small number of 
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epidemiologic studies (U.S. EPA, 2019, section 8.2.6). Additionally, loss of dopaminergic 

neurons in the substantia nigra, a hallmark of Parkinson disease, has been reported in mice (U.S. 

EPA, 2019, section 8.2.4), though epidemiologic studies provide only limited support for 

associations with Parkinson’s disease (U.S. EPA, 2019, section 8.2.6). Overall, the lack of 

consideration of copollutant confounding introduces some uncertainty in the interpretation of 

epidemiologic studies of nervous system effects, but this uncertainty is partly addressed by the 

evidence for an independent effect of PM2.5 exposures provided by experimental animal studies. 

In addition to the findings described above, which are most relevant to older adults, 

several recent studies of neurodevelopmental effects in children have also been conducted. 

Positive associations between long-term exposure to PM2.5 during the prenatal period and autism 

spectrum disorder (ASD) are observed in multiple epidemiologic studies (U.S. EPA, 2019, 

section 8.2.7.2), while studies of cognitive function provide little support for an association (U.S. 

EPA, 2019, section 8.2.5.2). Interpretation of these epidemiologic studies is limited due to the 

small number of studies, their lack of control for potential confounding by copollutants, and 

uncertainty regarding the critical exposure windows. Biological plausibility is provided for the 

ASD findings by a study in mice that found inflammatory and morphologic changes in the 

corpus collosum and hippocampus, as well as ventriculomegaly (i.e., enlarged lateral ventricles) 

in young mice following prenatal exposure to PM2.5 CAPs. 

Taken together, the ISA concludes that recent studies indicate long-term PM2.5 exposures 

can lead to effects on the brain associated with neurodegeneration (i.e., neuroinflammation and 

reductions in brain volume), as well as cognitive effects in older adults (U.S. EPA, 2019, Table 

1-2). Animal toxicology studies provide evidence for a range of nervous system effects in adult 

animals, including neuroinflammation and oxidative stress, neurodegeneration, and cognitive 

effects, and effects on neurodevelopment in young animals. The epidemiologic evidence is more 

limited but studies generally support associations between long-term PM2.5 exposure and 

changes in brain morphology, cognitive decrements and dementia. There is also initial, and 

limited, evidence for neurodevelopmental effects, particularly ASD. The consistency and 

coherence of the evidence supports the ISA’s conclusion that “the collective evidence is 

sufficient to conclude that a causal relationship is likely to exist between long-term PM2.5 

exposure and nervous system effects” (U.S. EPA, 2019, section 8.2.9).  

3.2.1.6  Other Effects 

Compared to the health outcomes discussed above, the ISA concludes that there is greater 

uncertainty in the evidence linking PM2.5, or UFP, exposures with other health outcomes, 

reflected in conclusions that the evidence is “suggestive of, but not sufficient to infer, a causal 

relationship.” The sections below summarize the daft ISA conclusions for these “suggestive” 
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outcomes for long-term (Section 3.2.1.6.1) and short-term (Section 3.2.1.6.2) PM2.5 and UFP 

exposures.  

3.2.1.6.1 Long-term Exposures 

As indicated in Table 3-1 above, the ISA concludes that the evidence is “suggestive of, 

but not sufficient to infer, a causal relationship” between long-term PM2.5 exposures and 

metabolic effects and reproductive and developmental effects (reproduction and fertility; 

pregnancy and birth outcomes). These conclusions reflect evidence that is “generally supportive 

but not entirely consistent or is limited overall” where “[c]hance, confounding, and other biases 

cannot be ruled out” (U.S. EPA, 2019, Preface, p. P-20). The basis for these causality 

determinations is summarized briefly below.  

PM2.5 – Metabolic effects 

There were no causality determinations for long-term PM2.5 exposure and metabolic 

effects in the 2009 ISA (U.S. EPA, 2009). However, the literature pertaining to the effect of 

long-term exposure to PM2.5 and metabolic effects has expanded substantially since the 2009 

ISA, and consists of both epidemiologic and experimental evidence (U.S. EPA, 2019, section 

7.2). Epidemiologic studies report positive associations between long-term PM2.5 exposure and 

diabetes-related mortality. In addition, although results were not consistent across cohorts, there 

is some evidence from epidemiologic studies for positive associations with incident diabetes, 

metabolic syndrome, and alterations in glucose and insulin homeostasis. Consideration of 

copollutant confounding was limited. In animal toxicologic studies, there is some support for a 

relationship between long-term PM2.5 exposure and metabolic effects from experimental studies 

demonstrating increased blood glucose, insulin resistance, and inflammation and visceral 

adiposity but the experimental evidence was not entirely consistent. Based on this evidence, the 

ISA concludes that, “[o]verall, the collective evidence is suggestive of, but is not sufficient to 

infer, a causal relationship between long-term PM2.5 exposure and metabolic effects” (U.S. EPA, 

2019, p. 7-52). 

PM2.5 – Reproductive and developmental effects 

The 2009 ISA determined that the evidence was “suggestive of a causal relationship” for 

the association between long-term PM2.5 exposure and reproductive and developmental 

outcomes. The body of literature characterizing these relationships has grown since the 2009 

ISA, with much of the evidence focusing on reproduction and fertility or pregnancy and birth 

outcomes, though important uncertainties persist (U.S. EPA, 2019, sections 9.1.1, 9.1.2, 9.1.5).  

Effects of PM2.5 exposure on sperm have been studied in both epidemiology and 

toxicology studies and shows the strongest evidence in epidemiologic studies for impaired sperm 

motility and in animal toxicological studies for impaired spermiation. Epidemiologic evidence on 
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sperm morphology have reported inconsistent results. Evidence for effects of PM2.5 exposure on 

female reproduction also comes from both epidemiology and toxicology studies. In the 

epidemiologic literature, results on human fertility and fecundity is limited, but the evidence on 

in vitro fertilization indicates a modest association of PM2.5 exposures with decreased odds of 

becoming pregnant. Studies in rodents have shown ovulation and estrus are affected by PM2.5 

exposure. Biological plausibility for outcomes related to male and female fertility and 

reproduction comes from laboratory animal studies demonstrating genetic and epigenetic 

changes in germ cells with PM2.5 exposure. The ISA concludes that, “[c]ollectively, the evidence 

is suggestive of, but not sufficient to infer, a causal relationship between PM2.5 exposure and 

male and female reproduction and fertility” (U.S. EPA, 2019, p. 9-43). 

With regard to pregnancy and birth outcomes, while the collective evidence for many of 

the outcomes examined is not consistent, there are some animal toxicology and epidemiologic 

studies that indicate an association between PM2.5 exposures and reduced fetal growth, low birth 

weight and preterm birth. Most of the epidemiologic studies do not control for co-pollutant 

confounding and do not identify a specific sensitive window of exposure, but results from animal 

toxicologic studies provide biological plausibility for these outcomes, as well as support for 

multiple sensitive windows for PM2.5 exposure-associated outcomes. There is also epidemiologic 

evidence for congenital heart defects of different types, as well as biological plausibility to 

support this outcome from the animal toxicology literature. However, evidence for a relationship 

between PM2.5 exposure and various pregnancy-related pathologies, including gestational 

hypertension, pre-eclampsia and gestational diabetes is inconsistent. Biological plausibility for 

effects of PM2.5 exposure and various pregnancy and birth outcomes is provided by studies 

showing that PM2.5 exposure in laboratory rodents resulted in impaired implantation and vascular 

endothelial dysfunction. Coherence with toxicological studies is provided by epidemiologic 

studies in humans reporting associations with epigenetic changes to the placenta and impaired 

fetal thyroid function. When taken together, the ISA concludes that the available evidence, 

including uncertainties that evidence, is “suggestive of, but not sufficient to infer, a causal 

relationship between exposure to PM2.5 and pregnancy and birth outcomes” (U.S. EPA, 2019, p. 

9-44).  

UFP – Nervous System Effects 

 The 2009 ISA reported limited animal toxicological evidence of a relationship between 

long-term exposure to UFP and nervous system effects, with no supporting epidemiologic 

studies. Recent animal toxicological studies substantially add to this evidence base. Multiple 

toxicological studies of long-term UFP exposure conducted in adult mice provide consistent 

evidence of brain inflammation and oxidative stress in the whole brain, hippocampus, and 

cerebral cortex (U.S. EPA, 2019, section 8.6.3). Studies also found morphologic changes, 
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specifically neurodegeneration in specific regions of the hippocampus and pathologic changes 

characteristic of Alzheimer's disease, and initial evidence of behavioral effects in adult mice 

(U.S. EPA, 2019, sections 8.6.4 and 8.6.5). Toxicological studies examining pre- and post-natal 

UFP exposures provide extensive evidence for behavioral effects, altered neurotransmitters, 

neuroinflammation, and morphologic changes (U.S. EPA, 2019, section 8.6.6.2). Persistent 

ventriculomegaly was observed in male, but not female, mice exposed postnatally to UFP (U.S. 

EPA, 2019, section 8.6.6). Epidemiologic evidence is limited to a single study of school children 

that provides support for the experimental results. This study, which did not consider copollutant 

confounding, reports an association between long-term exposure to UFP, which was measured at 

the school, and decrements on tests of attention and memory. Uncertainty results from the lack of 

information on the spatial and temporal variability of UFP exposures on long-term UFP 

exposures at the population level. Based primarily on the animal toxicological evidence of 

neurotoxicity and altered neurodevelopment, the ISA concludes that the evidence is “suggestive 

of, but not sufficient to infer, a causal relationship” between long-term UFP exposure and 

nervous system effects (U.S. EPA, 2019, section 8.6.7).  

3.2.1.6.2 Short-term Exposures 

As indicated in Table 3-1 above, the ISA concludes that the evidence is “suggestive of, 

but not sufficient to infer, a causal relationship” between short-term PM2.5 exposures and 

metabolic effects and nervous system effects. Additionally, the ISA concludes that the evidence 

is “suggestive” for short-term UFP exposures and cardiovascular effects, respiratory effects, and 

nervous system effects. As for the outcomes related to long-term exposures, discussed above, 

these conclusions reflect evidence that is “generally supportive but not entirely consistent or is 

limited overall” where “[c]hance, confounding, and other biases cannot be ruled out” (U.S. EPA, 

2019, Preface, p.P-20). The basis for these causality determinations is summarized briefly below.  

PM2.5 – Metabolic effects 

There were no studies of the effect of short-term PM2.5 exposure and metabolic effects 

reviewed in the 2009 ISA (U.S. EPA, 2009). New evidence for a relationship between short-term 

PM2.5 exposure and metabolic effects is based on a small number of epidemiologic and animal 

toxicological studies reporting effects on glucose and insulin homeostasis and other indicators of 

metabolic function such as inflammation in the visceral adipose tissue and liver (U.S. EPA, 

2019, section 7.1). The ISA concludes that, overall, the collective evidence “is suggestive of, but 

not sufficient to infer, a causal relationship between short-term PM2.5 exposure and metabolic 

effects” (U.S. EPA, 2019, p. 7-11).  

PM2.5 – Nervous system effects  
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The evidence reviewed in the 2009 ISA was characterized as "inadequate to infer" a 

causal relationship between short-term PM2.5 exposure and nervous system effects (U.S. EPA, 

2009), based on a small number of experimental animal studies. Recent studies strengthen the 

evidence that short-term exposure to PM2.5 can affect the nervous system (U.S. EPA, 2019, 

section 8.1). The strongest evidence is provided by experimental studies in mice that show 

effects on the brain. These toxicological studies demonstrate changes in neurotransmitters in the 

hypothalamus that are linked to sympathetic nervous system and hypothalamic-pituitary-adrenal 

(HPA) stress axis activation, as well as upregulation of inflammation-related genes, changes in 

cytokine levels, and other changes that are indicative of brain inflammation. In addition, an 

association of short-term PM2.5 exposure with hospital admissions for Parkinson’s disease was 

observed indicating the potential for exacerbation of neurological diseases. The ISA concludes 

that, overall, the collective evidence “is suggestive of, but not sufficient to infer, a causal 

relationship between short-term exposure to PM2.5 and nervous system effects” (U.S. EPA, 2019, 

p. 8-15). 

UFP – Cardiovascular effects 

In the 2009 ISA, the evidence from toxicological studies, many of which examined 

exposures to whole diesel exhaust or wood smoke rather than UFP alone, was suggestive of a 

causal relationship between short-term UFP exposure and cardiovascular effects. Since the 2009 

ISA, there have been only a limited number of studies published describing the relationship 

between short-term UFP exposure and cardiovascular effects. This includes a small number of 

epidemiologic panel studies that have observed positive associations between short-term 

exposure to UFPs and measures of HRV (U.S. EPA, 2019, section 6.5.9.1) and markers of 

coagulation (U.S. EPA, 2019, section 6.5.11.1) although there are also studies that did not report 

such UFP-related effects. In addition, there is evidence from a single controlled human exposure 

study indicating decreases in the anticoagulant proteins plasminogen and thrombomodulin in 

individuals with metabolic syndrome (U.S. EPA, 2019, section 6.5.11.2). There is inconsistent 

evidence from controlled human exposure and epidemiologic panel studies for endothelial 

dysfunction, changes in blood pressure, and systemic inflammation following short-term 

exposure to UFPs. Notably, there is little evidence of an effect when considering short-term UFP 

exposure on other cardiovascular endpoints as well as cardiovascular-disease emergency 

department visits or hospital admissions. The assessment of study results across experimental 

and epidemiologic studies is complicated by differences in the size distributions examined 

between disciplines and by the nonuniformity in the exposure metrics examined (e.g., particle 

number concentration, surface area concentration, and mass concentration) (U.S. EPA, 2019, 

section 1.4.3). When considered as a whole, the ISA concludes that the evidence is “suggestive 
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of, but not sufficient to infer, a causal relationship between short-term exposure UFP exposure 

and cardiovascular effects” (U.S. EPA, 2019, p. 6-304).  

UFP – Respiratory effects 

A limited number of studies examining short-term exposure to UFPs and respiratory 

effects were reported in the 2009 ISA, which concluded that the relationship between short-term 

exposure to UFP and respiratory effects is “suggestive of a causal relationship.” This conclusion 

was based on epidemiologic evidence indicating associations with combined respiratory-related 

diseases, respiratory infection, and asthma exacerbation. In addition, personal exposures to 

ambient UFP were associated with lung function decrements in adults with asthma. The few 

available experimental studies provided limited coherence with epidemiologic findings for 

asthma exacerbation. Recent studies add to this evidence base and support epidemiologic 

evidence for asthma exacerbation and combined respiratory-related diseases but do not rule out 

chance, confounding, and other biases (U.S. EPA, 2019, section 5.5). For example, associations 

persist in one epidemiologic study with adjustment for NO2, but not in another. Additional 

supporting evidence, showing decrements in lung function and enhancement of allergic 

inflammation and other allergic responses, is provided by a controlled human exposure study in 

adults with asthma and by animal toxicological studies in an animal model of allergic airway 

disease. For combined respiratory-related diseases, recent findings add consistency for hospital 

admissions and emergency department visits and indicate lung function changes among adults 

with asthma or COPD. Uncertainty remains regarding the characterization of UFP exposures and 

the potential for copollutant confounding in epidemiologic studies, which limits inference about 

an independent effect of UFP exposures (U.S. EPA, 2019, section 5.5). The ISA concludes that, 

overall, the evidence is “suggestive of, but not sufficient to infer, a causal relationship between 

short-term UFP exposure and respiratory effects” (U.S. EPA, 2019, p. 5-303).  

UFP- Nervous system effects 

The 2009 ISA reported limited animal toxicological evidence of a relationship between 

short-term exposure to UFP and nervous system effects, without supporting epidemiologic 

studies. Several recent experimental studies add to this evidence base. In the current review, the 

strongest evidence for a relationship between short-term UFP exposure and nervous system 

effects is provided by animal toxicological studies that show inflammation and oxidative stress 

in multiple brain regions following exposure to UFP. There is a lack of evidence from 

epidemiologic studies (U.S. EPA, 2019, section 8.5). The ISA concludes that, overall, the 

collective evidence is “suggestive of, but not sufficient to infer, a causal relationship between 

short-term UFP exposure and nervous system effects” (U.S. EPA, 2019, p. 8-86).  
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3.2.1.7  Summary 

Based on the evidence assessed in the ISA (U.S. EPA, 2019), and summarized in sections 

3.2.1.1 to 3.2.1.6 above, we revisit the policy-relevant questions posed at the beginning of this 

section:  

• To what extent does the currently available scientific evidence strengthen, or otherwise 

alter, our conclusions from the last review regarding health effects attributable to long- 

or short-term fine particle exposures? Have previously identified uncertainties been 

reduced? What important uncertainties remain and have new uncertainties been 

identified? 

We consider these questions in the context of the evidence for effects of long- and short-term 

PM2.5 exposures.  

Studies conducted since the 2009 ISA have broadened our understanding of the health 

effects that can result from long-term PM2.5 exposures and have reduced key uncertainties 

identified in the last review. Recent epidemiologic studies consistently report positive 

associations between long-term PM2.5 exposures and a wide range of health outcomes, including 

total and cause-specific mortality, cardiovascular and respiratory morbidity, lung cancer, and 

nervous system effects. Such associations have been reported in analyses examining a variety of 

study designs, approaches to estimating PM2.5 exposures, statistical models, and long-term 

exposure windows (i.e., the exposure period that is associated with the health outcome). Recent 

evidence also includes retrospective studies that demonstrate improvements in health outcomes, 

including increasing life expectancy, decreasing mortality, or decreasing respiratory effects, as a 

result of past declines in ambient PM2.5 concentrations. Recent epidemiologic studies report that 

associations with mortality (total, cardiovascular, and respiratory) remain relatively unchanged in 

copollutant models, supporting the independence of these associations from co-occurring gases 

or coarse PM. Recent studies additionally report that associations (i.e., primarily with mortality) 

persist in analyses restricted to long-term PM2.5 exposures in the lower portions of the air quality 

distribution, and such studies do not identify a threshold below which associations no longer 

occur. The biological plausibility of health effect associations reported in epidemiologic studies 

is supported by coherent results from experimental studies. Recent evidence from animal 

toxicology and/or controlled human exposure studies provides stronger support, compared to 

previous reviews, for potential biologic pathways by which long-term PM2.5 exposures could 

lead to effects on the cardiovascular and respiratory systems, effects on the nervous system, and 
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to lung cancer.22 23 In addition to providing insight into potential mechanisms, experimental 

studies also demonstrate direct effects of PM2.5 exposures, providing further support for 

independent effects of particle exposures on health (i.e., not confounded by co-occurring 

pollutants). When taken together, the evidence available in this review (i.e., U.S. EPA, 2019) 

reaffirms, and in some cases strengthens, the conclusions from the 2009 ISA regarding the health 

effects of long-term PM2.5 exposures.  

As with the evidence for effects of long-term exposures, since the 2009 ISA, much 

progress has been made in assessing key uncertainties in our understanding of health effects 

associated with short-term PM2.5 exposures. Recent epidemiologic studies build upon and further 

reaffirm those studies evaluated in the 2009 PM ISA, providing evidence of positive associations 

across a range of effects. The independence of the PM2.5 effects reported in such studies is 

further supported by the results of copollutant analyses indicating that associations with short-

term PM2.5 remain robust. Some recent studies report that associations persist in analyses that 

exclude short-term PM2.5 exposures near the upper end of the air quality distribution and that a 

threshold below which associations no longer occur is not identifiable from the available data. 

The plausibility of PM2.5-associated mortality is supported by associations with cardiovascular 

and respiratory morbidity. Direct evidence for PM2.5 exposure-related cardiovascular effects can 

also be found in recent controlled human exposure and animal toxicological studies, supported 

by results of epidemiologic panel studies, reporting that PM2.5 exposure can result in various 

cardiovascular effects, including endothelial dysfunction, impaired cardiac function, ST segment 

depression, thrombosis, conduction abnormalities, and increased blood pressure. Overall, the 

results from these studies provide coherence and biological plausibility for the consistent results 

from epidemiologic studies observing positive associations between short-term PM2.5 

concentrations and ischemic heart disease and heart failure, and ultimately cardiovascular 

mortality. While there are inconsistencies in results across some of the animal toxicological, 

controlled human exposure, and epidemiologic panel studies, this may be due to substantial 

differences in study design, study populations, or differences in PM composition across study 

locations. While recent epidemiologic studies also demonstrate associations between short-term 

PM2.5 exposures and respiratory effects, particularly asthma and COPD exacerbations, and while 

animal toxicological studies provide biological plausibility for these findings, some uncertainty 

                                                 
22 For respiratory effects, nervous system effects, and cancer-related effects animal studies provide support for 

potential biologic pathways while controlled human exposure studies are more limited.  

23 Animal studies also provide stronger support in this review for effects following exposures to UFP (section 3.2.1), 

though important uncertainties remain (e.g., inconsistent UFP definitions across studies, various methods of 

administering UFP exposures in health studies, limited understanding of ambient UFP concentrations and 

distributions in epidemiologic studies), limiting the potential for these studies to inform policy-relevant 

conclusions.   
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remains with respect to the independence of PM2.5 effects. Thus, when taken together, the 

evidence available in this review (U.S. EPA, 2019) reaffirms, and in some cases strengthens, the 

conclusions from the 2009 ISA regarding the health effects of short-term PM2.5 exposures.  

3.2.2 Potential At-Risk Populations  

The NAAQS are meant to protect the population as a whole, including groups that may 

be at increased risk for pollutant-related health effects. In the last review, based on the evidence 

assessed in the 2009 ISA (U.S. EPA, 2009), the 2011 PA focused on children, older adults, 

people with pre-existing heart and lung diseases, and those of lower socioeconomic status as 

populations that are “likely to be at increased risk of PM-related effects” (U.S. EPA, 2011, p. 2-

31). In the current review, the ISA cites extensive evidence indicating that “both the general 

population as well as specific populations and lifestages are at risk for PM2.5-related health 

effects” (U.S. EPA, 2019, p. 12-1). For example, in support of its “causal” and “likely to be 

causal” determinations, the ISA cites substantial evidence for:  

• PM-related mortality and cardiovascular effects in older adults (U.S. EPA, 2019, sections 

11.1, 11.2, 6.1, and 6.2);  

• PM-related cardiovascular effects in people with pre-existing cardiovascular disease (U.S. 

EPA, 2019, section 6.1);  

• PM-related respiratory effects in people with pre-existing respiratory disease, particularly 

asthma (U.S. EPA, 2019, section 5.1); and  

• PM-related impairments in lung function growth and asthma development in children (U.S. 

EPA, 2019, sections 5.1 and 5.2; 12.5.1.1).   

 The ISA additionally notes that stratified analyses (i.e., analyses that directly compare 

PM-related health effects across groups) provide strong evidence for racial and ethnic differences 

in PM2.5 exposures and in PM2.5-related health risk. Such analyses indicate that minority 

populations such as Hispanic and non-Hispanic black populations have higher PM2.5 exposures 

than non-Hispanic white populations, thus contributing to adverse health risk in non-white 

populations (U.S. EPA, 2019, section 12.5.4). Stratified analyses focusing on other groups also 

suggest that populations with pre-existing cardiovascular or respiratory disease, populations that 

are overweight or obese, populations that have particular genetic variants, and populations that 

are of low socioeconomic status could be at increased risk for PM2.5-related adverse health 

effects (U.S. EPA, 2019, Chapter 12).  

 Thus, the groups at risk of PM2.5-related health effects represent a substantial portion of 

the total U.S. population. In evaluating the primary PM2.5 standards, an important consideration 

is the potential PM2.5-related public health impacts in these populations.  
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3.2.3 PM2.5 Concentrations in Key Studies Reporting Health Effects 

To inform conclusions on the adequacy of the public health protection provided by the 

current primary PM2.5 standards, this section evaluates the PM2.5 exposures and ambient 

concentrations (i.e., used as surrogates for exposures in epidemiologic studies) in studies 

reporting PM2.5-related health effects. We specifically consider the following overarching 

questions: 

• What are the short- or long-term PM2.5 exposures that have been associated with health 

effects and to what extent does the evidence support the occurrence of such effects for 

air quality meeting the current primary PM2.5 standards?  

In addressing these questions, we emphasize health outcomes for which the ISA has concluded 

the evidence supports a “causal” or a “likely to be causal” relationship with PM exposures. As 

discussed above, this includes mortality, cardiovascular effects, and respiratory effects associated 

with short- or long-term PM2.5 exposures and cancer and nervous system effects associated with 

long-term PM2.5 exposures. While the causality determinations in the ISA are informed by 

studies evaluating a wide range of PM2.5 concentrations, this section considers the degree to 

which the evidence supports the occurrence of PM-related effects at concentrations relevant to 

informing conclusions on the primary PM2.5 standards. Section 3.2.3.1 considers the exposure 

concentrations that have been evaluated in experimental studies and section 3.2.3.2 considers the 

ambient concentrations in locations evaluated by epidemiologic studies.  

3.2.3.1  PM Exposure Concentrations Evaluated In Experimental Studies 

In the ISA, the evidence for a particular PM2.5-related health outcome is strengthened 

when results from experimental studies demonstrate biologically plausible mechanisms through 

which adverse human health outcomes could occur (U.S. EPA, 2015, Preamble p. 20). Two types 

of experimental studies are of particular importance in understanding the effects of PM 

exposures: controlled human exposure and animal toxicology studies. In such studies, 

investigators expose human volunteers or laboratory animals, respectively, to known 

concentrations of air pollutants under carefully regulated environmental conditions and activity 

levels. Thus, controlled human exposure and animal toxicology studies can provide information 

on the health effects of experimentally administered pollutant exposures under highly controlled 

laboratory conditions (U.S. EPA, 2015, Preamble, p. 11).  

In this section, we consider the PM2.5 exposure concentrations shown to cause effects in 

controlled human exposure studies and in animal toxicology studies. We particularly consider 

the consistency of specific PM2.5-related effects across studies, the potential adversity of such 

effects, and the degree to which exposures shown to cause effects are likely to occur in areas 

meeting the current primary standards. To address these issues, we consider the following 

question:  
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• To what extent does the evidence from controlled human exposure or animal toxicology 

studies support the potential for adverse cardiovascular, respiratory, or other effects 

following PM2.5 exposures likely to occur in areas meeting the current primary 

standards?  

Controlled Human Exposure Studies 

As discussed in detail in the ISA (U.S. EPA, 2019, section 6.1), controlled human 

exposure studies have reported that PM2.5 exposures lasting from less than one hour up to five 

hours can impact cardiovascular function.24 The most consistent evidence from these studies is 

for impaired vascular function (U.S. EPA, 2019, section 6.1.13.2). In addition, although less 

consistent, the ISA notes that studies examining PM2.5 exposures also provide evidence for 

increased blood pressure (U.S. EPA, 2019, section 6.1.6.3), conduction abnormalities/arrhythmia 

(U.S. EPA, 2019, section 6.1.4.3), changes in heart rate variability (U.S. EPA, 2019, section 

6.1.10.2), changes in hemostasis that could promote clot formation (U.S. EPA, 2019, section 

6.1.12.2), and increases in inflammatory cells and markers (U.S. EPA, 2019, section 6.1.11.2). 

The ISA concludes that, when taken as a whole, controlled human exposure studies demonstrate 

that short-term exposure to PM2.5 may impact cardiovascular function in ways that could lead to 

more serious outcomes (U.S. EPA, 2019, section 6.1.16). Thus, such studies can provide insight 

into the potential for specific PM2.5 exposures to cause physiological changes that could increase 

the risk of more serious effects.  

Table 3-2 below summarizes information from the ISA25 on available controlled human 

exposure studies that evaluate effects on markers of cardiovascular function following exposures 

to PM2.5, either as concentrated ambient particles (CAP) or in unfiltered versus filtered exhaust.26  

  

                                                 
24 In contrast, controlled human exposure studies provide little evidence for respiratory effects following short-term 

PM2.5 exposures (U.S. EPA, 2019, section 5.1, Table 5-18). Therefore, this section focuses on cardiovascular 

effects evaluated in controlled human exposure studies of PM2.5 exposure.  

25 Table 3-2 includes the controlled human exposure studies, and the endpoints from each study, that are discussed 

in the ISA.  

26 Table 3-2 identifies controlled human exposure studies included in the ISA that examine the potential for PM2.5 

exposures to alter markers of cardiovascular function. Studies that focus on specific components of PM2.5 (e.g., 

endotoxin), or studies that evaluated PM2.5 exposures only in the presence of an intervention (e.g., dietary 

intervention) or other pollutant (e.g., ozone), are not included.  
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Table 3-2. Summary of information from PM2.5 controlled human exposure studies.  

                                                 
27 The published study reports an average CAP concentration of 41 µg/m3, but communication with the study 

authors revealed an error in that reported concentration (Jenkins, 2016).  

Study Population 

Exposure Details 
(average concentration; 

duration) Results 

Bräuner et al., 
2008  

Healthy adults  10.5 µg/m3 PM2.5 
(unfiltered) vs below 
detection (filtered); 24 h 

No significant effect on markers of vascular 
function  

Hemmingsen et 
al., 2015a, 
Hemmingsen et 
al., 2015b 

Healthy, 
overweight 
older adults  

24 µg/m3 (unfiltered) vs 
3.0 µg/m3 (filtered) 
Copenhagen PM; 5 h  

Impaired vascular function and altered heart rate 
variability; no significant changes in blood 
pressure or markers of inflammation or oxidative 
stress 

Urch et al., 2010 Non-asthmatic 
and mild 
asthmatic 
adults  

64 µg/m3 CAP (lower 
exposure); 2 h 

No significant change in blood markers of 
inflammation or oxidative stress  

Huang et al., 2012 Healthy adults  90 µg/m3 CAP; 2 h  No significant changes in heart rate variability 

Devlin et al., 2003 Healthy older 
adults 

99 µg/m3 CAP27; 2 h Decreased heart rate variability 

Hazucha et al., 
2013 

Adult current 
and former 
smokers  

109 µg/m3 CAP; 2 h No significant changes in markers of 
inflammation or coagulation 

Ghio et al., 2000 Healthy young 
adults 

120 µg/m3 CAP; 2 h Increased fibrinogen (coagulation)  

Ghio et al., 2003  Healthy young 
adults 

120 µg/m3 CAP; 2 h Increased fibrinogen; no significant effect on 
markers of inflammation  

Urch et al., 2010 Non-asthmatic 
and mild 
asthmatic 
adults  

140 µg/m3 CAP (higher 
exposure); 2 h 

Increased blood inflammatory markers   

Brook et al., 2009  Healthy adults 149 µg/m3 CAP; 2 h Impaired vascular function, increased blood 
pressure; no significant change in markers of 
inflammation (compared to filtered air)  

Ramanathan et 
al., 2016 

Healthy adults  149 µg/m3 CAP; 2 h Decreased anti-oxidant/anti-inflammatory 
capacity when baseline capacity was low 
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Most of the controlled human exposure studies in Table 3-2 have evaluated average 

PM2.5 exposure concentrations at or above about 100 µg/m3, with exposure durations typically up 

to about two hours. Statistically significant effects on one or more indicators of cardiovascular 

function are often, though not always, reported following 2-hour exposures to average PM2.5 

concentrations at and above about 120 µg/m3, with less consistent evidence for effects following 

exposures to lower concentrations. Impaired vascular function, the effect identified in the ISA as 

Sivagangabalan et 
al., 2011 

Healthy adults 150 µg/m3 CAP; 2 h Increase in indicator of possible arrhythmia; no 
significant effect on heart rate  

Kusha et al., 2012  Healthy adults  154 µg/m3 CAP; 2 h No significant effect on indicator of possible 
arrhythmia  

Gong et al., 2003  Adults with and 
without asthma  

174 µg/m3 CAP; 2 h Increased heart rate; No significant effect on 
indicators of arrhythmia, inflammation, 
coagulation; inconsistent effects on blood 
pressure 

Gong et al., 2004  Older adults 
with and 
without COPD 

200 µg/m3 CAP; 2 h Decreased heart rate variability, increase in 
markers of inflammation (without COPD only); 
inconsistent effect on arrhythmia; no significant 
effect on markers of blood coagulation 

Liu et al., 2015 Healthy adults  238 µg/m3 CAP; 130 min Increase in urinary markers of oxidative stress 
and vascular dysfunction; no significant effect on 
blood markers of oxidative stress, vascular 
function, or inflammation  

Bellavia et al., 
2013 

Healthy adults  ~242 µg/m3 CAP; 130 min  Increased blood pressure   

Behbod et al., 
2013 

Healthy adults  ~250 µg/m3 CAP; 130 min  Increase in markers of inflammation  

Tong et al., 2015 Healthy older 
adults  

253 µg/m3 CAP; 2 h  

 

Impaired vascular function and increased blood 
pressure; no significant change in markers of 
inflammation or coagulation  

Lucking et al., 
2011 

Healthy young 
men  

320 µg/m3 (unfiltered) vs 
7.2 µg/m3 (filtered); 1 h  

Impaired vascular function and increased 
potential for coagulation; no significant effect on 
blood pressure, markers of inflammation, or 
arterial stiffness  

Vieira et al., 
2016a, Vieira et 
al., 2016b 

Healthy adults; 
Heart failure 
patients   

325 µg/m3 (unfiltered) vs 
25 µg/m3 (filtered) diesel 
exhaust; 21-min  

Increase in marker of potential impairment in 
heart function, impaired vascular function (heart 
failure patients); no significant effect on blood 
pressure, heart rate or heart rate variability, 
markers of inflammation, markers of coagulation, 
or arterial stiffness 
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the most consistent across studies (U.S. EPA, 2019, section 6.1.13.2), is shown following 2-hour 

exposures to PM2.5 concentrations at and above 149 µg/m3. Mixed results are reported in the 

three studies that evaluate longer exposure durations (i.e., longer than 2 hours) and lower PM2.5 

concentrations, with significant effects on some outcomes reported following 5-hour exposures 

to 24 µg/m3 in Hemmingsen et al. (2015b), but not for other outcomes following 5-hour 

exposures in Hemmingsen et al. (2015a) and not following 24-hour exposures to 10.5 µg/m3 in 

Bräuner et al. (2008).  

To provide some insight into what these studies may indicate regarding the primary PM2.5 

standards, we consider the degree to which 2-hour ambient PM2.5 concentrations in locations 

meeting the current primary standards are likely to exceed the 2-hour exposure concentrations at 

which statistically significant effects are reported in multiple studies for one or more indicators 

of cardiovascular function. To this end, we refer to Figure 2-14 (Chapter 2, section 2.3.2.2.3), 

which presents the frequency distribution of 2-hour average PM2.5 concentrations from all FEM 

PM2.5 monitors in the U.S. for 2015-2017. At sites meeting the current primary PM2.5 standards, 

most 2-hour concentrations are below 11 μg/m3, and almost never exceed 32 μg/m3. The extreme 

upper end of the distribution of 2-hour PM2.5 concentrations is shifted higher during the warmer 

months (April to September, denoted by red bars in Figure 2-14), generally corresponding to the 

period of peak wildfire frequency in the U.S. At sites meeting the current primary standards, the 

highest 2-hour concentrations measured almost never occur outside of the period of peak wildfire 

frequency (i.e., 99.9th percentile of 2-hour concentrations is 68 μg/m3 during the warm season). 

Most of the sites measuring these very high concentrations are in the northwestern U.S. and 

California (see Appendix A, Figure A-1), where wildfires have been relatively common in recent 

years. When the typical fire season is excluded from the analysis (blue in Figure 2-14), the 

extreme upper end of the distribution is reduced (i.e., 99.9th percentile of 2-hour concentrations is 

59 μg/m3).28 

Thus, while controlled human exposure studies support the plausibility of the serious 

cardiovascular effects that have been linked with ambient PM2.5 exposures (U.S. EPA, 2019, 

Chapter 6), the PM2.5 exposure concentrations evaluated in most of these studies are well-above 

the ambient concentrations typically measured in locations meeting the current primary 

standards. Therefore, controlled human exposure studies are of limited utility in informing 

conclusions on the adequacy of the public health protection provided by the current standards. 

Additional controlled human exposure studies that examine longer exposure periods (e.g., 24-

hour as in Bräuner et al. (2008); 5-hour as in Hemmingsen et al. (2015b)), or repeated exposures, 

                                                 
28 Similar analyses of 5-hour PM2.5 concentrations are presented in Appendix A, Figure A-2.  
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to concentrations typical in the ambient air across much of the U.S. may provide additional 

insight into this issue in future reviews.  

Animal Toxicology Studies 

The ISA relies on animal toxicology studies to support the plausibility of a wide range of 

PM2.5-related health effects. While animal toxicology studies often examine more severe health 

outcomes and longer exposure durations than controlled human exposure studies, there is 

uncertainty in extrapolating the effects seen in animals, and the PM2.5 exposures and doses that 

cause those effects, to human populations. We consider these uncertainties when evaluating what 

the available animal toxicology studies may indicate with regard to the current primary PM2.5 

standards.  

Most of the animal toxicology studies assessed in the ISA have examined effects 

following exposures to PM2.5 concentrations well-above the concentrations likely to be allowed 

by the current PM2.5 standards. Such studies have generally examined short-term exposures to 

PM2.5 concentrations from 100 to >1,000 g/m3 and long-term exposures to concentrations from 

66 to >400 g/m3 (e.g., see U.S. EPA, 2019, Table 1-2). Two exceptions are a study reporting 

impaired lung development following long-term exposures (i.e., 24 hours per day for several 

months prenatally and postnatally) to an average PM2.5 concentration of 16.8 g/m3 (Mauad et 

al., 2008) and a study reporting increased carcinogenic potential following long-term exposures 

(i.e., 2 months) to an average PM2.5 concentration of 17.7 g/m3 (Cangerana Pereira et al., 2011). 

These two studies demonstrate serious effects following long-term exposures to PM2.5 

concentrations similar to the ambient concentrations reported in some PM2.5 epidemiologic 

studies (U.S. EPA, 2019, Table 1-2), though still above the ambient concentrations likely to 

occur in areas meeting the current primary standards. Thus, as is the case with controlled human 

exposure studies, animal toxicology studies support the plausibility of various adverse effects 

that have been linked to ambient PM2.5 exposures (U.S. EPA, 2019), but have not evaluated 

PM2.5 exposures likely to occur in areas meeting the current primary standards. Given this, and 

the additional uncertainty of extrapolating from effects in animals to those in human populations, 

animal toxicology studies are of limited utility in informing conclusions on the public health 

protection provided by the current or alternative primary PM2.5 standards.  

3.2.3.2  Ambient PM Concentrations in Locations of Epidemiologic Studies 

As summarized in section 3.2.1 above, epidemiologic studies examining associations 

between daily or annual average PM2.5 exposures and mortality or morbidity represent a large 

part of the evidence base supporting several of the ISA’s “causal” and “likely to be causal” 

determinations. In this section, we consider the ambient PM2.5 concentrations present in areas 

where epidemiologic studies have evaluated associations with mortality or morbidity, and what 



 3-51   

 

such concentrations may indicate regarding the primary PM2.5 standards. The approaches 

discussed in this section are also summarized above in section 3.1.2.  

As noted in section 3.1.2, the use of information from epidemiologic studies to inform 

conclusions on the primary PM2.5 standards is complicated by the fact that such studies evaluate 

associations between distributions of ambient PM2.5 and health outcomes, and do not identify the 

specific exposures that cause reported effects. Rather, health effects can occur over the entire 

distributions of ambient PM2.5 concentrations evaluated, and epidemiologic studies do not 

identify a population-level threshold below which it can be concluded with confidence that PM-

associated health effects do not occur (U.S. EPA, 2019, section 1.5.3).  

In the absence of discernible thresholds, we use two approaches to consider information 

from epidemiologic studies. In one approach, we evaluate the PM2.5 air quality distributions 

reported by key epidemiologic studies (i.e., and used to estimate exposures in these studies) and 

the degree to which such distributions are likely to occur in areas meeting the current (or 

alternative) standards (section 3.2.3.2.1). We recognize uncertainty in using this approach to 

inform conclusions on the primary standards because study-reported PM2.5 concentrations are not 

the same as the design values used by the EPA to determine whether areas meet the NAAQS 

(discussed further below). Therefore, in an additional approach, we calculate study area air 

quality metrics similar to PM2.5 design values and consider the degree to which such metrics 

indicate that study area air quality would likely have met or violated the current or alternative 

standards during study periods (section 3.2.3.2.2).  

To the extent these approaches indicate that health effect associations are based on PM2.5 

air quality likely to have met the current or alternative standards, such standards are likely to 

allow the daily or annual average PM2.5 exposures that provide the foundation for reported 

associations. Alternatively, to the extent reported health effect associations reflect air quality 

violating the current or alternative standards, there is greater uncertainty in the degree to which 

such standards would allow the PM2.5 exposures that provide the foundation for reported 

associations. The sections below (i.e., 3.2.3.2.1, 3.2.3.2.2) discuss each of these approaches in 

more detail, and present our key observations based on their application. The potential 

implications of these observations for the current and alternative primary PM2.5 standards are 

discussed below in section 3.4.   

3.2.3.2.1 PM2.5 Air Quality Distributions Associated with Mortality or Morbidity in Key 

Epidemiologic Studies  

 In this section, we consider the PM2.5 air quality distributions associated with mortality or 

morbidity in key epidemiologic studies, with a focus on the parts of the distributions over which 

those studies provide the strongest support for reported associations. As discussed further below, 

while health effects may occur at PM2.5 concentrations across the air quality distribution, 
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epidemiologic studies often provide the strongest support for reported health effect associations 

over the part of the distribution corresponding to the bulk of the underlying data (i.e., estimated 

exposures and/or health events). This is the case both for studies of daily PM2.5 exposures and for 

studies of annual average PM2.5 exposures.  

 Studies of daily PM2.5 exposures examine associations between day-to-day variation in 

PM2.5 concentrations and health outcomes, often over several years. While there can be 

considerable variability in daily exposures over a multi-year study period, most of the estimated 

exposures reflect days with ambient PM2.5 concentrations around the middle of the air quality 

distributions examined (i.e., “typical” days rather than days with extremely high or extremely 

low concentrations). Similarly, for studies of annual PM2.5 exposures, most of the estimated 

exposures reflect annual average PM2.5 concentrations around the middle of the air quality 

distributions examined. In both cases, epidemiologic studies provide the strongest support for 

reported health effect associations for this middle portion of the PM2.5 air quality distribution, 

which corresponds to the bulk of the underlying data, rather than the extreme upper or lower 

ends of the distribution. Consistent with this, as noted above in section 3.2.1.1, several 

epidemiologic studies report that associations persist in analyses that exclude the upper portions 

of the distributions of estimated PM2.5 exposures, indicating that “peak” PM2.5 exposures are not 

disproportionately responsible for reported health effect associations.  

 An example of the relationship between data density and reported health effect 

associations is illustrated in Figure 3-2 below (from Lepeule et al., 2012, Figure 1 in 

supplemental material; U.S. EPA, 2019, Figure 6-26). For the years 1974 to 2009, Lepeule et al. 

(2012) report a positive and statistically significant association between estimated long-term 

PM2.5 exposures and cardiovascular mortality in six U.S. cities. Based on a visual inspection of 

the concentration-response function reported in this study (i.e., presented in Figure 3-2), 95% 

confidence intervals are narrowest for long-term PM2.5 concentrations near the overall mean 

concentration reported in the study (i.e., 15.9 g/m3). Confidence intervals widen at lower and 

higher long-term PM2.5 concentrations, particularly at concentrations ≤ ~10 g/m3 and ≥ ~20 

g/m3. This widening in the confidence intervals is likely due in part to the comparative lack of 

data at concentrations approaching the lower and upper ends of the air quality distribution (i.e., 

exposure estimates are indicated by hash marks on the horizontal axis).  
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Figure 3-2. Estimated concentration-response function and 95% confidence intervals 

between PM2.5 and cardiovascular mortality in the Six Cities Study (1974-2009) (from 

Lepeule et al., 2012, supplemental material, figure 1; Figure 6-26 in U.S. EPA, 2019).  

 

Similar to the information presented in Figure 3-2, other recent studies have also reported 

that confidence intervals around concentration-response functions are relatively narrow at PM2.5 

concentrations around the overall mean concentrations reported by those studies, likely reflecting 

high data density in the middle portions of the distributions (e.g., Crouse et al., 2015; Villeneuve 

et al., 2015; Shi et al., 2016 as discussed in U.S. EPA, 2019, section 11.2.4). Thus, consistent 

with the approach in the last review (78 FR 3161, January 15, 2013; U.S. EPA, 2011, sections 

2.1.3 and 2.3.4.1), we use study-reported means (or medians) of daily and annual average PM2.5 

concentrations as proxies for the middle portions of the air quality distributions, over which 

studies generally provide strong support for reported associations. As described further below, 

when considering the PM2.5 air quality distributions in epidemiologic studies in this section, we 

focus on PM2.5 concentrations around these overall means (including concentrations somewhat 

below means).  

To evaluate the PM2.5 air quality distributions in key studies in this review, we first 

identify the epidemiologic studies assessed in the ISA that have the potential to be most 

informative in reaching conclusions on the primary PM2.5 standards. As for the experimental 

studies discussed above, we focus on epidemiologic studies that provide strong support for 

“causal” or “likely to be causal” relationships with PM2.5 exposures in the ISA. We focus on the 

health effect associations that are determined in the ISA to be consistent across studies, coherent 
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with the broader body of evidence (e.g., including animal and controlled human exposure 

studies), and robust to potential confounding by co-occurring pollutants and other factors. We 

emphasize multicity studies that examine health effect associations in the U.S. or Canada, as 

such studies examine potential associations over large geographic areas with diverse atmospheric 

conditions and population demographics (e.g., U.S. EPA, 2019, sections 11.1 and 11.2). 

Additionally, studies examining associations outside the U.S. or Canada reflect air quality and 

exposure patterns that may be less typical of the U.S., and thus less likely to be informative for 

purposes of reviewing the NAAQS.29  

Figure 3-3 to Figure 3-6 and Table 3-3 below summarize information from U.S. and 

Canadian studies that are assessed in the ISA and that meet these criteria. For each study, Figure 

3-3 to Figure 3-6 present the cohort and/or geographic area examined, the approach used to 

estimate PM2.5 exposures (i.e., monitored versus predicted with hybrid modeling methods30), the 

study years during which health events occurred, the years of PM2.5 air quality data used to 

estimate exposures, and the effect estimate31 with 95% confidence intervals (per 5 g/m3 for 

long-term exposures; 10 g/m3 for short-term exposures). When available, these figures also 

include the overall means (or medians if means are not available) of the short- or long-term 

PM2.5 exposure estimates reported by the study.  

Figure 3-3 and Figure 3-4 summarize information from studies of long-term PM2.5 

exposures. Figure 3-5 and Figure 3-6 summarize information from studies of short-term PM2.5 

exposures. Table 3-3 summarizes information from the smaller group of retrospective studies 

that have evaluated the potential for improvements in public health as ambient PM2.5 

concentrations have declined over time. It is important to note that these retrospective studies 

tend to focus on time periods during which ambient PM2.5 concentrations were substantially 

higher than those measured more recently (e.g., see Chapter 2, Figure 2-8).  

 

 

 

                                                 
29 This emphasis on studies conducted in the U.S. or Canada is consistent with the approach in the last review of the 

PM NAAQS (U.S. EPA, 2011, section 2.1.3).  

30 As discussed further below, and in Chapter 2, hybrid methods incorporate data from several sources, often 

including satellites and models, in addition to ground-based monitors.  

31 The effect estimates presented in the forest plot figures (Figure 3-3 to Figure 3-6) show the associations of long or 

short-term PM2.5 exposures with health endpoints presented either as hazard ratio or odds ratio or relative risk (for 

which the bold dotted vertical line is at 1), or as per unit or percent change (for which the bold dotted vertical line 

is at 0).   
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Figure 3-3. Epidemiologic studies examining associations between long-term PM2.5 

exposures and mortality.  
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Figure 3-4. Epidemiologic studies examining associations between long-term PM2.5 

exposures and morbidity.  
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Figure 3-5. Epidemiologic studies examining associations between short-term PM2.5 

exposures and mortality.32   

                                                 
32 As noted above, the overall mean PM2.5 concentrations reported in studies of short-term (24-hour) exposures 

reflect averages across the study population and over the years of the study. Thus, mean concentrations reflect 

long-term averages of 24-hour PM2.5 exposure estimates.  
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Figure 3-6. Epidemiologic studies examining associations between short-term PM2.5 

exposures and morbidity.  
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Table 3-3. Epidemiologic studies examining the health impacts of long-term reductions in 

ambient PM2.5 concentrations.  

Study 
Reference 

Study Area Years of PM2.5 
Air Quality 
(monitored) 

Starting PM2.5 
Concentrations 

(mean) 

Ending PM2.5 
concentrations 

(mean) 

Study Results 

Pope et al. 
(2009) 

211 U.S. 
counties 

1979-1983 
compared to 
1999-2000 

20.6 µg/m3 14.1 g/m3 Statistically significant 
association between 
declining ambient 
PM2.5 and increasing 
life expectancy  

Correia et al. 
(2013) 

545 U.S. 
counties 

2000 
compared to 
2007  

13.2 µg/m3 11.6 g/m3 Statistically significant 
association between 
declining ambient 
PM2.5 and increasing 
life expectancy 

Berhane et al. 
(2016) 

4,602 
children in 8 
California 
communities 

1992-2000; 
1995-2003; 
2002-2011 

20.5 µg/m3  14.4 µg/m3  Statistically significant 
decrease in bronchitic 
symptoms in 10-year 
old children with and 
without asthma  

Gauderman et 
al. (2015) 

2,120 
children in 5 
California 
communities 

1994-1997; 
1997-2000; 
2007-2010 

21.3-31.5 µg/m3   11.9-17.8 µg/m3  Statistically significant 
improvements in 4-
year growth of lung 
function   

 

Based on the information in Figure 3-3 to Figure 3-6 and Table 3-3, key epidemiologic 

studies conducted in the U.S. or Canada indicate generally positive and statistically significant 

associations between estimated PM2.5 exposures (short- or long-term) and mortality or morbidity 

across a wide range of ambient PM2.5 concentrations. As discussed above, considering the PM2.5 

concentrations around (i.e., somewhat below to somewhat above) the overall means in these 

studies can provide insight into the part of the air quality distribution over which studies provide 

the strongest support for reported health effect associations. Evaluating whether such PM2.5 air 

quality distributions would be likely to occur in areas meeting the current (or alternative) primary 

standards can inform conclusions on the degree to which those standards would limit the 

potential for the long-term and short-term PM2.5 exposures that provide strong support for 

reported associations.  

For a subset of key epidemiologic studies with available information, we characterize the 

broader distributions of ambient concentrations, with a particular focus on the concentrations 

below which data could become appreciably more limited (i.e., below which relatively few 

estimated exposures, and/or few health events, occurred). As noted above, confidence in reported 

health effect associations declines for portions of the air quality distribution accounting for 
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comparatively little data (i.e., concentrations approaching the lower and upper ends of the 

distribution). Thus, considering the concentrations below which data become relatively sparse 

can provide insight into the ambient PM2.5 concentrations below which confidence in reported 

health effect associations may decrease notably. While there is no single concentration below 

which we lose confidence in reported associations, consistent with the approach in the last 

review (U.S. EPA, 2011, section 2.3.4.1), we identify the PM2.5 concentrations corresponding to 

the 25th and 10th percentiles of health data (when available) or exposure estimates to provide 

insight into the concentrations that comprise the lower quartiles of the air quality distributions.33  

To frame our evaluation of study-reported PM2.5 concentrations, we specifically consider 

the following questions: 

• What are the overall mean PM2.5 concentrations reported by key epidemiologic studies?  

• For studies with available information on the broader distributions of exposure 

estimates and/or health events, what are the PM2.5 concentrations corresponding to the 

25th and/or 10th percentiles of those data?   

Answers to these questions can provide insight into the range of PM2.5 concentrations, including 

those below the overall means, over which key studies provide strong support for reported 

associations. To this end, Figure 3-7 and Figure 3-8 below present information on the monitored 

(Figure 3-7) and hybrid model-predicted (Figure 3-8) ambient PM2.5 concentrations used to 

estimate PM2.5 exposures in key epidemiologic studies.  

 Drawing from the U.S. and Canadian multicity studies in Figure 3-3 to Figure 3-6 

above,34 the studies included in Figure 3-7 and Figure 3-8 are those that report overall mean (or 

median) PM2.5 concentrations and for which the years of PM2.5 air quality data used to estimate 

exposures overlap entirely with the years during which health events are reported. Regarding this 

latter issue, the PM2.5 concentrations reported by studies that estimate exposures from air quality 

corresponding to only part of the study period, often including only the later years of the health 

data (e.g., Miller et al., 2007; Hart et al., 2011; Thurston et al., 2013; Weichenthal et al., 2014; 

Weichenthal et al., 2016a; Pope et al., 2015; Villeneuve et al., 2015; Turner et al., 2016), are not 

                                                 
33 In the last review of the PM NAAQS, the PA identified the long-term PM2.5 concentrations corresponding to the 

25th and 10th percentiles of health events, or study populations. In doing so, the PA noted that a range of one 

standard deviation around the mean represents approximately 68% of normally distributed data and, below the 

mean, falls between the 25th
 and 10th percentiles.  

34 Most of the studies included in Table 3-3 above (i.e., studies that examine relationships between declining 

ambient PM2.5 concentrations and improving health) report mean ambient PM2.5 concentrations well-above those 

in the studies highlighted in Figure 3-3 to Figure 3-6, and well-above the concentrations likely to be informative 

for conclusions on the current primary PM2.5 standards. Therefore, our evaluation of mean concentrations focuses 

on the key studies identified in Figure 3-3 to Figure 3-6.  
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likely to reflect the full ranges of ambient PM2.5 concentrations that contributed to reported 

associations.35  

 Figure 3-7 highlights the overall mean (or median) PM2.5 concentrations reported in key 

studies that use ground-based monitors alone to estimate long- or short-term PM2.5 exposures. 

For the subset of studies with available information on the broader distributions of underlying 

data, Figure 3-7 also identifies the study-period mean PM2.5 concentrations corresponding to the 

25th and 10th percentiles of health events36 (see Appendix B, Section B.2 for more information).        

                                                 
35 This is an issue only for some studies of long-term PM2.5 exposures. While this approach can be reasonable in the 

context of an epidemiologic study evaluating health effect associations with long-term PM2.5 exposures, under the 

assumption that spatial patterns in PM2.5 concentrations are not appreciably different during time periods for 

which air quality information is not available (e.g., Chen et al., 2016), our interest is in understanding the 

distribution of ambient PM2.5 concentrations that could have contributed to reported health outcomes. 

36 That is, 25% of the total health events occurred in study locations with mean PM2.5 concentrations (i.e., averaged 

over the study period) below the 25th percentiles identified in Figure 3-7 and 10% of the total health events 

occurred in study locations with mean PM2.5 concentrations below the 10th percentiles identified.  
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Figure 3-7. Monitored PM2.5 concentrations in key epidemiologic studies. 
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 We also consider the emerging body of studies that use predicted ambient PM2.5 

concentrations from hybrid modeling methods to estimate long- or short-term PM2.5 exposures 

(Figure 3-8, below). As discussed in Chapter 2 of this PA (section 2.3.3), hybrid methods 

incorporate data from several sources, often including satellites and models in addition to 

ground-based monitors. Compared to ground-based monitors alone, hybrid methods have the 

potential to improve the characterization of PM2.5 exposures in areas with relatively sparse 

monitoring networks (U.S. EPA, 2019, sections 3.3.2 to 3.3.5).  

 Figure 3-8 presents overall means of predicted PM2.5 concentrations for key studies, and 

the concentrations corresponding to the 25th and 10th percentiles of estimated exposures or health 

events37 when available (see appendix B, section B.3 for additional information).38 As for the 

monitor-based studies highlighted above, Figure 3-8 focuses on multicity studies that examine 

health outcomes supporting “causal” or “likely to be causal” determinations in the ISA and that 

use air quality data to estimate PM2.5 exposures for the entire range of years during which health 

events occurred.39 In addition to these criteria, we also consider the approach used to validate 

hybrid model predictions. In particular, the studies included in Figure 3-8 are those for which 

relatively robust model validation analyses are reported to have been conducted for the full range 

of years during which PM2.5 exposures are estimated in the health study (e.g., regional or 

                                                 
37 For most studies in Figure 3-8, 25th percentiles of exposure estimates are presented. The exception is Di et al. 

(2017a), for which Figure 3-8 presents the short-term PM2.5 exposure estimates corresponding to the 25th and 10th 

percentiles of deaths in the study population (i.e., 25% and 10% of deaths occurred at concentrations below these 

concentrations). In addition, the authors of  Di et al. (2017b) provided population-weighted exposure values 

(Chan, 2019). The 10th and 25th percentiles of these population-weighted exposure estimates are 7.9 and 9.5 

µg/m3, respectively.  

38 In addition, 75th percentiles of exposure estimates are available for some studies. They are as follows: 14.4 g/m3 

(Di et al., 2017a), 12.9 µg/m3 (Di et al., 2017b), 11.7µg/m3 (Kloog et al., 2012), 10.7 µg/m3 (Shi et al. (2016), 

short-term exposures), 10.0 µg/m3 (Shi et al. (2016), long-term exposures), 12.9 µg/m3 (Wang et al., 2017).  

39 All studies that meet the criteria for inclusion in Figure 3-8 were conducted in the U.S.  
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national 10-fold cross validation performance statistics reported for the same years that 

exposures are estimated).40    

                                                 
40 For example, due to lack of spatial field availability before 1998, Crouse et al. (2015) use median annual PM2.5 

concentrations for the 1998-2006 time period (van Donkelaar et al., 2010; van Donkelaar et al., 2015a; van 

Donkelaar et al., 2013) to predict exposures during the 1984-2006 period. Similarly, for Pinault et al. (2016), 

model validation is for 2004 to 2008 (van Donkelaar et al., 2015b) while exposures are estimated for 1998 to 

2012. Paciorek et al. (2009), which presents the model validation results for Puett et al. (2009) and Puett et al. 

(2011), notes that PM2.5 monitoring was sparse prior to 1999, with many of the available PM2.5 monitors in rural 

and protected areas. Therefore, Paciorek et al. (2009) conclude that coverage in the validation set for most of the 

study period (1988-1998) is poor and that their model strongly underestimates uncertainty (Paciorek et al. (2009), 

p. 392 in published manuscript). Hystad et al. (2013) used exposure fields developed by calibrating satellite-based 

PM2.5 surfaces from a recent period (van Donkelaar et al., 2010) to estimate exposure for the 1975 to 1994 

(Hystad et al., 2012). Hystad et al. (2012) noted that a random effect model was used to estimate PM2.5 based on 

TSP measurements and metropolitan indicator variables because only small number of PM2.5 measurements were 

available, and no measurements were made prior to 1984.  Thus, these studies from Figures 3-3 to 3-6 are not 

included in Figure 3-8.  
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Figure 3-8. Hybrid model-predicted PM2.5 concentrations in key epidemiologic studies.   
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Taking the information in Figure 3-7 and Figure 3-8 together, key epidemiologic studies 

conducted in the U.S. or Canada report generally positive and statistically significant 

associations between estimated PM2.5 exposures (short- or long-term) and mortality or morbidity 

across a wide range of monitored or hybrid-model-predicted ambient PM2.5 concentrations. With 

regard to these studies, we particularly note the following:  

• For the large majority of key studies, the PM2.5 air quality distributions that support reported 

associations are characterized by overall mean (or median) PM2.5 concentrations ranging 

from just above 8.0 g/m3 to just above 16.0 g/m3. There is substantial overlap between 

mean concentrations based on monitoring alone and those based on hybrid modeling 

approaches.  

− Most key studies that use monitors alone to estimate PM2.5 exposures, and all of 

the U.S. studies in this group, report overall mean PM2.5 concentrations at or 

above 10.7 g/m3.  

− Four Canadian studies that use monitors alone report lower overall mean 

concentrations. Two of these studies report overall means just above 8.0 g/m3 

(both report positive and statistically significant associations) and two studies 

report overall means around 7.0 g/m3 (positive and statistically significant 

association in one of these studies).  

− Most key studies that use hybrid modeling approaches to estimate PM2.5 

exposures report overall mean concentrations at or above 9.6 g/m3. All of these 

studies were conducted in the U.S. and report positive and statistically significant 

health effect associations.  

− The hybrid modeling study with the lowest PM2.5 concentrations reports overall 

means just above 8.0 g/m3 (i.e., Shi et al., 2016). This study reports positive and 

statistically significant health effect associations with both short- and long-term 

PM2.5 exposures.41  

• Four U.S. studies examine health effect associations in analyses with the highest exposures 

excluded. Only one of these restricted analyses is reflected in Figure 3-8 (i.e., Di et al., 

2017b; “LT exposure < 12 g/m3”). In addition to this study, Lee et al. (2015), Di et al. 

(2017a) and Shi et al. (2016) also report positive and statistically significant associations in 

restricted analyses.  

− Lee et al. (2015) reports a positive and statistically significant association in an 

analysis restricted to zip codes with annual average PM2.5 concentrations < 12 

g/m3 and to days with 24-hour average PM2.5 concentrations < 35 g/m3. This 

study did not report an overall mean PM2.5 concentration for the restricted 

analysis, though it was presumably somewhat below the mean reflected in Figure 

3-8 (i.e., 11.1 g/m3).  

                                                 
41 However, the authors report that, for associations with long-term PM2.5 exposures, most deaths occurred at or 

above the 75th percentile of annual exposure estimates (i.e., 10 g/m3) (see Tables 1 and 2 in published 

manuscript). Authors did not report this information for their analysis of short-term PM2.5 exposures.  
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− Di et al. (2017a) reports a positive and statistically significant association in an 

analysis restricted to 24-hour PM2.5 exposure estimates < 25 g/m3. This study did 

not report an overall mean PM2.5 concentration for the restricted analysis, though 

it was presumably somewhat below the mean reflected in  Figure 3-8 (i.e., 11.6 

g/m3).  

− Shi et al. (2016) report positive and statistically significant associations in 

analyses restricted to annual PM2.5 exposure estimates < 10 g/m3 and in analyses 

restricted to 24-hour exposure estimates < 30 g/m3. This study does not report 

the overall mean PM2.5 concentrations in restricted analyses, though such means 

are presumably somewhat below those reflected in Figure 3-8 (i.e., 8.1 and 8.2 

g/m3).  

• For some key studies, information on the broader distributions of PM2.5 exposure estimates 

and/or health events is available.  

− In U.S. studies that use monitors alone to estimate PM2.5 exposures, 25th 

percentiles of health events correspond to mean PM2.5 concentrations (i.e., 

averaged over the study period for each study city) at or above 11.5 g/m3 and 

10th percentiles of health events correspond to mean PM2.5 concentrations at or 

above 9.8 g/m3 (i.e., 25% and 10% of health events, respectively, occur in study 

locations with mean PM2.5 concentrations below these values).  

− In the Canadian studies that use monitors alone to estimate PM2.5 exposures, 25th 

percentiles of health events correspond to mean PM2.5 concentrations at or above 

6.5 g/m3 and 10th percentiles of health events correspond to mean PM2.5 

concentrations at or above 6.4 g/m3.   

− Of the key studies that use hybrid modeling approaches to estimate long-term 

PM2.5 exposures, the ambient PM2.5 concentrations corresponding to 25th 

percentiles of estimated exposures are 6.2 and 9.1 g/m3. In the one study with 

data available on the 10th percentile of PM2.5 exposure estimates, the 

concentration corresponding to that 10th percentile is 7.3 g/m3.   

− In studies that use hybrid modeling approaches to estimate short-term PM2.5 

exposures, the ambient concentrations corresponding to 25th percentiles of 

estimated exposures, or health events, are generally at or above 6.4 g/m3. In the 

one study with lower concentrations, the ambient PM2.5 concentration 

corresponding to the 25th percentile of estimated exposures is 4.7 g/m3.42 In the 

one study with information available on the 10th percentile of health events, the 

ambient PM2.5 concentration corresponding to that 10th percentile is 4.7 g/m3.  

 

 The information in Figure 3-7 and Figure 3-8 indicates consistent support for generally 

positive and statistically significant health effect associations for PM2.5 air quality distributions 

                                                 
42 As noted above, in this study (Shi et al., 2016), the authors report that most deaths occurred at or above the 75th 

percentile of annual exposure estimates (i.e., 10 g/m3). The short-term exposure estimates accounting for most 

deaths are not presented in the published study.  
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characterized by overall mean (or median) concentrations above 8.0 g/m3, with most studies 

(and all but one U.S. study) reporting overall mean (or median) concentrations at or above 9.6 

g/m3. While the ambient PM2.5 concentrations around these overall means generally reflect the 

part of the air quality distribution over which studies provide the strongest support for reported 

PM2.5 effect estimates, there are uncertainties in using these concentrations to inform conclusions 

on the primary PM2.5 standards. These uncertainties are summarized below and their potential 

implications for conclusions on the current and alternative standards are discussed further in 

section 3.5.  

 A key uncertainty in using study-reported mean PM2.5 concentrations to inform 

conclusions on the primary PM2.5 standards is that such concentrations are not the same as the 

ambient concentrations used by the EPA to determine whether areas meet or violate the PM 

NAAQS. As discussed above, the overall mean PM2.5 concentrations reported by key 

epidemiologic studies reflect averaging of short- or long-term PM2.5 exposure estimates across 

locations (i.e., across multiple monitors or across modeled grid cells) and over time (i.e., over 

several years). In contrast, to determine whether areas meet or violate the NAAQS, the EPA 

measures air pollution concentrations at individual monitors (i.e., concentrations are not 

averaged across monitors) and calculates “design values” at monitors meeting appropriate data 

quality and completeness criteria. For the annual PM2.5 standard, design values are calculated as 

the annual arithmetic mean PM2.5 concentration, averaged over 3 years. For the 24-hour standard, 

design values are calculated as the 98th percentile of the annual distribution of 24-hour PM2.5 

concentrations, averaged over three years (described in Appendix N of 40 CFR Part 50). For an 

area to meet the NAAQS, all valid design values in that area, including the highest annual and 

24-hour monitored values, must be at or below the levels of the standards.  

 Because of this approach to determining whether areas meet the NAAQS, and because 

monitors are often required in locations with relatively high PM2.5 concentrations (section 2.2.3), 

areas meeting a PM2.5 standard with a particular level would be expected to have average PM2.5 

concentrations (i.e., averaged across space and over time in the area) somewhat below that 

standard level. In support of this, analyses of recent air quality in U.S. CBSAs indicate that 

maximum annual PM2.5 design values for a given three-year period are often 10% to 20% higher 

than average monitored concentrations (i.e., averaged across multiple monitors in the same 

CBSA) (Appendix B, section B.7). The difference between the maximum annual design value 

and average concentration in an area can be smaller or larger than this range, likely depending on 

factors such as the number of monitors, monitor siting characteristics, and the distribution of 
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ambient PM2.5 concentrations.43 When using this information to interpret key epidemiologic 

studies in the context of the primary standards, it is also important to note that such ratios may 

depend on how the average concentrations in a study are calculated (i.e., averaged across 

monitors versus across modeled grid cells). Thus, as discussed further in section 3.5 below, when 

evaluating what the mean PM2.5 concentrations reported by key epidemiologic studies may 

indicate regarding the current or alternative PM2.5 standards, we consider the broader 

relationships between mean PM2.5 concentrations, averaged across space and over time, and 

PM2.5 design values.44  

 Additional uncertainties in using the PM2.5 concentrations reported by key epidemiologic 

studies to inform conclusions on the primary PM2.5 standards include the following:  

• Effects can occur over the full distributions of ambient PM2.5 concentrations evaluated in 

epidemiologic studies, and the evidence does not identify a threshold concentration below 

which PM2.5-associated effects no longer occur. Thus, while conclusions on primary 

standards can be informed by comparing the PM2.5 air quality distributions present in key 

studies with the distributions likely to occur in areas meeting the current or alternative 

standards, studies do not identify specific PM2.5 exposures that result in health effects or 

exposures below which effects do not occur.  

• For studies that use hybrid model predictions to estimate PM2.5 exposures, the performance 

of the recently developed modeling approaches depends on the availability of monitoring 

data and varies by location. As noted in Chapter 2 (section 2.3.3), factors likely contributing 

to poorer model performance often coincide with relatively low ambient PM2.5 

concentrations, potentially accounting for the observations that model performance for 

hybrid models weaken by some metrics with decreasing PM2.5 concentration and that the 

normalized variability between predictions based on different hybrid modeling approaches 

increases with decreasing concentrations. Thus, uncertainty in hybrid model predictions 

becomes an increasingly important consideration as lower predicted concentrations are 

considered.    

The potential implications of these and other uncertainties for conclusions on the current and 

alternative primary PM2.5 standards are discussed below in section 3.4.  

3.2.3.2.2 PM2.5 Pseudo-Design Values in Locations of Key Epidemiologic Studies  

In addition to considering the study-reported PM2.5 concentrations discussed above, we 

also evaluate study area air quality using metrics more closely related to the design values 

                                                 
43 Given that higher PM2.5 concentrations have been reported at some near-road monitoring sites, relative to the 

surrounding area (section 2.3.2.2.2), recent requirements for PM2.5 monitoring at near-road locations in large 

urban areas (section 2.2.3) may increase the ratios of maximum annual design values to averaged concentrations 

in some areas. 

44 As discussed above in section 3.1.2, compared to the annual standard, the potential implications of overall mean 

PM2.5 concentrations reported by key epidemiologic studies are less clear for the 24-hour PM2.5 standard with its 

98th percentile form (section 3.4).  
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employed by the EPA to determine whether areas meet or violate the primary PM2.5 standards. 

To the extent these metrics suggest that reported health effect associations are based largely on 

PM2.5 air quality that would have met the current or alternative standards during study periods, 

we have greater confidence that those standards would allow the PM2.5 exposures that provide 

the basis for reported associations. In contrast, to the extent these metrics suggest that reported 

health effect associations are based largely on air quality that would have violated the current or 

alternative standards, there is greater uncertainty in the degree to which those standards would 

allow the PM2.5 exposures that provide the basis for reported associations.  

To evaluate this issue, we calculate metrics similar to PM2.5 design values (referred to 

here as “pseudo-design values”) for the locations and time periods evaluated by key U.S. and 

Canadian epidemiologic studies. Pseudo-design values are calculated as follows:  

• We first identify the study locations with one or more PM2.5 monitors operating during the 

study period, and that have sufficient monitoring data available to calculate pseudo-design 

values.45  

o For key studies conducted in the U.S., study locations are defined as the 

counties included in the study.  

o For key studies conducted in Canada, study locations are defined as the cities 

included in the study.  

• For each monitored study location, we then identify the highest annual and 24-hour PM2.5 

pseudo-design values for each 3-year period of the study and calculate the study-period 

average of these highest values.  

• We also identify the number of people living in each study location or, when available, the 

number of health events that occurred in each location during the study period.46  

• To evaluate the percentages of study area populations living in locations likely to have met 

the current standards over study periods (or the percentages of health events occurring in 

                                                 
45 Pseudo-design values are based on data from both FRM/FEM monitors and from high quality non-FRM/FEM 

monitors. The non-regulatory data used to calculate pseudo-design values come from monitors typically used for 

EPA applications like AirNow that are not FRM or FEM. Only monitors with 75% completeness for each of the 

12 quarters in a 3-year design value period were included. Sensitivity analyses based only on data from 

FRM/FEM regulatory monitors gave similar results (Appendix B, section B.5). For the pseudo-design values at 

the Canadian sites, only sites with 75% completeness for each year of the 3-year design value period were 

included. These criteria are slightly different than that of actual design values which have strict rounding 

conventions and substitution tests for sites with less than 75% completeness for each quarter. Additional 

information on the approach and data sources used to identify pseudo-design values in study locations is provided 

in Appendix B (section B.4.3).    

46 When available, we use the number of health events in each study location. However, for most key studies, health 

event data was not available for each study location. For these studies, we evaluate the population living in each 

study location. Comparison of these approaches in the subset of studies for which health events are available 

demonstrate that distributions of annual pseudo-design values are comparable for the two approaches (Appendix 

B, section B.6).  
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such locations), we identify the percentages in locations with study-period average pseudo-

design values at or below the levels of the current annual (Figure 3-9; Appendix B, Tables B-

5 and B-6) and 24-hour (Appendix B, Figure B-9) PM2.5 standards.   

In Figure 3-9, whiskers reflect annual PM2.5 pseudo-design values corresponding to 5th 

and 95th percentiles of study area populations (or health events), boxes correspond to the 25th and 

75th percentiles, and the vertical lines inside the boxes correspond to 50th percentiles. The vertical 

dotted line in Figure 3-9 is drawn at 12.0 g/m3, the level of the current annual PM2.5 standard. 

For studies with 25th percentiles ≤ 12.0 g/m3, at least 25% of the study area population (i.e., in 

counties or cities with pseudo-design values) lived in locations likely to have met the current 

annual standard over the study period (or at least 25% of health events occurred in such 

locations).47 Similarly, for studies with 50th or 75th percentiles ≤ 12.0 g/m3, at least 50% or 75% 

of the study area population, respectively, lived in locations likely to have met the current annual 

standard over the study period (or at least 50% or 75% of health events occurred in such 

locations). The percentage of study area populations (or health events) in locations likely to have 

met the current 24-hour standard over study periods was typically larger than the percentage in 

locations likely to have met the current annual standard (i.e., Appendix B, Figure B-9).     

                                                 
47 As discussed below, among study locations with averaged PM2.5 pseudo-design values (i.e., averaged over the 

study period) at or below 12.0 g/m3, almost all individual 3-year pseudo-design values are also at or below 12.0 

g/m3 (i.e., 89% for Di et al. (2017b); 98% for Shi et al. (2016)– see Appendix B, section B.9). 
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Figure 3-9. PM2.5 annual pseudo-design values (in µg/m3) corresponding to various 

percentiles48 of study area populations or health events for studies of long-term and 

short-term PM2.5 exposures.49    

                                                 
48 Asterisks next to study citations denote statistically significant effect estimates.  

49 For most of the studies included in Figure 3-9, pseudo-design values are available for >70% of study area 

populations (or health events). Exceptions are Kloog et al. (2012), Lee et al. (2015), Pinault et al. (2016), and 

Wang et al. (2017), with pseudo-design values available for 67%, 56%, 51%, and 65% of study area populations, 

respectively.  
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Drawing from the information in Figure 3-9 (and Figure B-9 in Appendix B), we 

particularly note the following:  

• For most of the key studies (i.e., 18 of the 29 in Figure 3-950), about 25% or more of the 

study area populations (i.e., of those in areas with pseudo-design values) lived in locations 

with air quality likely to have met the current primary standards over study periods (or about 

25% or more of health events occurred in locations with such air quality).  

− For the 15 U.S. studies included in this group, annual pseudo-design values from 

8.7 to 11.9 g/m3 correspond to 25th percentiles of study area populations (or 

health events).  

− For the three Canadian studies included in this group, annual pseudo-design 

values from 6.0 to 7.2 g/m3 correspond to 25th percentiles of study area 

populations (or health events).  

• For nine of the key studies, most of the study area population (i.e., > 50% of those living in 

areas with pseudo-design values) lived in locations with air quality likely to have met the 

current standards over study periods (or > 50% of health events occurred in locations with 

such air quality).  

− For the six U.S. studies included in this group, annual pseudo-design values from 

9.9 to 11.7 g/m3 correspond to 50th percentiles of study area populations (or 

health events).  

− For the three Canadian studies included in this group, annual pseudo-design 

values from 7.3 to 7.4 g/m3 correspond to 50th percentiles of study area 

populations (or health events).  

• For four of the key studies, the large majority of the study area population (i.e., >75% of 

those living in areas with pseudo-design values) lived in locations with air quality likely to 

have met the current standards over study periods (or >75% of health events occurred in 

locations with such air quality).  

− One of these studies (Shi et al., 2016) was conducted in the U.S. In this study, an 

annual pseudo-design value of 11.0 g/m3 corresponds to the 75th percentile of 

the study area population.51  

− Three of these studies (Pinault et al., 2016; Weichenthal et al., 2016c; and 

Weichenthal et al., 2016b) were conducted in Canada. In these studies, annual 

pseudo-design values from 8.4 to 8.6 g/m3 correspond to 75th percentiles of the 

study area populations (or health events).  

• For the remaining 11 key studies, the large majority of the study area population (i.e., >75% 

of those living in areas with pseudo-design values) lived in locations with air quality likely to 

                                                 
50 Shi et al. (2016) separately examined long- and short-term PM2.5 exposures and, therefore, is included twice in 

Figure 3-9 and Figure B-9.  

51 In Shi et al. (2016), 85% of all of the study areas with pseudo-design values would likely have met the current 

annual standard over the entire study period (i.e., annual pseudo-design values for every three-year period 

examined were ≤ 12.0 g/m3).  
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have violated one or both of the current standards during study periods (or >75% of health 

events occurred in locations with such air quality).   

While the information in Figure 3-9 can inform conclusions regarding the degree to 

which air quality present in study locations and during study periods would likely have met the 

current primary PM2.5 standards, there are important uncertainties to consider when using such 

information to inform conclusions on the primary PM2.5 standards. These include the following: 

• For most key multicity studies, some study locations would likely have met the current 

primary standards over study periods while others would likely have violated one or both 

standards. There is uncertainty in how to interpret such studies to inform conclusions on the 

NAAQS. However, the importance of this uncertainty is lessened for studies that report 

positive and statistically significant associations in populations that reside almost entirely in 

areas likely to have met the current standards (e.g., Pinault et al., 2016; Shi et al., 2016; 

Weichenthal et al., 2016c). This uncertainty is also lessened for key studies that report 

positive and statistically significant associations in analyses restricted long-term average 

PM2.5 concentrations below 12 g/m3 (Di et al., 2017b) or 10 g/m3 (Shi et al., 2016), which 

account for about half of the total deaths in these studies (i.e., 54% in Di et al. (2017b), and 

49% in Shi et al. (2016)). Effect estimates in these restricted analyses are slightly larger than 

those based on the entire cohort.  

• For each study location, maximum 3-year pseudo-design values are averaged over study 

periods. Depending on the years of air quality evaluated by the study, for some locations 

those averages could reflect air quality that violated the current standards during part of the 

study period and met the current standards during part of the study period. However, analysis 

of this issue indicates that, among study locations with averaged PM2.5 pseudo-design values 

(i.e., averaged over the study period) at or below 12.0 g/m3, almost all individual 3-year 

pseudo-design values are also at or below 12.0 g/m3 (i.e., 89% for Di et al. (2017b); 98% 

for Shi et al. (2016)– see Appendix B, section B.9).   

• Analyses identifying pseudo-design values in study locations necessarily focus on locations 

with at least one PM2.5 monitor. While this approach can account for the large majority of 

study area populations for studies that use monitors alone to estimate PM2.5 exposures, some 

recent key epidemiologic studies use hybrid modeling approaches to predict ambient PM2.5 

concentrations in locations with and without nearby ground-based monitors (i.e., Figure 3-8, 

above). For these studies, PM2.5 pseudo-design values are not available for unmonitored 

study locations. For most of the key studies, pseudo-design values are available for locations 

accounting for more than 70% of the study population. However, for some studies, the 

percentages of study area populations living in locations with pseudo-design values are lower 

(Kloog et al., 2012; Lee et al., 2015; Pinault et al., 2016; Wang et al., 2017). To the extent 

unmonitored areas have generally lower ambient PM2.5 concentrations than monitored areas, 

our analyses of pseudo-design values could be biased toward the higher values present in 

monitored locations.  

• PM2.5 monitoring requirements have changed since the study periods covered by key studies. 

In particular, PM2.5 pseudo-design values during study periods do not reflect the near-road 

PM2.5 monitors that are now required in many large urban areas (discussed in section 

2.3.2.2.2 above). Had current requirements for near-road monitors been in place during study 
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periods, the maximum pseudo-design values in some counties could have been higher than 

those identified. Early data from near road monitors indicates that about half of urban areas 

with near-road monitors measured the highest annual design values at those monitors. Of the 

CBSAs with highest annual design values at near-road sites, those design values were, on 

average, 0.7 g/m3 higher than at the highest measuring non-near-road sites (range is 0.1 to 

2.0 g/m3 higher at near-road sites) (Table 2-2 above). 

The potential implications of these and other uncertainties for the primary PM2.5 standards are 

discussed in section 3.4 below.   

3.2.3.3  Conclusions from the Evidence 

 In reaching conclusions based on the evidence considered in section 3.2.3, we revisit the 

questions posed at the beginning of the section: 

• What are the short- or long-term PM2.5 exposures that have been associated with health 

effects and to what extent does the evidence support the occurrence of such effects for 

air quality meeting the current primary PM2.5 standards? 

To answer these questions, we draw on information from experimental studies, as discussed in 

section 3.2.3.1, and information from epidemiologic studies, as discussed in section 3.2.3.2.  

 With regard to the experimental evidence, we note that available controlled human 

exposure and animal toxicology studies provide general support for the plausibility of many of 

the serious health outcomes associated with estimated PM2.5 exposures in epidemiologic studies 

(U.S. EPA, 2019, Chapters 5 to 11). However, the PM2.5 exposure concentrations consistently 

shown to elicit effects across these studies are considerably higher than the ambient 

concentrations typically measured in the U.S. in recent years, and higher than the concentrations 

likely to occur in areas meeting the current primary standards (section 3.2.3.1). A limited number 

of experimental studies report effects following exposures to lower PM2.5 concentrations (Mauad 

et al. (2008); Cangerana Pereira et al. (2011),52 though still above typical ambient concentrations 

observed in locations meeting the current standards. Thus, while experimental studies support the 

plausibility of serious PM2.5-associated health effects, these studies provide limited insight into 

the occurrence of effects following PM2.5 exposures likely to occur in the ambient air in areas 

meeting the current primary PM2.5 standards.  

 With regard to the epidemiologic evidence, we first note that key studies conducted in the 

U.S. or Canada indicate positive and often statistically significant associations between estimated 

                                                 
52 Mauad et al. (2008) and Cangerana Pereira et al. (2011) report respiratory and cancer-related effects, respectively, 

in animals following long-term exposures to 16.8 and 17.7 g/m3 PM2.5. Hemmingsen et al. (2015b) reports 

cardiovascular effects in human volunteers following 5-hour exposures to an average of 24 g/m3 PM2.5. 

Additionally, the controlled human exposure study by Bräuner et al. (2008) reports no change in markers of 

cardiovascular function following 24-hour PM exposures to an average PM2.5 concentration of 10.5 g/m3.   
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PM2.5 exposures (short- or long-term) and mortality or morbidity across a broad range of ambient 

concentrations. These include associations based on PM2.5 air quality distributions lower than 

those in key studies from the last review.53 Based on the information in Figure 3-7 and Figure 3-

8, the large majority of key epidemiologic studies in the current review report health effect 

associations for air quality distributions characterized by overall mean PM2.5 concentrations 

ranging from 8.1 g/m3 to 16.5 g/m3, with mean concentrations in most of these studies (and all 

but one key U.S. study) at or above 9.6 g/m3. These include studies that report associations in a 

wide variety of populations, including studies examining substantial portions of the U.S. 

population and studies examining groups that may be at comparatively high risk (e.g., older 

adults, children). These studies employ various study designs and examine a wide variety of 

health outcomes, geographic areas, approaches to estimating PM2.5 exposures, and approaches to 

control for confounding. The evidence for associations at lower ambient concentrations (i.e., 

means < 8.0 g/m3) is more limited, with two studies conducted in Ontario reporting positive 

associations (statistically significant in one study) for PM2.5 air quality distributions 

characterized by overall mean concentrations around 7.0 g/m3 (Weichenthal et al., 2016c; 

Weichenthal et al., 2016b).  

Considering the PM2.5 concentrations around these overall means can provide insight into 

the part of the air quality distribution over which studies provide the strongest support for 

reported health effect associations. Evaluating whether such PM2.5 air quality distributions would 

be likely to occur in areas meeting the current (or alternative) primary standards can inform 

conclusions on the degree to which those standards would limit the potential for the long- and 

short-term PM2.5 exposures that support reported health effect associations. However, a 

limitation of considering study-reported mean PM2.5 concentrations to inform conclusions on the 

primary PM2.5 standards is that such concentrations, by themselves, do not indicate whether 

study areas would likely have met or violated the current standards (or alternatives).  

As discussed above (sections 3.2.3.2.1 and 3.2.3.2.2), the EPA uses design values at 

individual monitors to determine whether areas meet the NAAQS. Based on analyses of recent 

air quality in U.S. CBSAs, maximum annual PM2.5 design values for a given three-year period 

are often 10% to 20% higher than average concentrations over that period (i.e., averaged across 

monitors in the same CBSA) (Appendix B, Figure B-7 and Table B-9). These relationships 

suggest that areas with maximum annual PM2.5 design values of 12.0 g/m3 (i.e., just meeting the 

current annual standard) are likely to have long-term mean PM2.5 concentrations (i.e., averaged 

                                                 
53 In the last review key epidemiologic studies supporting “causal” or “likely to be causal” determinations examined 

distributions of ambient PM2.5 with overall mean concentrations at or above 12.8 g/m3 (U.S. EPA, 2011, Figure 

2-8). 
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across space and over time) that are somewhat below 12.0 g/m3 but still higher than the overall 

means reported by a number of key epidemiologic studies reporting PM2.5 health effect 

associations. This indicates that the current standards are likely to allow the distributions of 

short- and long-term PM2.5 exposures that are associated with health effects in some key studies.  

Another approach to examine the potential implications of key epidemiologic studies for 

the primary PM2.5 standards is to consider analyses of PM2.5 pseudo-design values in locations of 

those studies, thereby focusing on a study-related air quality metric that is more directly 

comparable to the levels of the primary PM2.5 standards. As illustrated in Figure 3-9, and in 

Figure B-9 in Appendix B, for several key studies with available pseudo-design values (9 of the 

studies evaluated), most of the study area populations lived in locations with air quality likely to 

have met both the annual and 24-hour PM2.5 standards over study periods (or most of health 

events occurred in such areas). For the U.S. studies in this group, annual pseudo-design values 

from 9.9 to 11.7 g/m3 correspond to 50th percentiles of study area populations (or health 

events). That is, 50% of the study area populations lived in locations with pseudo-design values 

below these concentrations, or 50% of the health events occurred in such locations. For the U.S. 

study reporting the lowest annual average concentrations (Shi et al., 2016), 75% of the study area 

population lived in locations with annual pseudo-design values below 11.0 g/m3. For the 

Canadian studies with the lowest ambient PM2.5 concentrations, annual pseudo-design values of 

about 7.3 to 7.4 g/m3 correspond to 50th percentiles of study area populations (or health events), 

and annual pseudo-design values from 8.4 to 8.6 g/m3 correspond to 75th percentiles.  

When the information summarized above is taken together, along with the uncertainties 

discussed in section 3.2.3.2 above, we reach the conclusion that a number of key epidemiologic 

studies report positive and statistically significant PM2.5 health effect associations based largely, 

or entirely, on air quality that is likely to be allowed by the current primary PM2.5 standards. Our 

consideration of the evidence and air quality information to inform conclusions on the primary 

PM2.5 standards is discussed further in section 3.4 below.  

3.3 RISK-BASED CONSIDERATIONS 

To inform conclusions regarding the primary PM2.5 standards that are “requisite” to 

protect the public health (i.e., neither more nor less stringent than necessary; section 1.2), it is 

important to consider the health risks that would be allowed under those standards. For the 

current standards, this means evaluating PM2.5-related health risks in locations with three-year 

annual PM2.5 design values of 12.0 g/m3 and/or three-year 24-hour design values of 35 g/m3 

(i.e., neither above nor below the levels of the current standards). Therefore, in addition to our 

evaluation of PM2.5 concentrations in locations of key epidemiologic studies (which are based on 

existing air quality; section 3.2.3.2), we use information from those studies in a risk assessment 
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that estimates population-level health risks associated with PM2.5 air quality that has been 

adjusted to simulate “just meeting” the current standards (i.e., design values equal to 12.0 g/m3 

and/or 35 g/m3). Given our conclusions based on the evidence (section 3.2.3.3), we also 

estimate risks associated with PM2.5 air quality adjusted to simulate “just meeting” alternative 

annual and 24-hour standards with lower levels. These risk estimates, when considered alongside 

analyses of the evidence discussed above in section 3.2.3, are meant to inform conclusions on the 

primary standards that would be requisite to protect the public health against long- and short-

term PM2.5 exposures. Our consideration of estimated risks focuses on addressing the following 

policy-relevant questions:  

• What are the estimated PM2.5-associated health risks for air quality just meeting the 

current primary PM2.5 standards?  

• To what extent are risks estimated to decline when air quality is adjusted to just meet 

potential alternative standards with lower levels?  

• What are the uncertainties and limitations in these risk estimates?  

 The sections below summarize our approach to estimating risks (section 3.3.1) and the 

results of the risk assessment (section 3.3.2). Additional detail on the risk assessment is provided 

in Appendix C.  

3.3.1 Overview of Approach to Estimating Risks 

Our general approach to estimating PM2.5-associated health risks combines 

concentration-response functions from epidemiologic studies with ambient PM2.5 concentrations 

corresponding to air quality scenarios of interest, baseline health incidence data, and population 

demographics for locations included in the risk assessment. Below we summarize key aspects of 

the risk modeling approach. Additional detail on the approach is provided in Appendix C 

(section C.1).  

• Study area selection: In selecting U.S. study areas for inclusion in the risk assessment, we 

focus on the following characteristics: 

− Available ambient monitors: We focus on areas with relatively dense ambient 

monitoring networks, where we have greater confidence in adjustments to 

modeled air quality concentrations in order to simulate “just meeting” the current 

and alternative primary PM2.5 standards (air quality adjustments are described in 

detail in Appendix C, section C.1.4).  

− Geographical Diversity: We focus on areas that represent a variety of regions 

across the U.S. and that include a substantial portion of the U.S. population.  

− PM2.5 air quality concentrations: We balance the value of including a broad array 

of study areas from across the U.S. against the larger uncertainty associated with 

air quality adjustments in certain areas. For example, many areas have recent air 

quality that meets the current primary PM2.5 standards. Inclusion of such areas in 
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the risk assessment necessitates an upward adjustment to PM2.5 air quality 

concentrations in order to simulate just meeting the current standards. Given 

uncertainty in how such increases could potentially occur, we select areas (i.e., 

CBSAs54) requiring either a downward adjustment to air quality or a relatively 

modest upward adjustment (i.e., no more than 2.0 g/m3 for the annual standard 

and 5 g/m3 for the 24-hour standard, based on the 2014-2016 design-value 

period). In addition, as discussed further in Appendix C (section C.1.4), we 

excluded several areas that appeared to be strongly influenced by exceptional 

events. Forty-seven urban study areas met these criteria (Figure 3-10 and 

Appendix C, section C.1.3), including 30 study areas where just meeting the 

current standards is controlled by the annual standard,55 11 study areas where just 

meeting the current standards is controlled by the daily standard,56 and 6 areas 

where the controlling standard differed depending on the air quality adjustment 

approach (Figure 3-10). 57   

                                                 
54 CBSAs (core-based statistical areas) can include one or more counties. Each CBSA selected included at least one 

monitor with valid design values and several CBSAs had more than 10 monitors. See Table C-3 in Appendix C. 

55 For these areas, the annual standard is the “controlling standard” because when air quality is adjusted to simulate 

just meeting the current or potential alternative annual standards, that air quality also would meet the 24-hour 

standard being evaluated.  

56 For these areas, the 24-hour standard is the controlling standard because when air quality is adjusted to simulate 

just meeting the current or potential alternative 24-hour standards, that air quality also would meet the annual 

standard being evaluated. Some areas classified as being controlled by the 24-hour standard also violate the 

annual standard.  

57 In these 6 areas, the controlling standard depended on the air quality adjustment method used and/or the standard 

scenarios evaluated.  



 

 3-83   

 

 

Figure 3-10. Map of 47 urban study areas included in risk modeling.   

 

• Health outcomes: The health outcomes evaluated in the risk assessment are (a) total 

mortality (all-cause and non-accidental), ischemic heart disease mortality, and lung cancer 

mortality associated with long-term PM2.5 exposures and (b) total mortality associated with 

short-term PM2.5 exposures (Table 3-4 below and Appendix C, section C.1.1). Evidence for 

these outcomes supports “causal” or “likely to be causal” determinations in the ISA (U.S. 

EPA, 2019).  

• Concentration-response functions: Concentration-response functions used in this risk 

assessment are from large, multicity U.S. epidemiologic studies that evaluate PM2.5 health 

effect associations (drawn from those identified above in Figures 3-3 to 3-6). The selection of 

specific epidemiologic studies and concentration-response functions for use in modeling risk 

is based on criteria that take into account factors such as study design, geographic coverage, 

demographic groups evaluated, and health endpoints examined. Information from these 

studies is summarized in Table 3-4. Additional detail regarding the selection of 

epidemiologic studies and specification of concentration-response functions can be found in 

Appendix C (section C.1.1).  



 

 3-84   

 

Table 3-4. Epidemiologic studies used to estimate PM2.5-associated risk. 

Epidemiology Study Study Populationa 
Age Range 

(years) 
Mortality Categories 

Covered 

Long-term mortality studies  

Jerrett et al., 2016 ACS 30+ IHD 

Pope et al., 2015 ACS 30+ All-cause, IHD 

Turner et al., 2016 ACS 30+ Lung cancer 

Thurston et al., 2016 AARP 55-85 All-cause 

Di et al., 2017b Medicare 65+ All-cause 

Short-term mortality  

Baxter et al., 2017 77 cities All ages Non-accidental 

Ito et al., 2013 NPACT All ages All cause 

Zanobetti et al., 2014 121 communities 65+ All cause 
aACS (American Cancer Survey), AARP (American Association of Retired Persons), NPACT (National Particle 
Components Toxicity). See Appendix C Table C-1 for additional study details. 

 

 

• PM2.5 air quality scenarios evaluated: We first estimate health risks associated with air 

quality adjusted to simulate “just meeting” the current primary PM2.5 standards (i.e., the 

annual standard with its level of 12.0 µg/m3 and the 24-hour standard with its level of 35 

µg/m3). We additionally evaluate the potential for alternative annual standards with levels of 

9.0, 10.0 and 11.0 µg/m3 to reduce estimated risk, relative to the current standards. As 

discussed above (section 3.1.2), there is greater uncertainty regarding whether a revised 24-

hour standard (i.e., with a lower level) would appropriately limit PM2.5-associated health 

risks by limiting the PM2.5 concentrations that make up the middle portion of the air quality 

distribution (i.e., where epidemiologic studies provide the strongest support for reported 

associations). However, we recognize the potential for considering a revised 24-hour 

standard in this review (discussed below in section 3.5.2.4.2). Therefore, to provide insight 

into the possible public health implications of a revised 24-hour standard, we also examine 

an alternative 24-hour standard with a level of 30 µg/m3.58  

• Model-based approach to adjusting air quality: Air quality modeling is used to simulate 

just meeting the current standards and alternative standards with levels of 10.0 µg/m3 

(annual) and 30 µg/m3 (24-hour). The air quality modeling employs a hybrid approach that 

combines CMAQ-modeled surfaces59 and ambient monitoring data to generate ambient PM2.5 

estimates for 2015 on a national grid with 12-km horizontal resolution (downscaler). The 

modeled 2015 PM2.5 concentrations were then adjusted using one of two approaches60 for 

each air quality scenario (discussed in detail in Appendix C, section C.1.4):  

                                                 
58 We also estimate population risks for recent (i.e., unadjusted) ambient PM2.5 concentrations (Appendix C).  

59 https://www.epa.gov/cmaq 

60 These two modeling approaches provided sensitivity analyses on key aspects of the HHRA and are not additive. 

 

https://www.epa.gov/cmaq
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− Reductions in primarily-emitted PM2.5 (Pri-PM): This approach simulates air 

quality scenarios of interest by preferentially adjusting modeled directly emitted 

PM.61  

− Reductions in secondarily produced PM2.5 (Sec-PM): This approach simulates air 

quality scenarios of interest by preferentially adjusting modeled SO2 and NOX 

precursor emissions to simulate changes in secondarily formed PM2.5.
62  

• Linear interpolation/extrapolation to additional annual standard levels: In addition to 

the hybrid modeling approach described above, we also employ linear interpolation and 

extrapolation to simulate just meeting alternative annual standards with levels of 11.0 (i.e., 

interpolated between 12.0 and 10.0 g/m3) and 9.0 g/m3 (i.e., extrapolated from 12.0 and 

10.0 g/m3), respectively (illustrated in Figure 3-11). This interpolation/extrapolation was 

only performed for the subset of 30 urban study areas where the annual standard was 

controlling in all air quality scenarios evaluated.  

 

Figure 3-11. Illustration of approach to adjusting air quality to simulate just meeting 

annual standards with levels of 11.0 and 9.0 µg/m3. 

• Characterization of variability and uncertainty in the risk estimates: Both quantitative 

and qualitative methods have been used to characterize variability and uncertainty in the risk 

estimates (Appendix C, section C.3), including: 

− Inclusion of 95 percent confidence intervals for risk estimates: When modeling 

risk, we generate confidence intervals for each risk estimate. The confidence 

intervals reflect the standard error associated with the effect estimate reported in 

the epidemiologic study that is used to estimate risk.  

− Sensitivity analyses: For several of the mortality endpoints, we include a range of 

risk estimates reflecting epidemiology studies conducted in various populations 

and using a variety of study designs (e.g., differing in the methods used to 

estimate exposures and to control for potential confounders). We also estimate 

risk using two approaches to adjust air quality to simulate just meeting the current 

and alternative standards (i.e., Pri-PM and Sec-PM adjustment approaches).  

                                                 
61 In locations for which air quality scenarios cannot be simulated by adjusting modeled directly emitted PM alone, 

modeled SO2 and NOX precursor emissions are additionally adjusted to simulate changes in secondarily formed 

PM2.5 (Appendix C, section C.1.4).  

62 In locations for which air quality scenarios cannot be simulated by adjusting modeled precursor emissions alone, a 

proportional adjustment of air quality is subsequently applied (Appendix C, section C.1.4). 
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− Qualitative uncertainty assessment: We additionally perform qualitative 

evaluations of the potential for key sources of uncertainty to impact the magnitude 

and direction of risk estimates (Appendix C, section C.3.2).  

3.3.2 Results of the Risk Assessment  

This section presents estimates of PM2.5-associated mortality risks for urban study areas 

(additional results are available in Appendix C, section C.2). These results are shown as point 

estimates with 95 percent confidence intervals for air quality adjusted to simulate just meeting 

the current, and potential alternative, standards. For alternative standards, we provide tables that 

include the total or absolute risk,  the change in or delta risk, and the percent risk reduction.63 

We also quantify the percent of baseline incidence, which estimates the percent of total 

incidence (i.e., the total public health burden associated with that health effect) that is associated 

with ambient PM2.5 exposure.64 In addition to tables, we also provide figures to illustrate how 

risks are distributed across annual average ambient PM25 concentrations. Figures present results 

for IHD mortality associated with long-term PM2.5 exposures, based on the study by Jerrett et al. 

(2016). Additional results are presented in Appendix C (section C.2).   

 The sections below present risk estimates for the full set of 47 modeled urban study areas 

(section 3.3.2.1), the subset of 30 areas for which the annual PM2.5 standard is controlling 

(section 3.3.2.2), and the subset of 11 areas for which the 24-hour PM2.5 standard is controlling 

(section 3.3.2.3). Uncertainties in the risk assessment are summarized in section 3.3.2.4.  

3.3.2.1  Summary of Risk Estimates for 47 Urban Study Areas 

Risk estimates for the 47 urban study areas are presented in Table 3-5 and Table 3-6. 

Table 3-5 presents absolute risk estimates for air quality just meeting the current primary PM2.5 

standards and alternative standards. Table 3-6 presents differences in estimated risk between air 

quality just meeting the current standards and air quality just meeting alternative standards. More 

specifically, the risk estimates presented in the column labeled “Alternative Annual Standard (10 

ug/m3)” reflect the reductions estimated (compared to the current standards) in the subset of 

study areas for which the alternative annual standard, with a level of 10.0 g/m3, is controlling. 

Risk estimates presented in the column labeled “Alternative 24-hour Standard (30 ug/m3)” reflect 

the reductions estimated in the subset of study areas for which the alternative 24-hour standard, 

                                                 
63 Absolute risk refers to risk associated with the full increment of exposure associated with either the current or 

alternative standard. Both delta risk and percent risk reduction reflect the change in risk in going from the current 

standard to a specific alternative standard, with delta risk referring to the change in incidence (i.e., premature 

PM2.5-attributable mortality) and percent risk reduction referring to the percent change when comparing risk 

under the current standard to risk under simulation of an alternative standard.  

64 In other words, the percent of the effect associated with PM2.5 exposure. For example, risk results estimate that 13-

14% of all IHD mortality in 2015 was associated with PM2.5 exposure (Table 3-5). 
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with a level of 30 g/m3, is controlling. The smaller reductions estimated for the alternative 24-

hour standard reflect the smaller number of study areas controlled by the 24-hour standard and 

the relatively small population in those areas. Key observations from these results are 

summarized below.  

Table 3-5. Estimates of PM2.5-associated mortality for air quality adjusted to just meet the 

current or alternative standards (47 urban study areas).  

 

 

Alternative Annual 

(10 µg/m3) 

Alternative 24-hr 

(30 µg/m
3
)

Long-term exposure related mortality

IHD Jerrett 2016 Pri-PM 16,500 (12,600-20,300) 14.1 14,400 (11,000-17,700) 16,400 (12,500-20,000)

Sec-PM 16,800 (12,800-20,500) 14.3 14,200 (10,900-17,500) 16,500 (12,600-20,200)

Pope 2015 Pri-PM 15,600 (11,600-19,400) 13.3 13,600 (10,100-17,000) 15,400 (11,500-19,200)

Sec-PM 15,800 (11,800-19,600) 13.4 13,400 (9,970-16,700) 15,600 (11,600-19,400)

All-cause Di 2017 Pri-PM 46,200 (45,000-47,500) 8.4 40,300 (39,200-41,400) 45,700 (44,500-47,000)

Sec-PM 46,900 (45,600-48,200) 8.5 39,700 (38,600-40,800) 46,200 (44,900-47,500)

Pope 2015 Pri-PM 51,300 (41,000-61,400) 7.1 44,700 (35,700-53,500) 50,700 (40,500-60,700)

Sec-PM 52,100 (41,600-62,300) 7.2 44,000 (35,100-52,700) 51,300 (41,000-61,400)

Thurston 2015 Pri-PM 13,500 (2,360-24,200) 3.2 11,700 (2,050-21,100) 13,300 (2,330-24,000)

Sec-PM 13,700 (2,400-24,600) 3.2 11,500 (2,010-20,700) 13,500 (2,360-24,200)

Lung cancer Turner 2016 Pri-PM 3,890 (1,240-6,360) 8.9 3,390 (1,080-5,560) 3,850 (1,230-6,300)

Sec-PM 3,950 (1,260-6,460) 9.1 3,330 (1,060-5,470) 3,890 (1,240-6,370)

Short-term exposure related mortality

All cause Baxter 2017 Pri-PM 2,490 (983-4,000) 0.4 2,160 (850-3,460) 2,460 (970-3,950)

Sec-PM 2,530 (998-4,060) 0.4 2,120 (837-3,400) 2,490 (982-3,990)

Ito 2013 Pri-PM 1,180 (-16-2,370) 0.2 1,020 (-14-2,050) 1,160 (-16-2,340)

Sec-PM 1,200 (-16-2,400) 0.2 1,000 (-14-2,020) 1,180 (-16-2,370)

Zanobetti 2014 Pri-PM 3,810 (2,530-5,080) 0.7 3,300 (2,190-4,400) 3,760 (2,500-5,020)

Sec-PM 3,870 (2,570-5,160) 0.7 3,250 (2,160-4,330) 3,810 (2,530-5,070)

** CS denotes the current standard.

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

Alternative Standard Absolute Risk

Endpoint Study

Air quality 

simulation 

approach*

Current Standad 

Absolute Risk  

(12/35 µg/m
3
)

CS (12/35) 

% of 

baseline**
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Table 3-6. Estimated reduction in PM2.5-associated mortality for alternative annual and 24-

hour standards (47 urban study areas).  

 

 

Drawing from the information in Table 3-5 and Table 3-6, we make the following key 

observations:  

• Air quality adjusted to simulate just meeting the current PM2.5 standards  

− Long-term PM2.5 exposures are estimated to be associated with as many as 52,100 

premature deaths (all-cause), including 16,800 IHD deaths and 3,950 lung cancer 

deaths, annually across the 47 study areas (and approximately 54 million people 

over the age of 30). These estimates account for approximately 3-9% of all-cause, 

13-14% of IHD, and 9% of lung cancer mortality in these areas, respectively.65  

− Short-term PM2.5 exposures are estimated to be associated with up to 3,870 deaths 

annually across the 47 study areas.  

− The approach used to adjust air quality (i.e., Pri-PM and Sec-PM) did not have a 

substantial impact on overall risk estimates (also see Appendix C, section C.1.4) 

• Air quality adjusted to just meet potential alternative standards 

                                                 
65 Mortality risk estimates for specific endpoints (e.g., IHD and lung cancer) are distinct subsets of total mortality. 

CS-AS 

Annual Standard 

(10 µg/m
3
)**

CS-AS 

24-hr Standard

(30 µg/m
3
)**

Annual 

Standard 

(12-10) 

24-hr 

Standard 

(35-30) 

Long-term exposure related mortality

IHD Jerrett 2016 Pri-PM 2,390 (1,800-2,970) 200 (150-249) 12.6 1.1

Sec-PM 2,870 (2,160-3,570) 266 (200-331) 15.0 1.4

Pope 2015 Pri-PM 2,240 (1,640-2,830) 187 (137-237) 12.7 1.1

Sec-PM 2,690 (1,970-3,400) 250 (183-315) 15.1 1.4

All-cause Di 2017 Pri-PM 6,440 (6,260-6,630) 573 (557-589) 12.9 1.2

Sec-PM 7,800 (7,580-8,020) 772 (750-793) 15.4 1.5

Pope 2015 Pri-PM 7,100 (5,640-8,550) 644 (511-776) 13.0 1.2

Sec-PM 8,630 (6,860-10,400) 828 (658-997) 15.6 1.5

Thurston 2015 Pri-PM 1,830 (316-3,320) 168 (29-305) 13.2 1.2

Sec-PM 2,230 (387-4,060) 209 (36-381) 15.9 1.5

Lung cancer Turner 2016 Pri-PM 548 (170-921) 42 (13-70) 13.0 1.0

Sec-PM 670 (208-1,120) 61 (19-102) 15.6 1.4

Short-term exposure related mortality

All cause Baxter 2017 Pri-PM 335 (132-537) 30 (12-48) 13.5 1.3

Sec-PM 408 (160-654) 39 (15-62) 16.1 1.6

Ito 2013 Pri-PM 158 (-2-317) 14 (0-29) 13.4 1.2

Sec-PM 192 (-3-386) 18 (0-37) 16.1 1.5

Zanobetti 2014 Pri-PM 513 (341-684) 46 (30-61) 13.4 1.2

Sec-PM 622 (413-830) 62 (41-82) 16.0 1.6

** CS denotes the current standard and AS denotes the alternative standard.

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

Endpoint Study

Air quality 

simulation 

approach*

Delta Risk % Risk Reduction



 

 3-89   

 

− Compared to the current standards, risks are estimated to decrease when air 

quality is adjusted to just meet an alternative annual standard with a level of 10.0 

g/m3 or an alternative 24-hour standard with a level of 30 g/m3 (Table 3-6).66  

− Substantially larger risk reductions are estimated in the urban study areas for 

which the annual standard is controlling than in the study areas for which the 24-

hour standard is controlling, reflecting the larger population in the study areas 

controlled by the annual standard.  

− The approach used to adjust air quality did not have a substantial impact on 

estimated reductions in PM2.5-associated mortality.   

3.3.2.2  Summary of Risk Estimates for a Broader Range of Alternative Annual Standards   

This section explores the potential impacts of a range of alternative annual standard 

levels using interpolation and extrapolation of the modeled PM2.5 concentrations. Table 3-7 and 

Table 3-8 below present mortality risk estimates for potential alternative annual standards with 

levels of 11.0, 10.0, and 9.0 µg/m3, based on the subset of 30 urban study areas for which the 

annual standard is controlling under all air quality scenarios evaluated. Figure 3-12 and Figure 3-

13 present distributions of absolute (total) risk associated with air quality adjusted to just meet 

the current and alternative annual standards and the risk reductions estimated for each alternative 

annual standard (relative to the current standard), respectively.67 

                                                 
66 In most study areas, the risk reductions presented for an annual standard with a level of 10.0 µg/m3 reflect the 

difference between air quality with a maximum three-year design value of 12.0 µg/m3 and air quality with a 

maximum three-year design value of 10.0 µg/m3. Similarly, in most study areas, the risk reduction presented for a 

24-hour standard with a level of 30 µg/m3 reflects the difference between air quality with a maximum three-year 

design value of 35 µg/m3 and air quality with a maximum three-year design value of 30 µg/m3. However, in a 

small number of study areas, the “starting concentration” for the annual standard are below 12.0 µg/m3 (four 

study areas: Riverside-San Bernardino-Ontario, CA; Stockton-Lodi, CA; Bakersfield, CA; and Hanford-

Corcoran, CA) or the starting concentration for the 24-hr standard are below 35 µg/m3 (two study areas 

Pittsburgh, PA  and South Bend-Mishawaka, IN-MI:). This is because, in these areas, the controlling standard for 

air quality adjusted to just meet the current standards is different from the controlling standard for air quality 

adjusted to simulate just meeting the alternatives evaluated.  

67 As noted above, Figure 3-12 and Figure 3-13 present estimates of IHD mortality associated with long-term PM2.5 

exposures, based on the study by Jerrett et al. (2016).  
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Table 3-7. Estimates of PM2.5-associated mortality for the current and potential alternative 

annual standards in the 30 study areas where the annual standard is controlling.  

 

  

11 µg/m
3

10 µg/m
3

9 µg/m
3

IHD Jerrett 2016 Pri-PM 14,300 (10,900-17,500) 14.1 13,300 (10,200-16,300) 12,300 (9,400-15,100) 11,300 (8,610-13,900)

Sec-PM 14,600 (11,100-17,800) 14.3 13,300 (10,200-16,400) 12,100 (9,240-14,900) 10,900 (8,280-13,400)

Pope 2015 Pri-PM 13,500 (10,100-16,800) 13.3 12,500 (9,340-15,600) 11,600 (8,620-14,500) 10,600 (7,900-13,300)

Sec-PM 13,700 (10,200-17,000) 13.4 12,600 (9,360-15,600) 11,400 (8,480-14,200) 10,200 (7,590-12,800)

All-cause Di 2017 Pri-PM 39,800 (38,700-40,900) 8.4 36,900 (35,900-38,000) 34,100 (33,200-35,000) 31,200 (30,400-32,100)

Sec-PM 40,500 (39,400-41,600) 8.5 37,000 (36,000-38,000) 33,500 (32,600-34,400) 29,900 (29,100-30,800)

Pope 2015 Pri-PM 44,200 (35,300-52,800) 7.1 41,000 (32,800-49,100) 37,800 (30,200-45,300) 34,600 (27,600-41,500)

Sec-PM 45,000 (35,900-53,800) 7.2 41,000 (32,800-49,100) 37,100 (29,600-44,500) 33,200 (26,500-39,700)

Thurston 2015 Pri-PM 11,600 (2,030-20,800) 3.2 10,700 (1,880-19,300) 9,900 (1,730-17,800) 9,050 (1,580-16,300)

Sec-PM 11,800 (2,070-21,200) 3.2 10,800 (1,880-19,400) 9,710 (1,700-17,500) 8,650 (1,510-15,600)

Lung cancer Turner 2016 Pri-PM 3,400 (1,080-5,550) 8.9 3,160 (1,010-5,170) 2,920 (927-4,790) 2,670 (847-4,400)

Sec-PM 3,460 (1,110-5,650) 9.1 3,160 (1,010-5,180) 2,860 (908-4,700) 2,560 (809-4,210)

All cause Baxter 2017 Pri-PM 2,150 (846-3,440) 0.4 1,990 (784-3,190) 1,830 (721-2,930) 1,670 (658-2,680)

Sec-PM 2,190 (862-3,510) 0.4 1,990 (785-3,190) 1,790 (707-2,880) 1,600 (630-2,560)

Ito 2013 Pri-PM 1,010 (-14-2,040) 0.2 939 (-13-1,880) 864 (-12-1,730) 789 (-11-1,580)

Sec-PM 1,030 (-14-2,070) 0.2 940 (-13-1,890) 847 (-11-1,700) 754 (-10-1,510)

Zanobetti 2014 Pri-PM 3,280 (2,180-4,370) 0.7 3,040 (2,020-4,050) 2,790 (1,860-3,730) 2,550 (1,700-3,400)

Sec-PM 3,340 (2,220-4,450) 0.7 3,040 (2,020-4,050) 2,740 (1,820-3,650) 2,440 (1,620-3,260)

Long-term exposure related mortality

Alternative Annual Standard (absolute risk)

Endpoint Study

Air quality 

simulation 

approach*

Current Standad 

Absolute Risk  

(12/35 µg/m
3
)

CS (12/35 

µg/m3) 

% of 

baseline**

Short-term exposure related mortality

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

** CS denotes the current standard.
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Table 3-8. Estimated delta and percent reduction in PM2.5-associated mortality for the 

current and potential alternative annual standards in the 30 study areas where the 

annual standard is controlling. 

 

 

12-11 µg/m
3

12-10 µg/m
3

12-9 µg/m
3

 12-11

µg/m
3

 12-10

µg/m
3

 12-9

µg/m
3

IHD Jerrett 2016 Pri-PM 1,140 (859-1,420) 2,270 (1,710-2,830) 3,390 (2,550-4,210) 7% 14% 21%

Sec-PM 1,400 (1,050-1,740) 2,770 (2,090-3,450) 4,130 (3,110-5,130) 8% 17% 25%

Pope 2015 Pri-PM 1,070 (785-1,360) 2,130 (1,560-2,690) 3,180 (2,340-4,010) 7% 14% 21%

Sec-PM 1,310 (960-1,660) 2,600 (1,910-3,280) 3,880 (2,850-4,890) 8% 17% 25%

All-cause Di 2017 Pri-PM 3,070 (2,980-3,160) 6,120 (5,950-6,300) 9,150 (8,890-9,410) 7% 14% 21%

Sec-PM 3,800 (3,690-3,900) 7,560 (7,340-7,770) 11,300 (11,000-11,600) 9% 17% 26%

Pope 2015 Pri-PM 3,390 (2,690-4,080) 6,760 (5,370-8,140) 10,100 (8,030-12,200) 7% 14% 22%

Sec-PM 4,190 (3,330-5,050) 8,350 (6,640-10,100) 12,500 (9,930-15,000) 9% 17% 26%

Thurston 2015 Pri-PM 871 (151-1,590) 1,740 (301-3,170) 2,610 (452-4,740) 7% 15% 22%

Sec-PM 1,080 (187-1,970) 2,160 (374-3,930) 3,230 (561-5,870) 9% 18% 27%

Lung cancer Turner 2016 Pri-PM 262 (81-441) 522 (162-877) 780 (243-1,310) 7% 14% 21%

Sec-PM 327 (101-550) 651 (202-1,090) 972 (303-1,630) 9% 17% 26%

All cause Baxter 2017 Pri-PM 160 (63-256) 319 (126-512) 478 (188-767) 7% 15% 22%

Sec-PM 197 (78-316) 394 (155-632) 592 (233-948) 9% 18% 27%

Ito 2013 Pri-PM 75 (-1-151) 150 (-2-302) 226 (-3-453) 7% 15% 22%

Sec-PM 93 (-1-187) 186 (-2-374) 279 (-4-561) 9% 18% 27%

Zanobetti 2014 Pri-PM 244 (162-325) 487 (324-650) 731 (486-975) 7% 15% 22%

Sec-PM 301 (200-402) 603 (400-804) 904 (600-1,210) 9% 18% 27%

Long-term exposure related mortality

Short-term exposure related mortality

Endpoint Study

Air quality 

simulation 

approach*

Delta Risk (CS-AS)**

% Risk Reduction 

(CS-AS)**

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

** CS denotes the current standard and AS denotes the alternative standard.
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Figure 3-12. Distribution of absolute risk estimates (PM2.5-associated mortality) for the 

current and alternative annual standards for the subset of 30 urban study areas where 

the annual standard is controlling (blue and green lines represent the Pri-PM2.5 and 

Sec-PM2.5 estimates, respectively).68 

  

                                                 
68 In Figure 3-12, risk estimates are rounded toward zero into whole PM2.5 concentration values (e.g., risk estimate at 

10 µg/m3 includes risk occurring at 10.0-10.9 µg/m3). Risk is estimated in this figure using Jerrett et al., 2016. For 

each standard, a small amount of risk is estimated at concentrations higher than the level of the annual standard 

(e.g., some risk is estimated at an average concentration of 13 µg/m3 when air quality is adjusted to just meet the 

current standard). This can result because risk estimates are for a single year (i.e., 2015) within the 3-year design 

value period (i.e., 2014 to 2016). While the three-year average design value is 12.0 µg/m3, a single year can have 

grid cells with annual average concentrations above or below 12.0 µg/m3.  
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Figure 3-13. Distribution of the difference in risk estimates between the current annual 

standard (level of 12.0 µg/m3) and alternative annual standards with levels of 11.0, 10.0, 

and 9.0 µg/m3 for the subset of 30 urban study areas where the annual standard is 

controlling.69 

Drawing from the information in Table 3-7, Table 3-8, Figure 3-12, and Figure 3-13, we 

note the following key observations:   

• For air quality just meeting the current annual standard, in the subset of 30 study areas in 

which the annual standard is controlling, long-term PM2.5 exposures are estimated to be 

associated with as many as 45,000 total deaths and 14,600 IHD deaths annually, accounting 

for approximately 3-9% and 13-14% of baseline mortality, respectively. The majority of this 

estimated risk is associated with annual average PM2.5 concentrations from 10 to 12 µg/m3 

(Figure 3-12).  

• Compared to the current annual standards, air quality adjusted to meet alternative annual 

standards with lower levels is associated with reductions in estimated IHD mortality risk 

across the 30 study areas (i.e., 7 to 9% reduction for a level of 11.0 µg/m3; 14 to 18% 

reduction for a level of 10.0 µg/m3; 21 to 27% reduction for a level of 9.0 µg/m3) (Table 3-8 

and Figure 3-12).  

• The magnitude of estimated risk reduction increases as alternative annual standards with 

lower levels are simulated, and these estimated risk reductions are associated with lower 

ambient PM2.5 concentrations. Specifically, for air quality adjusted to simulate just meeting 

an annual standard with a level of 11.0 µg/m3, the majority of risk reduction occurs in grid 

cells with ambient PM2.5  concentrations between 9 and 11 µg/m3; for air quality adjusted to 

simulate just meeting an annual standard with a level of 10.0 µg/m3, the majority of risk 

reduction occurs in grid cells with ambient PM2.5 concentrations between 8 and 10 µg/m3; 

and for air quality adjusted to simulate just meeting an annual standard with a level of 9.0 

µg/m3, the majority of risk reduction occurs in grid cells with ambient PM2.5 concentrations 

between 7 and 9 µg/m3 70 (Figure 3-13).   

                                                 
69 Risks are presented as integers rounded to three significant digits and aggregated into 1 µg/m3 bins. Bins begin at 

the whole number value indicated and include values up to, but not including, the next whole number (e.g., risk 

occurring at PM concentrations of 6.00 to 6.99 are shown in the bin at 6). Risk is estimated in this figure using 

Jerrett et al. (2016).  

70 Compared to adjusting primary PM2.5 emissions, adjustment of PM precursor emissions resulted in substantially 

larger estimated risk reductions at 7 µg/m3.  

2 3 4 5 6 7 8 9 10 11 12 13

Pri-PM 0 0 1 4 6 14 52 160 621 267 20 0 1,140

Sec-PM 0 0 1 3 9 14 54 258 731 295 30 0 1,400

Pri-PM 0 0 6 4 27 53 257 1,300 596 33 0 0 2,270

Sec-PM 0 0 8 9 30 121 639 1,350 583 28 0 0 2,770

Pri-PM 0 1 9 27 37 281 1,860 1,110 60 0 0 0 3,390

Sec-PM 0 1 15 34 199 1,090 1,970 810 16 0 0 0 4,130

Total
Annual PM Concentration (1  µg/m3 bins)

12-11 µg/m3

12-10 µg/m3

12-9 µg/m3

Annual Standard 

Change

Simulation 

Method
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3.3.2.3  Summary of Risk Estimates for a Potential Alternative 24-Hour Standard 

Table 3-9 presents risk estimates and key observations for the subset of 11 urban study 

areas in which the 24-hour standard controls the simulated attainment of all modeled standard 

levels. For air quality just meeting the current 24-hour standard, long-term PM2.5 exposures are 

estimated to be associated with as many as 2,970 total deaths and 870 IHD deaths annually, 

accounting for approximately 3-8% and 12-13% of baseline mortality, respectively. Compared to 

the current standard, air quality just meeting an alternative 24-hour standard with a level of 30 

µg/m3 is associated with reductions in estimated risk of 14 to 18%.  

Table 3-9. Estimates of PM2.5-associated mortality for the current 24-hour standard, and 

an alternative, in the 11 study areas where the 24-hour standard is controlling. 

 

3.3.2.4  Variability and Uncertainty in Risk Estimates 

We characterize variability and uncertainty associated with risk estimates using several 

quantitative and qualitative approaches, as described in detail in Appendix C (section C.3). 

Approaches to addressing key uncertainties include the following:  

• Evaluating various effect estimates for the same health endpoint: In some instances, the 

effect estimate used has only a small impact on risk estimates (i.e., IHD mortality using 

effect estimates from Jerrett et al., 2016) versus Pope et al., 2015), see Table 3-5). By 

contrast, for other mortality endpoints, such as all-cause mortality associated with long-term 

exposures (e.g., Di et al., 2017b) and Pope et al. (2015) versus Thurston et al., 2016)), the use 

of different effect estimates can have a larger impact (Table 3-5). The degree to which 

IHD Jerrett 2016 Pri-PM 870 (665-1,070) 13.3 769 (586-945) 115 (87-144) 14%

Sec-PM 862 (658-1,060) 13.1 786 (599-965) 87 (65-108) 17%

Pope 2015 Pri-PM 820 (610-1,020) 12.5 724 (538-903) 108 (79-137) 14%

Sec-PM 811 (604-1,010) 12.4 739 (550-922) 82 (60-103) 17%

All-cause Di 2017 Pri-PM 2,650 (2,570-2,720) 7.7 2,320 (2,260-2,390) 348 (338-358) 14%

Sec-PM 2,630 (2,550-2,700) 7.6 2,390 (2,330-2,460) 249 (242-256) 17%

Pope 2015 Pri-PM 2,970 (2,370-3,560) 6.5 2,600 (2,080-3,120) 388 (308-467) 14%

Sec-PM 2,950 (2,350-3,530) 6.4 2,680 (2,140-3,220) 279 (222-336) 17%

Thurston 2015 Pri-PM 778 (136-1,400) 2.9 681 (119-1,230) 99 (17-181) 15%

Sec-PM 771 (135-1,390) 2.9 701 (123-1,260) 72 (13-131) 18%

Lung cancer Turner 2016 Pri-PM 183 (58-300) 8.4 161 (51-265) 24 (7-40) 14%

Sec-PM 181 (58-297) 8.3 165 (52-270) 18 (6-30) 17%

All cause Baxter 2017 Pri-PM 142 (56-228) 0.3 124 (49-199) 18 (7-29) 15%

Sec-PM 141 (56-226) 0.3 128 (51-206) 13 (5-21) 18%

Ito 2013 Pri-PM 69 (-1-138) 0.1 60 (-1-120) 9 (0-18) 15%

Sec-PM 68 (-1-137) 0.1 62 (-1-124) 6 (0-13) 18%

Zanobetti 2014 Pri-PM 217 (145-290) 0.6 190 (126-253) 28 (18-37) 15%

Sec-PM 216 (143-287) 0.6 196 (130-261) 20 (13-26) 18%

** CS denotes the current standard and AS denotes the alternative standard.

Long-term exposure related mortality

Short-term exposure related mortality

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

Delta Risk: CS-AS 

(daily 30 µg/m
3
)**

% Risk 

Reduction 

(CS-AS)**

Alternative Standard 

Absolute Risk 

(30 µg/m
3
)Endpoint Study

Air quality 

simulation 

approach*

Current Standad 

Absolute Risk  

(12/35 µg/m
3
)

CS 

(12/35 µg/m
3
) 

% of baseline**
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different concentration-response functions result in different risk estimates could reflect 

differences in study design and/or study populations evaluated, as well as other factors.  

• Evaluating multiple methods for simulating air quality scenarios: The approach used to 

adjust air quality (i.e., Pri-PM and Sec-PM adjustments) has little impact on overall estimates 

of risk (e.g., see Table 3-5). However, the adjustment approach has a larger impact on the 

distribution of risk reductions, particularly for the level of 9.0 g/m3 (Figure 3-13).   

• Characterizing the 95 percent confidence intervals associated with risk estimates: There 

is considerable variation in the range of confidence intervals associated with the point 

estimates generated for this analysis (see Table 3-5), with some health endpoint/study 

combinations displaying substantially greater variability than others (e.g., short-term PM2.5 

exposure and all-cause mortality based on effect estimates from Ito et al. (2013) versus long-

term PM2.5 exposure IHD mortality estimates based on Jerrett et al. (2016)). There are a 

number of factors potentially responsible for the varying degrees of statistical precision in 

effect estimates, including sample size, exposure measurement error, degree of control for 

confounders/effect modifiers, and variability in PM2.5 concentrations.  

• Qualitative assessment of additional sources of uncertainty: Based in part on WHO 

(2008) guidance and on guidance documents developed by the EPA (U.S. EPA, 2001, U.S. 

EPA, 2004), we have also completed a qualitative characterization of sources of uncertainty 

including an assessment of both the magnitude and direction of impact of those uncertainties 

on risk estimates. The classification of the magnitude of impact for sources of uncertainty 

includes three levels: (a) low (unlikely to produce a sufficient impact on risk estimates to 

affect their interpretation), (b) medium (potential to have a sufficient impact to affect 

interpretation), and (c) high (likely to have an impact sufficient to affect interpretation). For 

several of the sources, we provide a classification between these levels (e.g., low-medium, 

medium-high).71 Sources of uncertainty given at least a medium classification include the 

following (from Appendix C, Table C-32):72  

o Use of air quality modeling to adjust PM2.5 concentrations: The baseline 

and adjusted air quality concentration fields were developed using modeling 

to fill spatial and temporal gaps in monitoring and explore “what if” scenarios. 

State-of-the-science modeling methods were used, but modeling-related biases 

and errors introduce uncertainty into the PM2.5 concentration estimates. In 

addition, due to the national scale of the assessment, scenarios are based on 

changing modeled emissions of primary PM2.5 or NOX and SO2 from all 

anthropogenic sources throughout the U.S. by fixed percentages. Although 

this approach tends to target the key sources in each area, it does not tailor 

                                                 
71 Additional information is available in Appendix C, section C.3.  

72 We also identified several additional factors judged to have less than a medium classification of impact on the risk 

estimates generate, including: (a) the temporal mismatch between ambient air quality data characterizing 

exposure and mortality in long-term exposure-related epidemiology studies, (b) compositional and source 

differences in PM, (c) exposure measurement error in epidemiology studies assessing the relationship between 

mortality and exposure to ambient PM2.5, (d) lag structure in short-term exposure-related mortality epidemiology 

studies, and (e) assumed causal association between PM and mortality that supports modeling changes in risk 

associated with future changes in ambient PM2.5. See Table C-32 in Appendix C for additional discussion of these 

sources of uncertainty. 
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emission changes to specific periods or sources. The two adjustment cases 

span a wide range of emission conditions, but these cases are necessarily a 

subset of the full set of possible emission scenarios that could be used to 

adjust PM2.5 concentrations to simulate “just meeting” standards.  

o Use of linear interpolation/extrapolation to adjust air quality: The use of 

interpolation and extrapolation to simulate just meeting annual standards with 

levels of 11.0 and 9.0 g/m3, respectively, does not fully capture potential 

non-linearities associated with real-world changes in air quality.  

o Potential confounding of the PM2.5-mortality effect: Factors are considered 

potential confounders if demonstrated in the scientific literature to be related 

to health effects and correlated with PM2.5. Omitting potential confounders 

from analyses could either increase or decrease the magnitude of PM2.5 effect 

estimates (e.g., Di et al., 2017b, Figure S2 in Supplementary Materials). Thus, 

not accounting for confounders can introduce uncertainty into effect estimates 

and, consequently, into the risk estimates generated using those effect 

estimates. Confounders vary according to study design, exposure duration, 

and health effect. For studies of short-term exposures, confounders may 

include meteorology (e.g., temperature, humidity), day of week, season, 

medication use, allergen exposure, and long-term temporal trends. For studies 

of long-term exposures, confounders may include socioeconomic status, race, 

age, medication use, smoking status, stress, noise, and occupational 

exposures. While various approaches to control for potential confounders have 

been adopted across the studies used in the risk assessment, and across the 

broader body of PM2.5 epidemiologic studies assessed in the ISA, no 

individual study adjusts for all potential confounders.  

o Potential for exposure error: Epidemiologic studies have employed a 

variety of approaches to estimate population-level PM2.5 exposures (e.g., 

stationary monitors, hybrid modeling approaches). These approaches are 

based on using measured or predicted ambient PM2.5 concentrations as 

surrogates for population exposures. As such, exposure estimates in 

epidemiologic studies are subject to exposure error. The ISA notes that, while 

bias in either direction can occur, exposure error tends to result in 

underestimation of health effects in epidemiologic studies of PM exposure 

(U.S. EPA, 2019, section 3.5). Consistent with this, a recent study by Hart et 

al. (2015) reports that correction for PM2.5 exposure error using personal 

exposure information results in a moderately larger effect estimate for long-

term PM2.5 exposure and mortality (though with wider confidence intervals). 

This error in the underlying epidemiologic studies contributes to uncertainty 

in the risk estimates that are based on concentration-response relationships in 

those studies. Beyond the exposure error in epidemiologic studies themselves, 

the use of a different approach to represent exposures in the risk assessment 

(i.e., 12 x 12 km gridded surface based on modeling) could introduce 

additional error into risk estimates.  

o Shape of the concentration-response relationship at low ambient PM 

concentrations: Interpreting the shapes of concentration-response 
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relationships, particularly at PM2.5 concentrations near the lower end of the air 

quality distribution, can be complicated by relatively low data density in the 

lower concentration range, the possible influence of exposure measurement 

error, and variability among individuals with respect to air pollution health 

effects. These sources of variability and uncertainty tend to smooth and 

“linearize” population-level concentration-response functions, and thus could 

obscure the existence of a threshold or nonlinear relationship (U.S. EPA, 

2015, section 6.c).   

3.3.3 Conclusions from the risk assessment  

The risk assessment estimates that the current primary PM2.5 standards could allow a 

substantial number of PM2.5-associated deaths in the U.S. For example, when air quality in the 47 

study areas is adjusted to simulate just meeting the current standards, the risk assessment 

estimates from about 16,000 to 17,000 long-term PM2.5 exposure-related deaths from ischemic 

heart disease in a single year (i.e., confidence intervals range from about 12,000 to 21,000 

deaths). The absolute numbers of estimated PM2.5-associated deaths vary widely across exposure 

durations, endpoints, populations, and concentration-response functions. In addition, limitations 

in the underlying data and approaches (summarized above) lead to uncertainty regarding absolute 

estimates of PM2.5-associated risk for any given air quality scenario. However, the general 

magnitude of risk estimates supports the potential for significant public health impacts in 

locations meeting the current primary PM2.5 standards. This is particularly the case given that the 

large majority of PM2.5-associated deaths for air quality just meeting the current standards are 

estimated at annual average PM2.5 concentrations from about 10 to 12 g/m3. These annual 

average PM2.5 concentrations fall well-within the range of long-term average concentrations over 

which key epidemiologic studies provide strong support for reported positive and statistically 

significant PM2.5 health effect associations.  

Compared to the current annual standard, meeting a revised annual standard with a lower 

level is estimated to reduce PM2.5-associated health risks by about 7 to 9% for a level of 11.0 

µg/m3, 14 to 18% for a level of 10.0 µg/m3, and 21 to 27% for a level of 9.0 µg/m3. As the 

magnitude of estimated risk reductions increases at lower levels, these estimated risk reductions 

are associated with lower ambient PM2.5 concentrations. Specifically, for air quality adjusted to 

simulate just meeting an annual standard with a level of 11.0 µg/m3, the majority of risk 

reduction occurs at annual average PM2.5  concentrations between 9 and 11 µg/m3; for air quality 

adjusted to simulate just meeting an annual standard with a level of 10.0 µg/m3, the majority of 

risk reduction occurs at PM2.5 concentrations between 8 and 10 µg/m3; and for air quality 

adjusted to simulate just meeting an annual standard with a level of 9.0 µg/m3, the majority of 

risk reduction occurs at PM2.5 concentrations between 7 and 9 µg/m3. Compared to a lower 

annual standard level, revising the level of the 24-hour standard to 30 g/m3 is estimated to 
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lower PM2.5-associated risks across a more limited range of areas, largely confined to areas 

located in the western U.S. (several of which are also likely to experience risk reductions upon 

meeting a revised annual standard).  

3.4 CASAC ADVICE AND PUBLIC COMMENTS 

As part of its review of the draft PA, the CASAC has provided advice on the adequacy of 

the public health protection afforded by the current primary PM2.5 standards. Its advice is 

documented in a letter sent to the EPA Administrator (Cox, 2019). In this letter, the committee 

does not reach consensus on whether the scientific and technical information support retaining or 

revising the current annual PM2.5 standard.73 In particular, though the CASAC agrees that there is 

a long-standing body of health evidence supporting relationships between PM2.5 exposures and 

various health outcomes, including mortality and serious morbidity effects, individual CASAC 

members “differ in their assessments of the causal and policy significance of these associations” 

(Cox, 2019, p. 8 of consensus responses). Drawing from this evidence, “some CASAC 

members” express support for retaining the current annual standard while “other members” 

express support for revising that standard in order to increase public health protection (Cox, 

2019, p.1 of letter). These views are summarized below.  

The CASAC members who support retaining the current annual standard express the 

view that substantial uncertainty remains in the evidence for associations between PM2.5 

exposures and mortality or serious morbidity effects. These committee members assert that “such 

associations can reasonably be explained in light of uncontrolled confounding and other potential 

sources of error and bias” (Cox, 2019, p. 8 of consensus responses). They note that associations do 

not necessarily reflect causal effects, and they cite recent reviews (i.e.,Henneman et al., 2017; 

Burns et al., 2019) to support their position that in intervention studies, “reductions of PM2.5 

concentrations have not clearly reduced mortality risks” (Cox, 2019, p. 8 of consensus responses). 

These members of the CASAC additionally contend that recent epidemiologic studies reporting 

positive associations at lower estimated exposure concentrations mainly confirm what was 

anticipated or already assumed in setting the 2012 NAAQS, and that such studies do not provide 

new information calling into question the existing standard. Thus, they advise that, “while the data 

on associations should certainly be carefully considered, this data should not be interpreted more 

strongly than warranted based on its methodological limitations” (Cox, 2019, p. 8 of consensus 

responses).  

                                                 
73 In contrast, the CASAC reaches the consensus conclusion that the recent scientific evidence does not call into 

question the adequacy of the 24-hour PM2.5 standard (Cox 2019, p. 11 of consensus responses).  
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These members of the CASAC further conclude that the PM2.5 risk assessment does not 

provide a valid basis for revising the current standards. This conclusion is based on concerns that 

1) "the risk assessment treats regression coefficients as causal coefficients with no justification or 

validation provided for this decision;” 2) the estimated regression concentration-response 

functions “have not been adequately adjusted to correct for confounding, errors in exposure 

estimates and other covariates, model uncertainty, and heterogeneity in individual biological (causal) 

[concentration-response] functions;” 3) the estimated concentration-response functions “do not 

contain quantitative uncertainty bands that reflect model uncertainty or effects of exposure and 

covariate estimation errors;” and 4) “no regression diagnostics are provided justifying the use of 

proportional hazards…and other modeling assumptions” (Cox, 2019, p. 9 of consensus responses). 

These committee members also contend that details regarding the derivation of concentration-

response functions, including specification of the beta values and functional forms, are not well-

documented, hampering the ability of readers to evaluate these design details. Thus, these 

members “think that the risk characterization does not provide useful information about whether 

the current standard is protective” (Cox, 2019, p. 11 of consensus responses).   

Drawing from their evaluation of the evidence and the risk assessment, these committee 

members conclude that “the Draft PM PA does not establish that new scientific evidence and 

data reasonably call into question the public health protection afforded by the current 2012 PM2.5 

annual standard” (Cox, 2019, p.1 of letter).  

In contrast, “[o]ther members of CASAC conclude that the weight of the evidence, 

particularly reflecting recent epidemiology studies showing positive associations between PM2.5 

and health effects at estimated annual average PM2.5 concentrations below the current standard, 

does reasonably call into question the adequacy of the 2012 annual PM2.5 [standard] to protect 

public health with an adequate margin of safety” (Cox, 2019, p.1 of letter). The committee 

members who support this conclusion note that the body of health evidence for PM2.5 includes 

not only the repeated demonstration of associations in epidemiologic studies, but also includes 

support for biological plausibility established by human clinical and animal toxicology studies. 

They point to recent studies demonstrating that the associations between PM2.5 and health effects 

occur in a diversity of locations, in different time periods, with different populations, and using 

different exposure estimation and statistical methods. They conclude that “the entire body of 

evidence for PM health effects justifies the causality determinations made in the Draft PM ISA” 

(Cox, 2019, p. 8 of consensus responses).  

The members of the CASAC who support revising the current annual standard 

particularly emphasize recent findings of associations with PM2.5 in areas with average long-term 

PM2.5 concentrations below the level of the annual standard and studies that show positive 

associations even when estimated exposures above 12 μg/m3 are excluded from analyses. They 
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find it “highly unlikely” that the extensive body of evidence indicating positive associations at 

low estimated exposures could be fully explained by confounding or by other non-causal 

explanations (Cox, 2019, p. 8 of consensus responses). They additionally conclude that “the risk 

characterization does provide a useful attempt to understand the potential impacts of alternate 

standards on public health risks” (Cox, 2019, p. 11 of consensus responses). These committee 

members conclude that the evidence available in this review reasonably calls into question the 

protection provided by the current primary PM2.5 standards and supports revising the annual 

standard to increase that protection (Cox, 2019).  

We also received a number of public comments on the adequacy of the current primary 

PM2.5 standards. Some of these commenters, including several representing industry groups and 

states, agree with the CASAC members who conclude that the evidence supports retaining the 

current standards. These public commenters often cite the same types of uncertainties that are 

highlighted by members of the CASAC who support retaining (e.g., potential for confounding, 

exposure error, etc.). Other public commenters, including those representing environmental and 

public health organizations and several members of the academic research community, conclude 

that the current primary PM2.5 standards should be revised in order to increase public health 

protection. These commenters generally cite the large body of evidence supporting relationships 

between PM2.5 exposures and mortality or serious morbidity-related outcomes, including studies 

reporting such outcomes for PM2.5 air quality likely to be allowed in locations meeting the 

current standards. They conclude that the existing body of epidemiologic studies appropriately 

considers potential confounders and sources of error, and that this evidence provides robust 

support for revising the current standards.  

3.5 CONCLUSIONS ON THE PRIMARY PM2.5 STANDARDS 

This section describes our conclusions regarding the adequacy of the current primary 

PM2.5 standards (section 3.5.1) and regarding potential alternatives for consideration (section 

3.5.2). As described more fully in section 3.1.2, our approach to reaching conclusions is based on 

considering the EPA’s assessment of the current scientific evidence for health effects attributable 

to PM2.5 exposures (discussed in detail in the ISA; U.S. EPA, 2019), quantitative assessments of 

PM2.5-associated health risks, and analyses of PM2.5 air quality. We also consider the range of 

advice received from the CASAC (Cox, 2019) and comments from the members of the public. 

These considerations and conclusions are intended to inform the Administrator’s judgments 

regarding primary standards for fine particles that are requisite to protect public health with an 

adequate margin of safety. We seek to provide as broad an array of policy options as is 

supportable by the available science, recognizing that the selection of a specific approach to 
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reaching final decisions on the primary PM2.5 standards will reflect the judgments of the 

Administrator as to what weight to place on the various types of information.  

3.5.1 Current Standards  

 We initially consider the adequacy of the current primary PM2.5 standards. As discussed 

more fully in section 3.1.2, our approach recognizes that the current annual standard (based on 

arithmetic mean concentrations) and 24-hour standard (based on 98th percentile concentrations), 

together, are intended to protect the public health against the full distribution of short- and long-

term PM2.5 exposures. In considering the combined effects of these standards, we recognize that 

changes in PM2.5 air quality designed to meet an annual standard would likely result not only in 

lower short- and long-term PM2.5 concentrations near the middle of the air quality distribution, 

but also in fewer and lower short-term peak PM2.5 concentrations. Additionally, changes 

designed to meet a 24-hour standard, with a 98th percentile form, would result not only in fewer 

and lower peak 24-hour PM2.5 concentrations, but also in lower annual average PM2.5 

concentrations. Thus, our focus in evaluating the current primary standards is on the protection 

provided by the combination of the annual and 24-hour standards against the distribution of both 

short- and long-term PM2.5 exposures.  

 Our consideration of the adequacy of the current annual and 24-hour PM2.5 standards is 

framed by the first overarching policy-relevant question posed at the beginning of this chapter:  

• Does the currently available scientific evidence and risk-based information support 

or call into question the adequacy of the public health protection afforded by the 

current annual and 24-hour PM2.5 standards? 

In answering this question, we consider the nature of the health effects reported to occur 

following short- or long-term PM2.5 exposures, the strength of the evidence supporting those 

effects, and the evidence that certain populations may be at increased risk (discussed in more 

detail in sections 3.2.1 and 3.2.2); the PM2.5 exposures shown to cause effects and the ambient 

concentrations in locations where PM2.5 health effect associations have been reported (section 

3.2.3); estimates of PM2.5-associated health risks for air quality adjusted to simulate just meeting 

the current annual and 24-hour primary PM2.5 standards (section 3.3); and advice from the 

CASAC, based on its review of the draft PA (Cox, 2019). These considerations, and our 

conclusions on the current primary PM2.5 standards, are summarized below.  

 As an initial matter, we note the longstanding body of health evidence supporting 

relationships between PM2.5 exposures (short- and long-term) and mortality or serious morbidity 

effects. The evidence available in this review (i.e., assessed in U.S. EPA, 2019 and summarized 

above in section 3.2.1) reaffirms, and in some cases strengthens, the conclusions from the 2009 

ISA regarding the health effects of PM2.5 exposures (U.S. EPA, 2009). Much of this evidence 
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comes from epidemiologic studies conducted in North America, Europe, or Asia that 

demonstrate generally positive, and often statistically significant, PM2.5 health effect 

associations. Such studies report associations between estimated PM2.5 exposures and non-

accidental, cardiovascular, or respiratory mortality; cardiovascular or respiratory hospitalizations 

or emergency room visits; and other mortality/morbidity outcomes (e.g., lung cancer mortality or 

incidence, asthma development). Recent experimental evidence, as well as evidence from panel 

studies, strengthens support for potential biological pathways through which PM2.5 exposures 

could lead to the serious effects reported in many population-level epidemiologic studies. This 

includes support for pathways that could lead to cardiovascular, respiratory, nervous system, and 

cancer-related effects.  

 Epidemiologic studies report PM2.5 health effect associations with mortality and/or 

morbidity across multiple U.S. cities and in diverse populations, including in studies examining 

populations and lifestages that may be at comparatively higher risk of experiencing a PM2.5-

related health effect (e.g., older adults, children). Such studies employ various designs and 

examine a variety of health outcomes, geographic areas, and approaches to controlling for 

confounding variables. With regard to controlling for potential confounders in particular, key 

studies use a wide array of approaches. Time-series studies control for potential confounders that 

vary over short time intervals (e.g., including temperature, humidity, dew point temperature, and 

day of the week) while cohort studies control for community- and/or individual-level 

confounders that vary spatially (e.g., including income, race, age, socioeconomic status, 

smoking, body mass index, and annual weather variables such as temperature and humidity) 

(Appendix B, Table B-12). Sensitivity analyses indicate that adding covariates to control for 

potential confounders can either increase or decrease the magnitude of PM2.5 effect estimates, 

depending on the covariate, and that none of the covariates examined can fully explain the 

association with mortality (e.g., Di et al., 2017b, Figure S2 in Supplementary Materials). Thus, 

while no individual study adjusts for all potential confounders, a broad range of approaches have 

been adopted across studies to examine confounding, supporting the robustness of reported 

associations.  

 Available studies additionally indicate that PM2.5 health effect associations are robust 

across various approaches to estimating PM2.5 exposures and across exposure windows. This 

includes recent studies that estimate exposures using ground-based monitors alone and studies 

that estimate exposures using data from multiple sources (e.g., satellites, land use information, 

modeling), in addition to monitors. While none of these approaches eliminates the potential for 

exposure error in epidemiologic studies, such error does not call into question the fundamental 

findings of the broad body of PM2.5 epidemiologic evidence. In fact, the ISA notes that while 

bias in either direction can occur, exposure error tends to lead to underestimation of health 
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effects in epidemiologic studies of PM exposure (U.S. EPA, 2019, section 3.5). Consistent with 

this, a recent study reports that correction for PM2.5 exposure error using personal exposure 

information results in a moderately larger effect estimate for long-term PM2.5 exposure and 

mortality (Hart et al., 2015). While most PM2.5 epidemiologic studies have not employed similar 

corrections for exposure error, several studies report that restricting analyses to populations in 

close proximity to a monitor (i.e., in order to reduce exposure error) result in larger PM2.5 effect 

estimates (e.g., Willis et al., 2003; Kloog et al., 2013). The consistent reporting of PM2.5 health 

effect associations across exposure estimation approaches, even in the face of exposure error, 

together with the larger effect estimates reported in some studies that have attempted to reduce 

exposure error, provides further support for the robustness of associations between PM2.5 

exposures and mortality and morbidity.   

 Consistent findings from the broad body of epidemiologic studies are also supported by 

an emerging body of studies employing “causal inference” or quasi-experimental statistical 

approaches to further inform the causal nature of the relationship between long- or short-term 

term PM2.5 exposure and mortality (U.S. EPA, 2019, sections 11.1.2.1, 11.2.2.4). These studies 

are summarized above in section 3.2.1.1, including a recent accountability study that reports a 

reduction in mortality following reductions in ambient PM2.5 due to the introduction of diesel 

emission controls (Yorifuji et al., 2016).74 Other recent studies additionally report that declines in 

ambient PM2.5 concentrations over a period of years have been associated with decreases in 

mortality rates and increases in life expectancy, improvements in respiratory development, and 

decreased incidence of respiratory disease in children, further supporting the robustness of PM2.5 

health effect associations reported in the epidemiologic evidence (summarized in sections 3.2.1 

to 3.2.3).  

 In addition to broadening our understanding of the health effects that can result from 

exposures to PM2.5 and strengthening support for some key effects (e.g., nervous system effects, 

cancer), recent epidemiologic studies strengthen support for health effect associations at 

relatively low ambient PM2.5 concentrations. Studies that examine the shapes of concentration-

response functions over the full distribution of ambient PM2.5 concentrations have not identified 

a threshold concentration, below which associations no longer exist (U.S. EPA, 2019, section 

1.5.3). While such analyses are complicated by the relatively sparse data available at the lower 

                                                 
74 Air pollution accountability studies have reported mixed results overall (e.g., as reviewed in Burns et al., 2019 and 

Henneman et al., 2017). However, many of the available studies have not focused on PM2.5, were not able to 

attribute changes in ambient PM2.5 concentrations to the interventions under evaluation, and/or were not able to 

disentangle health impacts of the intervention from background trends in health. The study by Yorifuji et al. 

(2016), included in the review by Burns et al. (2019), is an example of a study that was able to link a particular 

policy intervention to a decline in ambient PM2.5 concentrations, and that did include a control population to 

correct for background trends in mortality.   
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end of the air quality distribution (U.S. EPA, 2019, section 1.5.3), several studies report positive 

and statistically significant associations in additional analyses restricted to annual average PM2.5 

exposures below 12 g/m3 (Lee et al., 2015; Di et al., 2017b) and 10 g/m3 (Shi et al., 2016), or 

to daily exposures below 25 g/m3 (Di et al., 2017a), 30 g/m3 (Shi et al., 2016), and 35 g/m3 

(Lee et al., 2015).  

These and other recent studies provide support for health effect associations at lower 

ambient PM2.5 concentrations than in previous reviews. For example, in the last review key 

epidemiologic studies that were conducted in the U.S. or Canada, and that supported “causal” or 

“likely to be causal” determinations in the ISA, reported generally positive and statistically 

significant associations with mortality or morbidity for PM2.5 air quality distributions with 

overall mean concentrations at or above 12.8 g/m3 (U.S. EPA, 2011, Figure 2-8). In the current 

review, a large number of key studies report positive and statistically significant associations for 

air quality distributions with lower overall mean PM2.5 concentrations (i.e., Figure 3-7 and Figure 

3-8). These key studies indicate such associations consistently for distributions with long-term 

mean PM2.5 concentrations at or above 8.1 g/m3 (8.2 g/m3 based on studies that use monitors 

alone to estimate PM2.5 exposures), with the large majority (and all but one key U.S. study) 

reporting overall mean PM2.5 concentrations at or above 9.6 g/m3 (10.7 g/m3 based on studies 

that use monitors alone). Air quality distributions with such low mean concentrations are likely 

to be allowed by the current PM2.5 standards, based on analyses of the relationships between 

maximum annual PM2.5 design values and annual average concentrations (i.e., averaged across 

multiple monitors in the same area) (section 3.2.3.2.1; Appendix B, section B.7).75  

In assessing the adequacy of the current standard, we also consider what key 

epidemiologic studies may indicate for the current standards by calculating values similar to 

PM2.5 design values, based on monitored air quality from the locations and time periods 

evaluated by those studies (i.e., section 3.2.3.2.2). This approach identifies study-relevant PM2.5 

air quality metrics similar to those used by the EPA to determine whether areas meet or violate 

the PM NAAQS. Compared to study-reported mean PM2.5 concentrations, such “pseudo-design 

values” also have the advantage of being consistently calculated across key studies, regardless of 

how the studies themselves estimate PM2.5 exposures (e.g., averaging across monitors, 

predictions from hybrid modeling approaches).  

For some key studies that report positive and statistically significant PM2.5 health effect 

associations, substantial portions of study area populations (e.g., > 50% or 75%) lived in 

                                                 
75 Given that the annual standard is the controlling standard across much of the U.S. (e.g., see section 3.3), the PM2.5 

air quality distributions that occur in most locations meeting the current annual PM2.5 standard are also likely to 

meet the current 24-hour standard (i.e., illustrated in Chapter 2, Figure 2-11).  
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locations with air quality likely to have met both the current annual and 24-hour PM2.5 standards 

over study periods (or substantial portions of health events occurred in such areas) (section 

3.2.3.2.2). While there is uncertainty in interpreting analyses of PM2.5 pseudo-design values (e.g., 

some study locations and time periods would have met the current standards while others would 

have violated those standards, unmonitored areas are excluded from analyses; section 3.2.3.2.2), 

the importance of these uncertainties is lessened for studies with the large majority of the study 

area population in locations with pseudo-design values well-below current standard levels (e.g., 

Pinault et al., 2016; Shi et al., 2016; Weichenthal et al., 2016c). This uncertainty is also lessened 

for key studies reporting that positive and statistically significant associations persist in analyses 

restricted to relatively low annual average PM2.5 exposure estimates (e.g., below 12 g/m3 in Di 

et al., 2017b; below 10 g/m3 in Shi et al., 2016), particularly given that the excluded exposure 

estimates account for about half of the deaths in the entire cohort.76 Thus, analyses of PM2.5 

pseudo-design values support the occurrence of positive and statistically significant PM2.5 health 

effect associations based largely on air quality likely to have met the current primary standards.  

In addition to the evidence, we also consider what the risk assessment indicates with 

regard to the adequacy of the current primary PM2.5 standards. The risk assessment estimates that 

the current primary PM2.5 standards could allow a substantial number of deaths in the U.S., with 

the large majority of those deaths associated with long-term PM2.5 exposures. For example, when 

air quality in the 47 study areas is adjusted to simulate just meeting the current standards, the risk 

assessment estimates from about 16,000 to 17,000 PM2.5-related deaths from ischemic heart 

disease in a single year (i.e., for long-term exposures; confidence intervals range from about 

12,000 to 21,000 deaths). While the absolute numbers of estimated PM2.5-associated deaths vary 

widely across exposure durations, endpoints, populations, and concentration-response functions, 

the general magnitude of risk estimates supports the potential for significant public health 

impacts in locations meeting the current primary PM2.5 standards. This is particularly the case 

given that the large majority of PM2.5-associated deaths for air quality just meeting the current 

standards are estimated at annual average PM2.5 concentrations from about 10 to 12 g/m3. These 

annual average PM2.5 concentrations fall well-within the range of long-term average 

concentrations over which key epidemiologic studies provide strong support for reported positive 

and statistically significant PM2.5 health effect associations.  

 Based on the information summarized above, and discussed in more detail in sections 3.2 

and 3.3 of this PA, we particularly note the following in reaching conclusions on the current 

primary PM2.5 standards:  

                                                 
76 PM2.5 effect estimates in these restricted analyses are slightly larger than in those based on the entire cohort.  
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• There is a long-standing body of strong health evidence demonstrating relationships between 

long- or short-term PM2.5 exposures and a variety of outcomes, including mortality and 

serious morbidity effects. Studies published since the last review have reduced key 

uncertainties and broadened our understanding of the health effects that can result from 

exposures to PM2.5.  

• Recent U.S. and Canadian epidemiologic studies provide support for generally positive and 

statistically significant health effect associations across a broad range of ambient PM2.5 

concentrations, including for air quality distributions with overall mean concentrations lower 

than in the last review and for distributions likely to be allowed by the current primary PM2.5 

standards.  

• Analyses of PM2.5 pseudo-design values additionally support the occurrence of positive and 

statistically significant health effect associations based largely on air quality likely to have 

met the current annual and 24-hour primary standards.  

• The risk assessment estimates that the current primary PM2.5 standards could allow a 

substantial number of PM2.5-associated deaths in the U.S. The large majority of these 

estimated deaths are associated with the annual average PM2.5 concentrations near (and above 

in some cases) the average concentrations in key epidemiologic studies reporting positive and 

statistically significant health effect associations.  

When taken together, we reach the conclusion that the available scientific evidence, air quality 

analyses, and the risk assessment, as summarized above, can reasonably be viewed as calling 

into question the adequacy of the public health protection afforded by the combination of the 

current annual and 24-hour primary PM2.5 standards.  

 In contrast to this conclusion, a conclusion that the current primary PM2.5 standards do 

provide adequate public health protection would place little weight on the broad body of 

epidemiologic evidence reporting generally positive and statistically significant health effect 

associations, particularly for PM2.5 air quality distributions likely to have been allowed by the 

current primary standards, or on the PM2.5 risk assessment. Rather, such a conclusion would 

place greater weight on uncertainties and limitations in the evidence and analyses (i.e., discussed 

in sections 3.2.3 and 3.3.2 above), including the following:   

• Uncertainty in the biological pathways through which PM2.5 exposures could cause serious 

health effects increases as the ambient concentrations being considered fall farther below the 

PM2.5 exposure concentrations shown to cause effects in experimental studies. In the current 

review, such studies generally examine the occurrence of PM2.5-attributable effects following 

exposures to PM2.5 concentrations well-above those likely to occur in the ambient air in areas 

meeting the current primary PM2.5 standards (i.e., discussed in section 3.2.3.1).  

• Uncertainty in the potential public health impacts of air quality improvements increases as 

the ambient concentrations being considered fall farther below those present in studies that 

report improved health with reductions in PM2.5 concentrations. In the current review, such 
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studies evaluate air quality improvements with “starting” mean PM2.5 concentrations (i.e., 

prior to the reductions being evaluated) from about 13 to > 20 g/m3 (i.e., Table 3-3).77  

• Uncertainty in the risk assessment results from uncertainties in the underlying epidemiologic 

studies, in the air quality adjustments, and in the application of study and air quality 

information to develop quantitative estimates of PM2.5-associated mortality risks (section 

3.3.2.4).  

  

 The considerations and conclusions discussed above are intended to inform the 

Administrator’s judgments regarding the current primary PM2.5 standards. In presenting these 

considerations and conclusions, we seek to provide information on a range of policy options, and 

on the potential approaches to viewing the scientific evidence and technical information that 

could potentially support various options. We recognize that the selection of a particular 

approach to reaching final decisions on the primary PM2.5 standards will reflect the judgments of 

the Administrator as to what weight to place on the various types of evidence and information, 

including associated uncertainties. Given that this PA seeks to provide information on the range 

of policy options that could be supported by the scientific information, and given our conclusion 

(noted above) that the evidence and information can reasonably be viewed as calling into 

question the adequacy of the current primary PM2.5 standards, in the next section we additionally 

consider support for potential alternative standards.  

3.5.2 Potential Alternative Standards  

 In this section, we consider the potential alternative primary PM2.5 standards that could be 

supported by the evidence and quantitative information available in this review. These 

considerations are framed by the following overarching policy-relevant question, posed at the 

beginning of this chapter:  

• What is the range of potential alternative standards that could be supported by the 

available scientific evidence and risk-based information to increase public health 

protection against short- and long-term fine particle exposures? 

In answering this question, we consider each of the elements of the annual and 24-hour PM2.5 

standards: indicator, averaging time, form, and level. The sections below discuss our 

consideration of these elements, and our conclusions that (1) it is appropriate to consider revising 

the level of the current annual standard, in conjunction with retaining the current indicator, 

averaging time, and form of that standard, to increase public health protection against fine 

                                                 
77 As noted above, these retrospective studies tend to include data from earlier time periods where ambient PM2.5 

concentrations in the U.S. were considerably higher than they are at present.  
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particle exposures and (2) depending on the decision made on the annual standard, consideration 

could be given to either retaining or revising the level of the 24-hour PM2.5 standard.   

3.5.2.1  Indicator 

In initially setting standards for fine particles in 1997, the EPA concluded it was 

appropriate to control fine particles as a group, rather than singling out any particular component 

or class of fine particles. The Agency noted that community health studies had found significant 

health effect associations using various indicators of fine particles, and that health effects in a 

large number of areas had significant mass contributions from differing components or sources 

of fine particles. In addition, a number of toxicological and controlled human exposure studies 

had reported health effects following exposures to high concentrations of numerous fine particle 

components (62 FR 38667, July 18, 1997). In establishing a size-based indicator in 1997 to 

distinguish fine particles from particles in the coarse mode, the EPA noted that the available 

epidemiologic studies of fine particles were based largely on PM2.5 mass. The selection of a 2.5 

m size cut additionally reflected the regulatory importance of defining an indicator that would 

more completely capture fine particles under all conditions likely to be encountered across the 

U.S. and the monitoring technology that was generally available (62 FR 38666 to 38668, July 18, 

1997).  

Since the 1997 review, studies that evaluate fine particle-related health effects continue to 

provide strong support for such effects using PM2.5 mass as the metric for fine particle exposures. 

Subsequent reviews have recognized the strength of this evidence, concluding that it has 

continued to support a PM2.5 mass-based indicator for a standard meant to protect against fine 

particle exposures. In the last review, some studies had additionally examined health effects of 

exposures to particular sources or components of fine particles, or to the ultrafine fraction of fine 

particles. Based on limitations in such studies, together with the continued strong support for 

effects of PM2.5 exposures, the Agency retained PM2.5 mass as the indicator for fine particles and 

did not supplement the PM2.5 standards with standards based on particle composition or on the 

ultrafine fraction (78 FR 3123, January 15, 2013).  

As in the last review, studies available in the current review continue to provide strong 

support for health effects following long- and short-term PM2.5 exposures (U.S. EPA, 2019). 

While some studies evaluate the health effects of particular sources of fine particles, or of 

particular fine particle components, evidence from these studies does not identify any one source 

or component that is a better predictor of health effects than PM2.5 mass (U.S. EPA, 2019, 

section 1.5.4). The ISA specifically notes that the results of recent studies confirm and further 

support the conclusion of the 2009 ISA that many PM2.5 components and sources are associated 

with health effects, and the evidence does not indicate that any one source or component is 
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consistently more strongly related with health effects than PM2.5 mass (U.S. EPA, 2019, section 

1.5.4). In addition, the evidence for health effects following exposures specifically to the 

ultrafine fraction of fine particles continues to be far more limited than the evidence for PM2.5 

mass as a whole. As discussed in the ISA, the lack of a consistent UFP definition in health 

studies and across disciplines, together with the variety of approaches to administering and 

measuring UFP in those studies, contribute to such limitations (U.S. EPA, 2019, section 1.4.3). 

Thus, for reasons similar to those discussed in the last review (78 FR 3121 to 3123, January 15, 

2013), we conclude that the available information continues to support the PM2.5 mass-based 

indicator and remains too limited to support a distinct standard for any specific PM2.5 component 

or group of components, and too limited to support a distinct standard for the ultrafine fraction.   

3.5.2.2  Averaging Time  

In 1997, the EPA initially set an annual PM2.5 standard to protect against health effects 

associated with both long- and short-term PM2.5 exposures, and a 24-hour standard to supplement 

the protection afforded by the annual standard (62 FR 38667 to 38668, July 18, 1997). In 

subsequent reviews, the EPA retained both annual and 24-hour averaging times, largely 

reflecting the strong evidence for health effects associated with annual and daily PM2.5 exposure 

estimates (71 FR 61164, October 17, 2006; 78 FR 3123 to 3124, January 15, 2013).  

In the current review, epidemiologic and controlled human exposure studies have 

examined a variety of PM2.5 exposure durations. Epidemiologic studies continue to provide 

strong support for health effects associated with both long- and short-term PM2.5 exposures based 

on annual (or multiyear) and 24-hour PM2.5 averaging periods, respectively.  

With regard to short-term exposures in particular, a smaller number of epidemiologic 

studies examine associations between sub-daily PM2.5 exposures and respiratory effects, 

cardiovascular effects, or mortality. Compared to 24-hour PM2.5 exposure estimates, associations 

with sub-daily estimates are less consistent and, in some cases, smaller in magnitude (U.S. EPA, 

2019, section 1.5.2.1). In addition, studies of sub-daily exposures typically examine subclinical 

effects, rather than the more serious population-level effects that have been reported to be 

associated with 24-hour exposures (e.g., mortality, hospitalizations). Taken together, the ISA 

concludes that epidemiologic studies do not indicate sub-daily averaging periods are more 

closely associated with health effects than the 24-hour average exposure metric (U.S. EPA, 2019, 

section 1.5.2.1).  

Additionally, while recent controlled human exposure studies provide consistent evidence 

for cardiovascular effects following PM2.5 exposures for less than 24 hours (i.e., < 30 minutes to 

5 hours), exposure concentrations in these studies are well-above the ambient concentrations 

typically measured in locations meeting the current standards (section 3.2.3.1). Thus, these 
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studies also do not suggest the need for additional protection against sub-daily PM2.5 exposures, 

beyond that provided by the current primary standards.  

Drawing from the evidence assessed in the ISA, and the observations noted above, we 

reach the conclusion that the available evidence continues to provide strong support for 

consideration of retaining the current annual and 24-hour averaging times. The available 

evidence suggests that PM2.5 standards with these averaging times, when coupled with 

appropriate forms and levels, can protect against the range of long- and short-term PM2.5 

exposures that have been associated with health effects. Thus, as in the last review, the currently 

available evidence does not support considering alternatives to the annual and 24-hour averaging 

times for standards meant to protect against long- and short-term PM2.5 exposures.  

3.5.2.3  Form  

The form of a standard defines the air quality statistic that is to be compared to the level 

in determining whether an area attains that standard. As in other recent reviews, our foremost 

consideration in reaching conclusions on form is the adequacy of the public health protection 

provided by the combination of the form and the other elements of the standard.  

As noted above, in 1997 the EPA initially set an annual PM2.5 standard to protect against 

health effects associated with both long- and short-term PM2.5 exposures and a 24-hour standard 

to provide supplemental protection, particularly against the short-term exposures to “peak” PM2.5 

concentrations that can occur in some areas (62 FR 38667 to 38668, July 18, 1997). The EPA 

established the form of the annual PM2.5 standard as an annual arithmetic mean, averaged over 3 

years, from single or multiple community-oriented monitors. That is, the level of the annual 

standard was to be compared to measurements made at each community-oriented monitoring site 

or, if specific criteria were met, measurements from multiple community-oriented monitoring 

sites could be averaged together (i.e., spatial averaging) (62 FR 38671 to 38672, July 18, 1997). 

In the 1997 review, the EPA also established the form of the 24-hour PM2.5 standard as the 98th 

percentile of 24-hour concentrations at each monitor within an area (i.e., no spatial averaging), 

averaged over three years (62 FR at 38671 to 38674, July 18, 1997). In the 2006 review, the EPA 

retained these standard forms but tightened the criteria for using spatial averaging with the 

annual standard (78 FR 3124, January 15, 2013).78  

In the last review, the EPA’s consideration of the form of the annual PM2.5 standard again 

included a focus on the issue of spatial averaging. An analysis of air quality and population 

demographic information indicated that the highest PM2.5 concentrations in a given area tended 

                                                 
78 Specifically, the Administrator revised spatial averaging criteria such that “(1) [t]he annual mean concentration at 

each site shall be within 10 percent of the spatially averaged annual mean, and (2) the daily values for each 

monitoring site pair shall yield a correlation coefficient of at least 0.9 for each calendar quarter (71 FR 61167, 

October 17, 2006).  
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to be measured at monitors in locations where the surrounding populations were more likely to 

live below the poverty line and to include larger percentages of racial and ethnic minorities (U.S. 

EPA, 2011, p. 2-60). Based on this analysis, the PA concluded that spatial averaging could result 

in disproportionate impacts in minority populations and populations with lower SES. The 

Administrator concluded that public health would not be protected with an adequate margin of 

safety in all locations, as required by law, if disproportionately higher PM2.5 concentrations in 

low income and minority communities were averaged together with lower concentrations 

measured at other sites in a large urban area. Therefore, she concluded that the form of the 

annual PM2.5 standard should be revised to eliminate spatial averaging provisions (78 FR 3124, 

January 15, 2013).  

In the last review, the EPA also considered the form of the 24-hour PM2.5 standard. The 

Agency recognized that the existing 98th percentile form for the 24-hour standard was originally 

selected to provide a balance between limiting the occurrence of peak 24-hour PM2.5 

concentrations and identifying a stable target for risk management programs. Updated air quality 

analyses in the last review provided additional support for the increased stability of the 98th 

percentile PM2.5 concentration, compared to the 99th percentile (U.S. EPA, 2011, Figure 2-2, p. 

2-62). Thus, the Administrator concluded that it was appropriate to retain the 98th percentile form 

for the 24-hour PM2.5 standard (78 FR 3127, January 15, 2013).  

Nothing in the evidence that has become available since the last review calls into 

question the current forms of the annual and 24-hour PM2.5 standards. As discussed above 

(section 3.2.3.2), epidemiologic studies continue to provide strong support for health effect 

associations with both long-term (e.g., annual or multi-year) and short-term (e.g., mostly 24-

hour) PM2.5 exposures. These studies provide the strongest support for such associations for the 

part of the air quality distribution corresponding to the bulk of the underlying data, typically 

around the overall mean concentrations reported (section 3.2.3.2.1). The form of the current 

annual standard (i.e., arithmetic mean, averaged over three years) remains appropriate for 

targeting protection against the annual and daily PM2.5 exposures around these means of the 

PM2.5 air quality distribution. In addition, controlled human exposure studies provide evidence 

for health effects following single short-term PM2.5 exposures near the peak concentrations 

measured in the ambient air (section 3.2.3.1). Thus, the evidence also supports retaining a 

standard focused on providing supplemental protection against short-term peak exposures. 

Nothing in the evidence that has become available since the last review calls into question the 

decision to use a 98th percentile form for a 24-hour standard that is meant to provide a balance 

between limiting the occurrence of such peak 24-hour PM2.5 concentrations and identifying a 

stable target for risk management programs. Thus, when the information summarized above is 

taken together, we reach the conclusion that it is appropriate in the current review to consider 
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retaining the forms of the current annual and 24-hour PM2.5 standards, in conjunction with a 

revised level as discussed below.  

3.5.2.4  Level 

With regard to level, we specifically address the following policy-relevant question:  

• For primary PM2.5 standards defined in terms of the current averaging times and 

forms, what potential alternative levels are appropriate to consider in order to increase 

public health protection against long- and short-term exposures to PM2.5 in ambient 

air? 

In answering this question, we consider key epidemiologic studies that evaluate associations 

between PM2.5 air quality distributions and mortality or morbidity, controlled human exposure 

studies examining effects following short-term PM2.5 exposures, air quality analyses that help to 

place these studies into a policy-relevant context, and the risk assessment estimates of PM2.5-

associated mortality under various alternative standard scenarios.  

As discussed above in section 3.1.2, consideration of the evidence and analyses, as 

summarized in this chapter, informs our evaluation of the public health protection that could be 

provided by alternative annual and 24-hour standards with revised levels. There are various ways 

to combine an annual standard (based on arithmetic mean concentrations) and a 24-hour standard 

(based on 98th percentile concentrations), to achieve an appropriate degree of public health 

protection. In particular, as noted in section 3.1.2, we recognize that changes in PM2.5 air quality 

designed to meet an annual standard would likely result not only in lower short- and long-term 

PM2.5 concentrations near the middle of the air quality distribution (i.e., around the mean of the 

distribution), but also in fewer and lower short-term peak PM2.5 concentrations. Additionally, 

changes designed to meet a 24-hour standard, with a 98th percentile form, would result not only 

in fewer and lower peak 24-hour PM2.5 concentrations, but also in lower average PM2.5 

concentrations.  

However, while either standard could be viewed as providing some measure of protection 

against both average exposures and peak exposures, the 24-hour and annual standards are not 

expected to be equally effective at limiting both types of exposures. Specifically, the 24-hour 

standard (with its 98th percentile form) is more directly tied to short-term peak PM2.5 

concentrations, and thus more likely to appropriately limit exposures to such concentrations, than 

to the more typical concentrations that make up the middle portion of the air quality distribution. 

Therefore, compared to a standard that is directly tied to the middle of the air quality distribution, 

the 24-hour standard is less likely to appropriately limit the “typical” daily and annual exposures 

that are most strongly associated with the health effects observed in epidemiologic studies. In 

contrast, the annual standard, with its form based on the arithmetic mean concentration, is more 

likely to effectively limit the PM2.5 concentrations that comprise the middle portion of the air 
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quality distribution, affording protection against the daily and annual PM2.5 exposures that 

strongly support associations with the most serious PM2.5-related effects in epidemiologic studies 

(e.g., mortality, hospitalizations).  

 For these reasons, as discussed in section 3.1.2, we focus on alternative levels of the 

annual PM2.5 standard as the principle means of providing increased public health protection 

against the bulk of the distribution of short- and long-term PM2.5 exposures, and thus protecting 

against the exposures that provide strong support for associations with mortality and morbidity in 

key epidemiologic studies. We additionally consider the 24-hour standard, with its 98th percentile 

form, primarily as a means of providing supplemental protection against the short-term 

exposures to peak PM2.5 concentrations that can occur in some areas (e.g., those with strong 

contributions from local or seasonal sources), even when overall mean PM2.5 concentrations 

remain relatively low.  

 To inform our consideration of potential alternative annual and 24-hour standard levels, 

we specifically note the following key observations regarding (1) the overall mean PM2.5 

concentrations reported in U.S. or Canadian epidemiologic studies, (2) the relationships between 

long-term mean PM2.5 concentrations and annual design values in U.S. CBSAs, (3) the PM2.5 

pseudo-design values in study locations, (4) the PM2.5 exposures shown to cause effects in 

controlled human exposure studies, and (5) estimated PM2.5-associated risks.   

(1) Long-Term Mean PM2.5 Concentrations in Key Epidemiologic Studies (section 3.2.3.2) 

• Key epidemiologic studies indicate consistently positive and statistically significant health 

effect associations based on air quality distributions with overall long-term mean PM2.5 

concentrations at and above 8.1 g/m3 (8.2 g/m3 based on studies that use monitors alone to 

estimate PM2.5 exposures), with mean concentrations at or above 9.6 g/m3 in most key 

studies (10.7 g/m3 based on studies that use monitors alone to estimate PM2.5 exposures). 

The ranges of ambient PM2.5 concentrations accounting for the bulk of exposures and health 

data in these studies are expected to extend at least somewhat below the overall long-term 

mean concentrations reported.  

• Epidemiologic studies provide more limited support for health effect associations based on 

air quality distributions with lower overall mean PM2.5 concentrations. Specifically, two key 

studies report positive associations between short-term PM2.5 exposures and emergency room 

visits based on cities in Ontario, Canada (Weichenthal et al., 2016b and Weichenthal et al., 

2016c and), with overall mean PM2.5 concentrations around 7.0 g/m3 (one of these studies 

reports an association that is statistically significant). Additionally, a U.S. study (Shi et al. 

(2016) reports positive and statistically significant associations in analyses restricted to 

relatively low annual or 24-hour PM2.5 exposure estimates. This study does not report the 

overall mean PM2.5 concentrations in restricted analyses, though such means are presumably 

somewhat below those based on the overall cohort (i.e., 8.1 and 8.2 g/m3). 
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(2) Relationships between long-term mean PM2.5 concentrations and annual design values 

(section 3.2.3.3; Appendix B, section B.7)  

• Areas meeting a particular annual PM2.5 standard would be expected to have average PM2.5 

concentrations (i.e., averaged across the area and over time) somewhat below the level of that 

standard. This is supported by analyses of monitoring data in CBSAs across the U.S., which 

show that maximum annual PM2.5 design values are often 10% to 20% higher than long-term 

mean PM2.5 concentrations (Appendix B, Figure B-7; Table B-9).  

(3) PM2.5 Pseudo-Design Values in Study Locations (section 3.2.3.2.2 and Appendix B, 

Figure B-9)  

• For most key epidemiologic studies with PM2.5 pseudo-design values available, about 25% or 

more of study area populations lived in locations likely to have met the current primary PM2.5 

standards over study periods (or about 25% or more of health events occurred in such 

locations). For the U.S. studies in this group, annual pseudo-design values as low as 8.7 

g/m3 correspond to 25th percentiles of study area population (or health events). For the 

smaller number of Canadian studies included in this group, annual pseudo-design values as 

low as 6.0 g/m3 correspond to the 25th percentiles of study area population (or health 

events).  

• For several key epidemiologic studies, most of the study area populations (i.e., >50% of 

those living in areas with pseudo-design values) lived in locations with air quality likely to 

have met both standards over study periods (or >50% of health events occurred in locations 

with such air quality). For the U.S. studies in this group, annual pseudo-design values from 

9.9 to 11.7 g/m3 correspond to 50th percentiles of study area populations (or health events). 

For the smaller number of Canadian studies included in this group, annual pseudo-design 

values from 7.3 to 7.4 g/m3 correspond to 50th percentiles of study area populations (or 

health events).  

• For the U.S. study reporting the lowest annual average concentrations (Shi et al., 2016), an 

annual pseudo-design value of 11.0 g/m3 corresponds to the 75th percentile of the study area 

population (i.e., 75% of the study area population lives in locations with pseudo-design 

values < 11.0 g/m3). For the Canadian studies with the lowest ambient PM2.5 

concentrations, annual pseudo-design values from 8.4 to 8.6 g/m3 correspond to 75th 

percentiles of the study area populations (or health events).  

(4) PM2.5 exposures shown to cause effects in controlled human exposure studies (section 

3.2.3.1) 

• While controlled human exposure studies support the plausibility of the serious 

cardiovascular effects that have been linked with ambient PM2.5 exposures (U.S. EPA, 2019, 

Chapter 6), the PM2.5 exposure concentrations evaluated in most of these studies are well-

above the ambient concentrations typically measured in locations meeting the current 

primary standards (and thus well-above those likely to be measured in locations that would 

meet revised standards with lower annual or 24-hour levels).  

(5) PM2.5-Associated Risk Estimates (section 3.3)  
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• The risk assessment estimates that, compared to the current standards, potential alternative 

annual standards with levels from 11.0 down to 9.0 g/m3 could reduce PM2.5-associated 

mortality broadly across the U.S., including in most of the 47 urban study areas evaluated. In 

such locations, estimated risk reductions range from about 7 to 9% for a level of 11.0 g/m3, 

14 to 18% for a level of 10.0 g/m3, and 21 to 27% for a level of 9.0 g/m3. For each of these 

standards, most of the risk remaining is estimated at annual average PM2.5 concentrations that 

fall somewhat below the standard level.  

• Risk reductions estimated for an alternative 24-hour standard with a level of 30 g/m3 are 

concentrated in only a few study areas in the western U.S. (several of which could also 

experience risk reductions in response to a revised annual standard with a level below 12.0 

g/m3). In those few study areas for which risk reductions are estimated upon just meeting an 

alternative 24-hour standard with a level of 30 g/m3, reductions range from about 14 to 

18%.  

 The information summarized in these key observations could support various decisions on 

the levels of the annual and 24-hour PM2.5 standards, depending on the weight given to different 

aspects of the evidence, air quality and risk information, including its uncertainties. As noted 

above (section 3.1.2), in this PA we seek to provide as broad an array of policy options as is 

supportable by the available evidence and quantitative information, recognizing that the selection 

of a specific approach to reaching final decisions on the primary PM2.5 standards will reflect the 

judgments of the Administrator as to what weight to place on the various types of evidence and 

information, and on associated uncertainties. Potential approaches to considering support for 

particular alternative annual and 24-hour standard levels are discussed below.  

3.5.2.4.1 Alternative Annual Standard Levels  

 As discussed above, the degree to which particular alternative annual standard levels 

below 12.0 g/m3 are supported will depend on the weight placed on various aspects of the 

scientific evidence, air quality and risk information, and its associated uncertainties. For 

example, a level as low as about 10.0 g/m3 could be supported to the extent weight is placed on 

the following:  

• Setting a standard expected to maintain the PM2.5 air quality distribution below those present 

in most key epidemiologic studies, recognizing that (1) the large majority of key studies 

reporting positive and statistically significant health effect associations (and all but one key 

U.S. study) examine distributions of ambient PM2.5 with overall mean concentrations at or 

above 9.6 g/m3, while a few studies reporting such associations examine distributions with 

overall mean concentrations just above 8.0 g/m3 (section 3.2.3.2.1) and (2) analyses of 

PM2.5 air quality in CBSAs indicate that maximum annual PM2.5 design values are often 10% 

to 20% higher than average PM2.5 concentrations (i.e., averaged across space and over 

several years) suggesting that areas meeting a particular annual PM2.5 standard would be 

expected to have average PM2.5 concentrations somewhat below the level of that standard 

(section 3.2.3.2.2; Appendix B, section B.7);   
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• Setting the standard level at or below the pseudo-design values corresponding to about the 

50th percentiles of study area populations (or health events) in most key studies (particularly 

key U.S. studies), recognizing that a revised annual standard with a level as low as 10.0 

g/m3 would be expected to maintain ambient PM2.5 concentrations below the concentrations 

present during study periods for most of those populations (or below the concentrations in 

locations accounting for most health events) (section 3.2.3.2.2);  

• Setting a standard estimated to reduce PM2.5-associated health risks, such that a substantial 

portion of the risk reduction is estimated at annual average PM2.5 concentrations ≥ about 8 

g/m3 and recognizing that these concentrations are within the range of overall means for 

which key epidemiologic studies indicate consistently positive and statistically significant 

health effect associations (section 3.3.2).   

 In selecting a particular level from 10.0 g/m3 to < 12.0 g/m3, consideration of the 

evidence could take into account individual study characteristics such as study design and 

statistical approaches, precision of reported associations, study size and location, and 

uncertainties in the study itself or in our analyses of study area air quality. For example, if less 

weight is placed on the small number of studies reporting overall mean concentrations below 9.6 

g/m3 and on the small number of studies with 50th percentile pseudo-design values below 10.0 

g/m3, a standard higher than 10 µg/m3 (but still below 12.0 g/m3) might be considered. 

Similarly, consideration of the risk assessment could take into account the magnitude of 

estimated risk reductions, compared to the current standards; the annual average PM2.5 

concentrations at which those reductions are estimated to occur; and the uncertainties in the 

underlying epidemiologic studies, in the air quality adjustments, or in other information that was 

used to model risks. For example, concern about the uncertainty in the potential public health 

importance of risk reductions estimated for a level as low as 10.0 g/m3, much of which is 

estimated at annual average PM2.5 concentrations around 8 g/m3, might focus consideration on 

a standard level above 10 µg/m3, where estimated risk reductions would occur at slightly higher 

concentrations.  

 A decision to not consider annual standard levels below 10.0 g/m3 might take into 

account the increasing uncertainty in the degree to which lower levels would result in additional 

public health improvements, due in part to the more limited amount of data available. Such a 

decision could note the following regarding the increasing uncertainty at lower ambient 

concentrations:  

• Few key epidemiologic studies (and only one key U.S. study) report positive and statistically 

significant health effect associations for PM2.5 air quality distributions with overall mean 

concentrations below 9.6 g/m3, and areas meeting a standard with a level of 10.0 g/m3 

would generally be expected to have lower long-term mean PM2.5 concentrations (and 

potentially around 8.0 g/m3 in some areas) (section 3.2.3.2.1; Appendix B, section B.7).  
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• There is increasing uncertainty in PM2.5 exposure estimates in some of the largest key studies 

at lower ambient concentrations (i.e., those that use hybrid model predictions to estimate 

exposures), given the more limited information available to develop and validate model 

predictions (sections 2.3.3 and 3.2.3.2.1).  

• Pseudo-design values corresponding to the 50th percentiles of study area populations (or 

health events) are ≥ about 10.0 g/m3 for almost all key studies, particularly those conducted 

in the U.S. (section 3.2.3.2.2).  

• There is increasing uncertainty in quantitative estimates of PM2.5-associated mortality risk for 

standard levels below 10.0 g/m3, given that a substantial proportion of the risk reductions 

estimated for lower standard levels occur at annual average PM2.5 concentrations below 8 

g/m3, and thus below the lower end of the range of overall mean PM2.5 concentrations in 

key epidemiologic studies that consistently report positive and statistically significant 

associations (section 3.3.2).  

 In contrast, an annual standard with a level below 10.0 g/m3, and potentially as low as 

8.0 g/m3, could be supported to the extent greater weight is placed on the potential public health 

improvements that could result from additional reductions in ambient PM2.5 concentrations (i.e., 

beyond those achieved by a standard with a level of 10.0 g/m3) and less weight is placed on the 

limitations in the evidence that contribute to greater uncertainty at lower concentrations. For 

example, a level below 10.0 g/m3 could be supported to the extent greater weight is placed on 

the following:  

• The two key studies in Canada with overall mean PM2.5 concentrations below 8.0 g/m3 and 

the potential for overall mean concentrations below 8.0 g/m3 in restricted analyses in a key 

U.S. study (section 3.2.3.2.1);   

• The ambient PM2.5 concentrations somewhat below overall means (e.g., corresponding the 

lower quartile of underlying data), which contribute to the bulk of the data informing 

reported associations (section 3.2.3.2.1);  

• Annual pseudo-design values corresponding to 25th percentiles of study area populations or 

health events for most studies, recognizing that the revised standard would be expected to 

maintain ambient PM2.5 concentrations below the concentrations present during study periods 

for > ~75% of those populations (or below the concentrations in locations accounting for > 

75% of health events) (section 3.2.3.2.2);  

• Annual pseudo-design values for the smaller number of key studies conducted in Canada, 

which tend to be somewhat lower than those in the U.S. (section 3.2.3.2.2);  

• The potential public health importance of the additional reductions in PM2.5-associated health 

risks estimated for a level of 9.0 g/m3 and the potential for continued reductions at lower 

standard levels (i.e., below the lowest level examined in the risk assessment) (section 3.3).     

As above, various levels from 8.0 g/m3 to < 10.0 g/m3 could be supported, depending 

on the weight placed on specific aspects of the evidence and analyses. For example, compared to 

a level of 8.0 g/m3, a higher level could be supported to the extent less weight is placed on the 
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two key Canadian studies reporting overall mean concentrations below 8.0 g/m3, on the 

potential for overall mean concentrations below 8.0 g/m3 in a U.S. study that reports 

associations in restricted analyses, and on the three Canadian studies with the lowest pseudo-

design values. Such a judgment could also be informed by increasing uncertainty in the potential 

public health importance of risks estimated for a level as low as 8.0 g/m3, given that such risks, 

which were not quantified in the risk assessment, are likely to occur at annual average PM2.5 

concentrations largely below 8 g/m3 (i.e., below the mean concentrations in almost all key 

epidemiologic studies). 

3.5.2.4.2 Alternative 24-Hour Standard Levels  

 We additionally evaluate the degree to which the evidence supports considering potential 

alternative levels for the 24-hour PM2.5 standard, in conjunction with the current 98th percentile 

form of that standard. As discussed above (section 3.1.1), in the last review, the EPA recognized 

that the annual standard would generally be the controlling standard across much of the U.S., 

except for certain areas in the western U.S. “where annual mean PM2.5 concentrations have 

historically been low but where relatively high 24-hour concentrations occur, often related to 

seasonal wood smoke emissions” (78 FR 3163, January 15, 2013). In such areas, the 24-hour 

standard is the generally controlling standard. Thus, the EPA’s approach in the last review was to 

focus on the annual standard as the principle means of limiting both long- and short-term PM2.5 

concentrations, recognizing that the 24-hour standard, with its 98th percentile form, would 

provide supplemental protection against short-term peak exposures, particularly for areas with 

high peak-to-mean ratios (e.g., areas with strong seasonal sources).   

As discussed above (section 3.1.2), in the current review we again view the 24-hour 

standard (with its 98th percentile form) largely within the context of limiting short-term 

exposures to peak PM2.5 concentrations. Compared to the annual standard, we recognize that the 

24-hour standard is less likely to appropriately limit the more typical PM2.5 exposures (i.e., 

corresponding to the middle portion of the air quality distribution) that are most strongly 

associated with the health effects observed in epidemiologic studies. Thus, as in the last review 

(78 FR 3161-3162, January 15, 2013), we focus on the annual PM2.5 standard as the principle 

means of providing public health protection against the bulk of the distribution of short- and 

long-term PM2.5 exposures, and the 24-hour standard as a means of providing supplemental 

protection against the short-term exposures to “peak” PM2.5 concentrations, such as can occur in 

areas with strong contributions from local or seasonal sources.  

Results of the risk assessment and of recent air quality analyses are consistent with our 

reliance on the 24-hour standard to provide supplemental protection in areas with relatively low 

long-term mean PM2.5 concentrations. In particular, the risk assessment indicates that the annual 
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standard is the controlling standard across most of the urban study areas evaluated and revising 

the level of the 24-hour standard to 30 g/m3 would be estimated to lower PM2.5-associated risks, 

compared to the current standards, largely in a few study areas located in the western U.S. 

(several of which are also likely to experience risk reductions upon meeting a revised annual 

standard). Additionally, recent air quality analyses indicate that almost all CBSAs with 

maximum annual PM2.5 design values at or below 12.0 g/m3 also have maximum 24-hour 

design values below 35 g/m3 (and below 30 g/m3 in most areas) (Chapter 2, Figure 2-11). The 

exceptions are a few CBSAs in the western U.S.  

 Thus, taking into account the approach described above, an important consideration is 

whether additional protection is needed against short-term exposures to peak PM2.5 

concentrations in areas meeting both the current 24-hour standard and the current, or a revised, 

annual standard. To the extent the evidence indicates that such exposures can lead to adverse 

health effects, it would be appropriate to consider alternative levels for the 24-hour standard. In 

considering this issue, we evaluate the evidence from key health studies. With regard to these 

studies, we particularly note the following:  

• To the extent a revised annual standard is determined to provide adequate protection against 

the 24-hour and annual PM2.5 exposures associated with health effects in key epidemiologic 

studies, those studies do not indicate the need for additional protection against short-term 

exposures to peak PM2.5 concentrations. As discussed in detail above (section 3.2.3.2.1), 

epidemiologic studies provide the strongest support for reported health effect associations for 

the part of the air quality distribution corresponding to the bulk of the underlying data (i.e., 

estimated exposures and/or health events), often around the overall mean concentrations 

evaluated rather than near the upper end of the distribution. Consistent with this, analyses 

that exclude the upper end of the distribution of estimated exposures still find positive and 

statistically significant associations with mortality. The magnitudes of the associations in 

restricted analyses are similar to (Shi et al., 2016) or larger than (Di et al., 2017a) the 

magnitudes of the associations based on the full cohorts, suggesting that, at a minimum, 

short-term exposures to peak PM2.5 concentrations are not disproportionately responsible for 

reported health effect associations.   

• Controlled human exposure studies do provide evidence for health effects following single, 

short-term PM2.5 exposures to concentrations that typically correspond to upper end of the 

PM2.5 air quality distribution in the U.S. (i.e., “peak” concentrations). However, most of these 

studies examine exposure concentrations considerably higher than are typically measured in 

areas meeting the current standards (section 3.2.3.1). In particular, while controlled human 

exposure studies often report statistically significant effects on one or more indicators of 

cardiovascular function following 2-hour exposures to PM2.5 concentrations at and above 120 

µg/m3 (at and above 149 µg/m3 for vascular impairment, the effect shown to be most 

consistent across studies), 2-hour ambient concentrations of PM2.5 at monitoring sites 

meeting the current standards almost never exceed 32 μg/m3. In fact, even the extreme upper 

end of the distribution of 2-hour PM2.5 concentrations at sites meeting the current standards 

remains well-below the PM2.5 exposure concentrations consistently shown to elicit effects 
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(i.e., 99.9th percentile of 2-hour concentrations at these sites is 68 μg/m3 during the warm 

season). Thus, available PM2.5 controlled human exposure studies do not indicate the need 

for additional protection against exposures to peak PM2.5 concentrations, beyond the 

protection provided by the combination of the current 24-hour standard and the current or a 

revised annual standard (section 3.2.3.1).  

  

 When the information summarized above is considered in the context of the 24-hour 

standard, we reach the conclusion that, in conjunction with a lower annual standard level 

intended to increase protection against short- and long-term PM2.5 exposures broadly across the 

U.S., the evidence does not support the need for additional protection against short-term 

exposures to peak PM2.5 concentrations. In particular, while epidemiologic studies do support the 

need to consider increasing protection against the typical 24-hour and annual PM2.5 exposures 

that provide strong support for reported health effect associations, these studies do not indicate 

that such associations are strongly influenced by exposures to the peak concentrations in the air 

quality distribution. Also, while controlled human exposure studies support the occurrence of 

effects following single short-term exposures to PM2.5 concentrations that correspond to the peak 

of the air quality distribution, these concentrations are well above those typically measured in 

areas meeting the current standards. Thus, in the context of a 24-hour standard that is meant to 

provide supplemental protection (i.e., beyond that provided by the annual standard alone) against 

short-term exposures to peak PM2.5 concentrations, the available evidence supports consideration 

of retaining the current 24-hour standard with its level of 35 g/m3.   

 However, we also recognize that a different policy approach than that described above 

could be applied to considering the level of the 24-hour standard. For example, consideration 

could be given to lower 24-hour standard levels in order to increase protection across the U.S. 

against the broader PM2.5 air quality distribution. If such an approach is evaluated in the current 

review, consideration of 24-hour standard levels at least as low as 30 g/m3 could be supported 

(either alone or in conjunction with a lower annual standard level). The risk assessment estimates 

that a level of 30 g/m3 would increase protection compared to the current standards, though 

only in a small number of study areas largely confined to the western U.S. (section 3.3.2). 

Analyses of air quality in locations of some key epidemiologic studies indicate that substantial 

portions of study area populations lived in locations with 24-hour PM2.5 pseudo-design values at 

or below about 30 g/m3 (or that substantial portions of study health events occurred in such 

locations), providing additional support for considering lower levels.  

 If this alternative approach to revising the primary PM2.5 standards is adopted, the 

uncertainty inherent in using the 24-hour standard to increase protection against the broad 

distribution of PM2.5 air quality should be carefully considered. Specifically, the degree of 
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protection provided by any particular 24-hour standard against the typical short- and long-term 

PM2.5 exposures corresponding to the middle portion of the air quality distribution will vary 

across locations and over time, depending on the relationship between those typical 

concentrations and the short-term peak PM2.5 concentrations that are directly targeted by the 24-

hour standard (i.e., with its 98th percentile form). Thus, lowering the level of the 24-hour 

standard is likely to have a more variable impact on public health than lowering the level of the 

annual standard. Depending on the 24-hour standard level set, some areas could experience 

reductions that are greater than warranted, based on the evidence, while others could experience 

reductions that are less than warranted. Therefore, the rationale supporting this approach would 

need to recognize and account for the uncertainty inherent in using 24-hour standard, with a 98th 

percentile form, to increase protection against the broad distribution of PM2.5 air quality. 

3.6 AREAS FOR FUTURE RESEARCH AND DATA COLLECTION 

In this section, we identify key areas for additional research and data collection for fine 

particles, based on the uncertainties and limitations that remain in the evidence and technical 

information. Additional research in these areas could reduce uncertainties and limitations in 

future reviews of the primary PM2.5 standards. Important areas for future research include the 

following:  

• Further elucidating the physiological pathways through which exposures to the PM2.5 

concentrations present in the ambient air across much of the U.S. could be causing mortality 

and the morbidity effects shown in many epidemiologic studies. This could include the 

following:  

− Controlled human exposure studies that examine longer exposure periods (e.g., 

24-hour as in Bräuner et al. (2008); 5-hour as in Hemmingsen et al. (2015b)), or 

repeated exposures, to concentrations typically measured in the ambient air across 

the U.S.  

− Studies that evaluate the health impacts of decreasing PM2.5 exposures (e.g., due 

to changes in policies or behavior, shifts in important emissions sources, or 

targeted interventions).  

− Additional animal toxicological studies that evaluate exposures to low PM2.5 

concentrations.  

• Additional research into “causal inference” methods in epidemiologic studies to evaluate the 

causal nature of relationships between PM2.5 exposure and mortality or morbidity.  

• Improving our understanding of the PM2.5 concentration-response relationships near the 

lower end of the PM2.5 air quality distribution, including the shapes of concentration-

response functions and the uncertainties around estimated functions for various health 

outcomes and populations (e.g., older adults, people with pre-existing diseases, children).  
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• Understanding of the potential for particle characteristics, other than size-fractionated mass, 

to influence PM toxicity (e.g., composition, oxidative potential, etc.) and the PM health 

effect associations observed in epidemiologic studies.  

• Improving our understanding of the uncertainties inherent in the various approaches used to 

estimate PM2.5 exposures in epidemiologic studies, including how those uncertainties may 

vary across space and time, and over the PM2.5 air quality distribution. Approaches to 

incorporating these uncertainties into quantitative estimates of PM2.5 concentration-response 

relationships should also be explored.   

• Additional health research on ultrafine particles, with a focus on consistently defining UFPs 

across studies and across disciplines (i.e., animal, controlled human exposure, and 

epidemiologic studies), on using consistent exposure approaches in experimental studies, and 

on improving exposure characterizations in epidemiologic studies. Also, further examine the 

potential for translocation of ultrafine particles from the respiratory tract into other 

compartments (i.e., blood) and organs (e.g., heart, brain), with particular emphasis on studies 

conducted in humans.  

• Additional work to measure ultrafine particle emissions, using comparable methods to 

measure emissions from various types of sources (e.g., mobile sources, fires, etc.).  

• Further evaluate the potential for some groups to be at higher risk of PM2.5-related effects 

than the general population and the potential for PM2.5 exposures to contribute to the 

development of underlying conditions that may then confer higher risk of PM2.5-related 

effects. For example, research to address this latter need could include efforts to understand 

the potential for long-term PM exposures to contribute to the development and progression of 

atherosclerosis in adults and/or asthma in children. It could also include research to 

understand the potential role of PM exposures in developmental outcomes (e.g., 

neurodevelopmental effects, reproductive and birth outcomes).  

• Research to further evaluate the combination of factors that contribute to differences in risk 

estimates between cities, potentially including differences in exposures, demographics, 

particle characteristics. 

• Research to improve our understanding of variability in PM2.5 exposures within and across 

various populations (e.g., defined by life stage, pre-existing condition, etc.), the most health-

relevant exposure durations, as well as the temporal and spatial variability in ambient PM2.5 

that is not captured by existing ambient monitors.   
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4 REVIEW OF THE PRIMARY STANDARD FOR PM10 

This chapter presents key policy-relevant considerations and conclusions regarding the 

public health protection provided by the current primary PM10 standard. These considerations 

and conclusions are framed by a series of policy-relevant questions, including the following 

overarching policy-relevant question:  

• Does the currently available scientific evidence support or call into question the 

adequacy of the protection afforded by the current 24-hour primary PM10 standard 

against health effects associated with exposures to PM10-2.5?  

The answer to this question is intended to inform decisions by the Administrator on whether, and 

if so, how to revise the primary standard for PM10.   

Section 4.1 summarizes the EPA’s approach to reviewing the primary PM10 standard in 

the last review and our general approach to considering the updated scientific evidence in the 

current review. Section 4.2 presents our consideration of the available evidence as assessed in the 

ISA. Section 4.3 summarizes CASAC advice and public comments. Drawing from that 

consideration of the evidence, section 4.4 summarizes our conclusions regarding the adequacy of 

the current primary PM10 standard. Section 4.5 discusses areas for future research and data 

collection to improve our understanding of potential PM10-2.5-related health effects in future 

reviews.  

4.1 APPROACH  

4.1.1 Approach Used in the Last review 

The last review of the PM NAAQS was completed in 2012 (78 FR 3086, January 15, 

2013). In that review the EPA retained the existing 24-hour primary PM10 standard, with its level 

of 150 g/m3 and its one-expected-exceedance form on average over three years, to continue to 

provide public health protection against exposures to PM10-2.5. In support of this decision, the 

Administrator emphasized her consideration of three issues: the extent to which it was 

appropriate to maintain a standard that provides some measure of protection against all PM10-2.5 

(regardless of composition or source or origin), the extent to which a standard with a PM10 

indicator can provide protection against exposures to PM10-2.5, and the degree of public health 

protection provided by the existing PM10 standard. Her consideration of each of these issues is 

summarized below.  

First, the Administrator judged that the evidence provided “ample support for a standard 

that protects against exposures to all thoracic coarse particles, regardless of their location or 

source of origin” (78 FR 3176, January 15, 2013). In support of this, she noted that 
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epidemiologic studies had reported positive associations between PM10-2.5 and mortality or 

morbidity in a large number of cities across North America, Europe, and Asia, encompassing a 

variety of environments where PM10-2.5 sources and composition are expected to vary widely. 

Though most of the available studies examined associations in urban areas, the Administrator 

noted that some studies had also linked mortality and morbidity with relatively high ambient 

concentrations of particles of non-urban crustal origin. In light of this body of available evidence, 

and consistent with the CASAC’s advice, the Administrator concluded that it was appropriate to 

maintain a standard that provides some measure of protection against exposures to all thoracic 

coarse particles, regardless of their location, source of origin, or composition (78 FR 3176, 

January 15, 2013).  

In next reaching the conclusion that it was appropriate to retain a PM10 indicator for a 

standard meant to protect against exposures to ambient PM10-2.5, the Administrator noted that 

PM10 mass includes both coarse PM (PM10-2.5) and fine PM (PM2.5). As a result, the 

concentration of PM10-2.5 allowed by a PM10 standard set at a single level declines as the 

concentration of PM2.5 increases. Because PM2.5 concentrations tend to be higher in urban areas 

than rural areas (e.g., Chan et al., 2018), the Administrator observed that a PM10 standard would 

generally allow lower PM10-2.5 concentrations in urban areas than in rural areas. She judged it 

appropriate to maintain such a standard given that much of the evidence for PM10-2.5 toxicity, 

particularly at relatively low particle concentrations, came from study locations where thoracic 

coarse particles were of urban origin, and given the possibility that PM10-2.5 contaminants in 

urban areas could increase particle toxicity. Thus, in the last review the Administrator concluded 

that it remained appropriate to maintain a standard that allows lower ambient concentrations of 

PM10-2.5 in urban areas, where the evidence was strongest that exposure to thoracic coarse 

particles was associated with morbidity and mortality, and higher concentrations in non-urban 

areas, where the public health concerns were less certain. The Administrator concluded that the 

varying concentrations of coarse particles that would be permitted in urban versus non-urban 

areas under the 24-hour PM10 standard, based on the varying levels of PM2.5 present, 

appropriately reflected the differences in the strength of evidence regarding coarse particle health 

effects.  

Finally, in specifically evaluating the degree of public health protection provided by the 

primary PM10 standard, with its level of 150 g/m3 and its one-expected-exceedance form on 

average over three years, the Administrator recognized that the available health evidence and air 

quality information was much more limited for PM10-2.5 than for PM2.5. In particular, the 

strongest evidence for health effects attributable to PM10-2.5 exposure was for cardiovascular 

effects, respiratory effects, and/or premature mortality following short-term exposures. For each 

of these categories of effects, the 2009 ISA concluded that the evidence was “suggestive of a 



 4-3  

causal relationship” (U.S. EPA, 2009, section 2.3.3). These determinations contrasted with those 

for PM2.5, as described in Chapter 3 above, which were determined in the ISA to be either 

“causal” or “likely to be causal” for mortality, cardiovascular effects, and respiratory effects 

(U.S. EPA, 2009, Tables 2-1 and 2-2). 

The Administrator judged that the important uncertainties and limitations associated with 

the PM10-2.5 evidence and information raised questions as to whether additional public health 

improvements would be achieved by revising the existing PM10 standard. She specifically noted 

several uncertainties, including the following:  

(1) The number of epidemiologic studies that have employed copollutant models to address 

the potential for confounding, particularly by PM2.5, was limited. Therefore, the extent to 

which PM10-2.5 itself, rather than one or more copollutants, contributes to reported health 

effects remained uncertain.  

(2) Only a limited number of experimental studies provided support for the associations 

reported in epidemiologic studies, resulting in further uncertainty regarding the 

plausibility of the associations between PM10-2.5 and mortality and morbidity reported in 

epidemiologic studies.  

(3) Limitations in PM10-2.5 monitoring data (i.e., limited data available from FRM/FEM 

sampling methods) and the different approaches used to estimate PM10-2.5 concentrations 

across epidemiologic studies resulted in uncertainty in the ambient PM10-2.5 

concentrations at which the reported effects occur, increasing uncertainty in estimates of 

the extent to which changes in ambient PM10-2.5 concentrations would likely impact 

public health.  

(4) While PM10-2.5 effect estimates reported for mortality and morbidity were generally 

positive, most were not statistically significant, even in single-pollutant models. This 

included effect estimates reported in some study locations with PM10 concentrations 

above those allowed by the current 24-hour PM10 standard.  

(5) The composition of PM10-2.5, and the effects associated with various components, were 

also key uncertainties in the available evidence. Without more information on the 

chemical speciation of PM10-2.5, the apparent variability in associations across locations 

was difficult to characterize.  

In considering these uncertainties, the Administrator particularly emphasized the 

considerable degree of uncertainty in the extent to which health effects reported in epidemiologic 

studies are due to PM10-2.5 itself, as opposed to one or more co-occurring pollutants. This 

uncertainty reflected the relatively small number of PM10-2.5 studies that had evaluated 

copollutant models, particularly copollutant models that included PM2.5, and the very limited 

body of controlled human exposure evidence supporting the plausibility of PM10-2.5-attributable 

adverse effects at ambient concentrations.  
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When considering the evidence as a whole, the Administrator concluded that the degree 

of public health protection provided by the current PM10 standard against exposures to PM10-2.5 

should be maintained (i.e., neither increased nor decreased). The Administrator’s judgment that 

protection did not need to be increased was supported by her consideration of uncertainties in the 

overall body of evidence. Her judgment that the degree of public health protection provided by 

the current standard is not greater than warranted was supported by the observation that positive 

and statistically significant associations with mortality were reported in some single-city U.S. 

study locations likely to have violated the current PM10 standard. Thus, the Administrator 

concluded that the existing 24-hour PM10 standard, with its one-expected exceedance form on 

average over three years and a level of 150 g/m3, was requisite to protect public health with an 

adequate margin of safety against effects that have been associated with PM10-2.5. In light of this 

conclusion, the EPA retained the existing PM10 standard.  

4.1.2 Approach in the Current Review 

As discussed above for PM2.5 (section 3.2.1), in this  PA we place the greatest emphasis 

on effects for which the evidence has been determined to demonstrate a “causal” or a “likely to 

be causal” relationship with PM exposures (U.S. EPA, 2019). This approach focuses policy 

considerations and conclusions on health outcomes for which the evidence is strongest. Unlike 

for PM2.5, the ISA does not identify any PM10-2.5-related health outcomes for which the evidence 

supports either a “causal” or a “likely to be causal” relationship. Thus, for PM10-2.5 this PA 

considers the evidence determined to be “suggestive of, but not sufficient to infer, a causal 

relationship,” recognizing the greater uncertainty in such evidence.  

 The preamble to the ISA states that “suggestive” evidence is “limited, and chance, 

confounding, and other biases cannot be ruled out” (U.S. EPA, 2015, Table II). In light of the 

additional uncertainty in the evidence for PM10-2.5-related health outcomes, compared to the 

evidence supporting “causal” or “likely to be causal” relationships for PM2.5, our approach to 

evaluating the primary PM10 standard in this review is more limited than our approach to 

evaluating the primary PM2.5 standards (discussed in Chapter 3). Specifically, our approach for 

PM10 does not include evaluations of air quality distributions in locations of individual 

epidemiologic studies, comparisons of experimental exposures with ambient air quality, or the 

quantitative assessment of PM10-2.5 health risks. The substantial uncertainty in such analyses, if 

they were to be conducted based on the currently available PM10-2.5 health studies, would limit 

their utility for informing conclusions on the primary PM10 standard. Therefore, as discussed 

further below, we focus our evaluation of the primary PM10 standard on the overall body of 

evidence for PM10-2.5-related health effects. This includes consideration of the degree to which 

uncertainties in the evidence from the last review have been reduced and the degree to which 
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new uncertainties have been identified. In adopting this approach, we recognize that the 

Administrator’s decisions as to whether to retain or revise the primary PM10 standard will largely 

be public health policy judgments that will draw upon the scientific evidence for PM10-2.5-related 

health effects and judgments about how to consider the uncertainties and limitations inherent in 

that evidence.  

4.2 EVIDENCE-BASED CONSIDERATIONS 

This section draws from the EPA’s synthesis and assessment of the scientific evidence 

presented in the ISA (U.S. EPA, 2019) to consider the following policy-relevant questions:  

• To what extent does the currently available scientific evidence strengthen, or otherwise 

alter, our conclusions from the last review regarding health effects attributable to long- 

or short-term PM10-2.5 exposures? Have previously identified uncertainties been 

reduced? What important uncertainties remain and have new uncertainties been 

identified? 

Answers to these questions will inform our answer to the overarching question on the adequacy 

of the current primary PM10 standard, posed at the beginning of this chapter. In section 4.2.1 

below, we consider the nature of the effects attributable to long-term and short-term PM10-2.5 

exposures.  

4.2.1 Nature of Effects 

 As noted above, for the heath outcome categories and exposure duration combinations 

evaluated, the ISA concludes that the evidence supports causality determinations for PM10-2.5 no 

stronger than “suggestive of, but not sufficient to infer, a causal relationship.” These outcomes, 

along with their corresponding causality determinations from the 2009 ISA, are highlighted 

below in Table 4-1 (adapted from U.S. EPA, 2019, Table 1-4).  
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Table 4-1. Key Causality Determinations for PM10-2.5 Exposures 

Health Outcome 
Exposure 
Duration 

2009 PM ISA 2019 PM ISA 

Mortality 
Long-term Inadequate 

Suggestive of, but not 
sufficient to infer 

Short-term Suggestive of, but not sufficient to infer 

Cardiovascular 
effects 

Long-term Inadequate 

Short-term Suggestive of, but not sufficient to infer 

Respiratory effects Short-term Suggestive of, but not sufficient to infer 

Cancer Long-term Inadequate 

Nervous System 
effects 

Long-term --- 

Metabolic effects Long-term --- 

 

 While the evidence for some of the health outcomes listed in Table 4-1 has strengthened 

since the last review, the  ISA concludes that overall “the uncertainties in the evidence identified 

in the 2009 PM ISA have, to date, still not been addressed” (U.S. EPA, 2019, section 1.4.2, p. 1-

41). For example, epidemiologic studies available in the last review relied on various methods to 

estimate PM10−2.5 exposures, and these methods had not been systematically compared to 

evaluate spatial and temporal correlations in exposure estimates. Methods included (1) 

calculating the difference between PM10 and PM2.5 concentrations at co-located monitors, (2) 

calculating the difference between county-wide averages of monitored PM10 and PM2.5 based on 

monitors that are not necessarily co-located, and (3) direct measurement of PM10-2.5 using a 

dichotomous sampler (U.S. EPA, 2019, section 1.4.2). In the current review, more recent 

epidemiologic studies continue to use these approaches to estimate PM10-2.5 concentrations. 

Additionally, some recent studies estimate long-term PM10-2.5 exposures as the difference 

between PM10 and PM2.5 concentrations based on information from spatiotemporal or land use 

regression (LUR) models, in addition to monitors. As in the last review, the various methods 

used to estimate PM10-2.5 concentrations have not been systematically evaluated (U.S. EPA, 

2019, section 3.3.1.1), contributing to uncertainty regarding the spatial and temporal correlations 

in PM10-2.5 concentrations across methods and in the PM10-2.5 exposure estimates used in 

epidemiologic studies (U.S. EPA, 2019, section 2.5.1.2.3). Given the greater spatial and temporal 

variability of PM10-2.5 and fewer PM10-2.5 monitoring sites, compared to PM2.5, this uncertainty is 

particularly important for the coarse size fraction.  
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 Beyond uncertainty associated with PM10-2.5 exposure estimates in epidemiologic studies, 

the limited information on the potential for confounding by copollutants and the limited support 

available for the biological plausibility of serious effects following PM10-2.5 exposures also 

continue to contribute broadly to uncertainty in the PM10-2.5 health evidence. Uncertainty related 

to potential confounding stems from the relatively small number of epidemiologic studies that 

have evaluated PM10-2.5 health effect associations in copollutants models with both gaseous 

pollutants and other PM size fractions. Uncertainty related to the biological plausibility of 

serious effects caused by PM10-2.5 exposures results from the small number of controlled human 

exposure and animal toxicology1 studies that have evaluated the health effects of experimental 

PM10-2.5 inhalation exposures. The evidence supporting the ISA’s “suggestive” causality 

determinations for PM10-2.5, including uncertainties in this evidence, is summarized in sections 

4.2.1.1 to 4.2.1.6 below.  

4.2.1.1 Mortality  

Long-term exposures 

Due to the dearth of studies examining the association between long-term PM10−2.5 

exposure and mortality, the 2009 PM ISA concluded that the evidence was “inadequate to 

determine if a causal relationship exists” (U.S. EPA, 2009).  Since the completion of the 2009 

ISA, some recent cohort studies conducted in the U.S. and Europe report positive associations 

between long-term PM10−2.5 exposure and total (nonaccidental) mortality, though results are 

inconsistent across studies (U.S. EPA, 2019, Table 11-11). The examination of copollutant 

models in these studies remains limited and, when included, PM10−2.5 effect estimates are often 

attenuated after adjusting for PM2.5 (U.S. EPA, 2019, Table 11-11). Across studies, PM10−2.5 

exposure concentrations are estimated using a variety of approaches, including direct 

measurements from dichotomous samplers, calculating the difference between PM10 and PM2.5 

concentrations measured at collocated monitors, and calculating difference of area-wide 

concentrations of PM10 and PM2.5. As discussed above, temporal and spatial correlations between 

these approaches have not been evaluated, contributing to uncertainty regarding the potential for 

exposure measurement error (U.S. EPA, 2019, section 3.3.1.1 and Table 11-11). The  ISA 

concludes that this uncertainty “reduces the confidence in the associations observed across 

studies” (U.S. EPA, 2019, p. 11-125). The  ISA additionally concludes that the evidence for 

long-term PM10−2.5 exposures and cardiovascular effects, respiratory morbidity, and metabolic 

disease provide limited biological plausibility for PM10−2.5-related mortality (U.S. EPA, 2019, 

sections 11.4.1 and 11.4). Taken together, the  ISA concludes that, “this body of evidence is 

                                                 
1 Compared to humans, smaller fractions of inhaled PM10-2.5 penetrate into the thoracic regions of rats and mice 

(U.S. EPA, 2018, section 4.1.6), contributing to the relatively limited evaluation of PM10-2.5 exposures in animal 

studies.  
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suggestive, but not sufficient to infer, that a causal relationship exists between long-term PM10-2.5 

exposure and total mortality” (U.S. EPA, 2019, p. 11-125).  

Short-term exposures 

The 2009 ISA concluded that the evidence is "suggestive of a causal relationship between 

short-term exposure to PM10−2.5 and mortality” (U.S. EPA, 2009). Since the completion of the 

2009 ISA, multicity epidemiologic studies conducted primarily in Europe and Asia continue to 

provide consistent evidence of positive associations between short-term PM10−2.5 exposure and 

total (nonaccidental) mortality (U.S. EPA, 2019, Table 11-9). Although these studies contribute 

to increasing confidence in the PM10−2.5-mortality relationship, the use of a variety of approaches 

to estimate PM10-2.5 exposures continues to contribute uncertainty to the associations observed. In 

addition, the  ISA notes that an analysis by Adar et al. (2014) indicates “possible evidence of 

publication bias, which was not observed for PM2.5” (U.S. EPA, 2019, section 11.3.2, p. 11-106). 

Recent studies expand the assessment of potential copollutant confounding of the 

PM10−2.5-mortality relationship and provide evidence that PM10-2.5 associations generally remain 

positive in copollutant models, though associations are attenuated in some instances (U.S. EPA, 

2019, section 11.3.4.1, Figure 11-28, Table 11-10). The ISA concludes that, overall, the 

assessment of potential copollutant confounding is limited due to the lack of information on the 

correlation between PM10−2.5 and gaseous pollutants and the small number of locations in which 

copollutant analyses have been conducted. Associations with cause-specific mortality provide 

some support for associations with total (nonaccidental) mortality, though associations with 

cause-specific mortality, particularly respiratory mortality, are more uncertain (i.e., wider 

confidence intervals) and less consistent (U.S. EPA, 2019, section 11.3.7). The  ISA concludes 

that the evidence for PM10-2.5-related cardiovascular and respiratory effects provides only limited 

support for the biological plausibility of a relationship between short-term PM10−2.5 exposure and 

cardiovascular mortality (U.S. EPA, 2019, Section 11.3.7).  Based on the overall evidence, the  

ISA concludes that, “this body of evidence is suggestive, but not sufficient to infer, that a causal 

relationship exists between short-term PM10-2.5 exposure and total mortality” (U.S. EPA, 2019, p. 

11-120).  

4.2.1.2 Cardiovascular Effects 

Long-term exposures 

In the 2009 PM ISA, the evidence describing the relationship between long-term 

exposure to PM10-2.5 and cardiovascular effects was characterized as “inadequate to infer the 

presence or absence of a causal relationship.” The limited number of epidemiologic studies 

reported contradictory results and experimental evidence demonstrating an effect of PM10-2.5 on 

the cardiovascular system was lacking (U.S. EPA, 2019, section 6.4).  



 4-9  

The evidence relating long-term PM10-2.5 exposures to cardiovascular mortality remains 

limited, with no consistent pattern of associations across studies and, as discussed above, 

uncertainty stemming from the use of various approaches to estimate PM10-2.5 concentrations 

(U.S. EPA, 2019, Table 6-70). The evidence for associations with cardiovascular morbidity has 

grown and, while results across studies are not entirely consistent, some epidemiologic studies 

report positive associations with ischemic heart disease (IHD) and myocardial infarction (MI) 

(U.S. EPA, 2019, Figure 6-34); stroke (U.S. EPA, 2019, Figure 6-35); atherosclerosis; venous 

thromboembolism (VTE); and blood pressure and hypertension (U.S. EPA, 2019, Section 6.4.6). 

PM10-2.5 cardiovascular mortality effect estimates are often attenuated, but remain positive, in 

copollutants models that adjust for PM2.5. For morbidity outcomes, associations are inconsistent 

in copollutant models that adjust for PM2.5, NO2, and chronic noise pollution (U.S. EPA, 2019, p. 

6-276). The lack of toxicological evidence for long-term PM10-2.5 exposures represents a 

substantial data gap (U.S. EPA, 2019, section 6.4.10), resulting in the  ISA conclusion that 

“evidence from experimental animal studies is of insufficient quantity to establish biological 

plausibility” (U.S. EPA, 2019, p. 6-277). Based largely on the observation of positive 

associations in some high-quality epidemiologic studies, the ISA concludes that “evidence is 

suggestive of, but not sufficient to infer, a causal relationship between long-term PM10-2.5 

exposure and cardiovascular effects” (U.S. EPA, 2019, p. 6-277).  

Short-term exposures 

The 2009 ISA found that the available evidence for short-term PM10-2.5 exposure and 

cardiovascular effects was “suggestive of a causal relationship.” This conclusion was based on 

several epidemiologic studies reporting associations between short-term PM10-2.5 exposure and 

cardiovascular effects, including IHD hospitalizations, supraventricular ectopy, and changes in 

heart rate variability (HRV). In addition, dust storm events resulting in high concentrations of 

crustal material were linked to increases in total cardiovascular disease emergency department 

visits and hospital admissions. However, the 2009 ISA noted the potential for exposure 

measurement error and copollutant confounding in these epidemiologic studies. In addition, there 

was only limited evidence of cardiovascular effects from a small number of experimental studies 

(e.g. animal toxicological studies and controlled human exposure studies) that examined short-

term PM10-2.5 exposures (U.S. EPA, 2009, section 6.2.12.2). In the last review, key uncertainties 

included the potential for exposure measurement error, copollutant confounding, and limited 

evidence of biological plausibility for cardiovascular effects following inhalation exposure (U.S. 

EPA, 2019, section 6.3.13).  

The evidence for short-term PM10-2.5 exposure and cardiovascular outcomes has expanded 

since the last review, though important uncertainties remain. The ISA notes that there are a small 

number of epidemiologic studies reporting positive associations between short-term exposure to 
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PM10-2.5 and cardiovascular-related morbidity outcomes. However, there is limited evidence to 

suggest that these associations are biologically plausible, or independent of copollutant 

confounding. The ISA also concludes that it remains unclear how the approaches used to 

estimate PM10-2.5 concentrations in epidemiologic studies may impact exposure measurement 

error. Taken together, the  ISA concludes that “the evidence is suggestive of, but not sufficient to 

infer, a causal relationship between short-term PM10-2.5 exposures and cardiovascular effects” 

(U.S. EPA, 2019, p.6-254). 

4.2.1.3 Respiratory Effects 

Short-term exposures 

Based on a small number of epidemiologic studies observing associations with some 

respiratory effects and limited evidence from experimental studies to support biological 

plausibility, the 2009 ISA (U.S. EPA, 2009) concluded that the relationship between short-term 

exposure to PM10−2.5 and respiratory effects is “suggestive of a causal relationship.” 

Epidemiologic findings were consistent for respiratory infection and combined respiratory-

related diseases, but not for COPD. Studies were characterized by overall uncertainty in the 

exposure assignment approach and limited information regarding potential copollutant 

confounding. Controlled human exposure studies of short-term PM10−2.5 exposures found no lung 

function decrements and inconsistent evidence for pulmonary inflammation. Animal 

toxicological studies were limited to those using non-inhalation (e.g., intra-tracheal instillation) 

routes of PM10−2.5 exposure.  

Recent epidemiologic findings consistently link PM10−2.5 exposure to asthma 

exacerbation and respiratory mortality, with some evidence that associations remain positive 

(though attenuated in some studies of mortality) in copollutant models that include PM2.5 or 

gaseous pollutants. Studies provide limited evidence for positive associations with other 

respiratory outcomes, including COPD exacerbation, respiratory infection, and combined 

respiratory-related diseases (U.S. EPA, 2019, Table 5-36). As noted above for other endpoints, 

an uncertainty in these epidemiologic studies is the lack of a systematic evaluation of the various 

methods used to estimate PM10−2.5 concentrations and the resulting uncertainty in the spatial and 

temporal variability in PM10−2.5 concentrations compared to PM2.5 (U.S. EPA, 2019, sections 

2.5.1.2.3 and 3.3.1.1). Taken together, the  ISA concludes that “the collective evidence is 

suggestive of, but not sufficient to infer, a causal relationship between short-term PM10-2.5 

exposure and respiratory effects” (U.S. EPA, 2019, p. 5-270). 

4.2.1.4 Cancer 

Long-term exposures 
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In the last review, little information was available from studies of cancer following 

inhalation exposures to PM10−2.5. Thus, the 2009 ISA determined the evidence was “inadequate 

to assess the relationship between long-term PM10−2.5 exposures and cancer” (U.S. EPA, 2009). 

Since the 2009 ISA, the assessment of long-term PM10−2.5 exposure and cancer remains limited, 

with a few recent epidemiologic studies reporting positive, but imprecise, associations with lung 

cancer incidence. Uncertainty remains in these studies with respect to exposure measurement 

error due to the use of PM10−2.5 predictions that have not been validated by monitored PM10−2.5 

concentrations (U.S. EPA, 2019, sections 3.3.2.3 and 10.3.4). Relatively few experimental 

studies of PM10−2.5 have been conducted, though available studies indicate that PM10−2.5 exhibits 

two key characteristics of carcinogens: genotoxicity and oxidative stress. While limited, such 

experimental studies provide some evidence of biological plausibility for the findings in a small 

number of epidemiologic studies (U.S. EPA, 2019, section 10.3.4).  

Taken together, the small number of epidemiologic and experimental studies, along with 

uncertainty with respect to exposure measurement error, contribute to the determination in the  

ISA that, “the evidence is suggestive of, but not sufficient to infer, a causal relationship between 

long-term PM10−2.5 exposure and cancer” (U.S. EPA, 2019, p. 10-87).  

4.2.1.5 Metabolic Effects 

Long-term exposures 

The 2009 ISA did not make a causality determination for PM10-2.5-related metabolic 

effects. Since the last review, one epidemiologic study shows an association between long-term 

PM10-2.5 exposure and incident diabetes, while additional cross-sectional studies report 

associations with effects on glucose or insulin homeostasis (U.S. EPA, 2019, section 7.4). As 

discussed above for other outcomes, uncertainties with the epidemiologic evidence include the 

potential for copollutant confounding and exposure measurement error (U.S. EPA, 2019, Tables 

7-14 and 7-15). The evidence base to support the biological plausibility of metabolic effects 

following PM10-2.5 exposures is limited, but a cross-sectional study that investigated biomarkers 

of insulin resistance and systemic and peripheral inflammation may support a pathway leading to 

type 2 diabetes (U.S. EPA, 2019, sections 7.4.1 and 7.4.3). Based on the expanded, though still 

limited evidence base, the  ISA concludes that, “[o]verall, the evidence is suggestive of, but not 

sufficient to infer, a causal relationship between [long]-term PM10−2.5 exposure and metabolic 

effects” (U.S. EPA, 2019, p. 7-56). 

4.2.1.6 Nervous system effects 

Long-term exposures 

The 2009 ISA did not make a causality determination for PM10-2.5-related nervous system 

effects. In the current review, newly available epidemiologic studies report associations between 
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PM10-2.5 and impaired cognition and anxiety in adults in longitudinal analyses (U.S. EPA, 2019, 

Table 8-25, section 8.4.5). Associations of long-term exposure with neurodevelopmental effects 

are not consistently reported in children (U.S. EPA, 2019, sections 8.4.4 and 8.4.5). Uncertainties 

in these studies include the potential for copollutant confounding, as no studies examined 

copollutants models (U.S. EPA, 2019, section 8.4.5), and for exposure measurement error, given 

the use of various model-based subtraction methods to estimate PM10-2.5 concentrations (U.S. 

EPA, 2019, Table 8-25). In addition, there is only limited animal toxicological evidence 

supporting the biological plausibility of nervous system effects (U.S. EPA, 2019, sections 8.4.1 

and 8.4.5). Overall, the  ISA concludes that, “the evidence is suggestive of, but not sufficient to 

infer, a causal relationship between long-term PM10-2.5 exposure and nervous system effects (U.S. 

EPA, 2019, p. 8-75).  

4.2.1.7 Conclusions Drawn from the Evidence  

Based on the evidence available in the current review, as assessed in the  ISA (U.S. EPA, 

2019) and summarized in 4.2.1.1 to 4.2.1.6 above, we revisit the policy-relevant questions posed 

at the beginning of this section:  

• To what extent does the currently available scientific evidence strengthen, or otherwise 

alter, our conclusions from the last review regarding health effects attributable to long- 

or short-term PM10-2.5 exposures? Have previously identified uncertainties been 

reduced? What important uncertainties remain and have new uncertainties been 

identified? 

 In the last review, the strongest evidence for PM10-2.5-related health effects was for 

cardiovascular effects, respiratory effects, and premature mortality following short-term 

exposures. For each of these categories of effects, the ISA concluded that the evidence was 

“suggestive of a causal relationship” (U.S. EPA, 2009, section 2.3.3). As summarized in the 

sections above, key uncertainties in the evidence resulted from limitations in the approaches used 

to estimate ambient PM10-2.5 concentrations in epidemiologic studies, limited examination of the 

potential for confounding by co-occurring pollutants, and limited support for the biological 

plausibility of the serious effects reported in many epidemiologic studies. Since 2009, the 

evidence base for several PM10-2.5-related health effects has expanded, broadening our 

understanding of the range of health effects linked to PM10-2.5 exposures. This includes expanded 

evidence for the relationships between long-term exposures and cardiovascular effects, metabolic 

effects, nervous system effects, cancer, and mortality. However, key limitations in the evidence 

that were identified in the 2009 ISA persist in studies that have become available since the last 

review. These limitations include the following:    

• The use of a variety of methods to estimate PM10-2.5 exposures in epidemiologic studies 

and the lack of systematic evaluation of these methods, together with the relatively high 
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spatial and temporal variability in ambient PM10-2.5 concentrations and the small number 

of monitoring sites, results in uncertainty in exposure estimates;  

• The limited number of studies that evaluate PM10-2.5 health effect associations in 

copollutant models, together with evidence from some studies for attenuation of 

associations in such models, results in uncertainty in the independence of PM10-2.5 health 

effect associations from co-occurring pollutants; 

• The limited number of controlled human exposure and animal toxicology studies of 

PM10-2.5 inhalation contributes to uncertainty in the biological plausibility of the PM10-2.5-

related effects reported in epidemiologic studies.   

Thus, while new evidence is available for a broader range of health outcomes in the current 

review, that evidence is subject to the same types of uncertainties that were identified in the last 

review of the PM NAAQS. As in the last review, these uncertainties contribute to the 

conclusions in the ISA that the evidence for the PM10-2.5-related health effects discussed in this 

section is “suggestive of, but not sufficient to infer” causal relationships.  

4.3 CASAC ADVICE AND PUBLIC COMMENTS 

As part of its review of the draft PA, the CASAC has provided advice on the adequacy of 

the public health protection afforded by the current primary PM10 standard. As for PM2.5 (section 

3.4), the CASAC’s advice is documented in a letter sent to the EPA Administrator (Cox, 2019).  

In its comments on the draft PA, the CASAC concurs with the draft PA’s overall 

preliminary conclusions that it is appropriate to consider retaining the current primary PM10 

standard without revision, stating that “[t]he CASAC agrees with the EPA conclusion that ‘…the 

available evidence does not call into question the adequacy of the public health protection 

afforded by the current primary PM10 standard and that evidence supports considering of 

retaining the current standard in this review’” (Cox, 2019, p.3 of letter). The CASAC finds the 

more limited approach taken for PM10, compared to PM2.5, to be “reasonable and appropriate” 

given the less certain evidence and the conclusion that “key uncertainties identified in the last 

review remain” (Cox, 2019, p. 13 of consensus responses). To reduce these uncertainties in 

future reviews, the CASAC recommends improvements to PM10-2.5 exposure assessment, 

including a more extensive network for direct monitoring of the PM10-2.5 fraction (Cox, 2019, p. 

13 of consensus responses). The CASAC also recommends additional human clinical and animal 

toxicology studies of the PM10-2.5 fraction to improve the understanding of biological causal 

mechanisms and pathways (Cox, 2019, p. 13 of consensus responses).  

We also received a limited number of public comments on the adequacy of the primary 

PM10 standard. Of those who provided comments on the PM10 standard, most commenters 

support the preliminary conclusion that it is appropriate to consider retaining the current PM10 

standard, without revision. One group that includes members of the academic research 
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community (i.e., the Independent PM Review Panel), however, supports lowering the level of the 

primary PM10 standard, consistent with their recommendation to also lower the level of the 24-

hour primary PM2.5 standard.  

4.4 CONCLUSIONS ON THE ADEQUACY OF THE CURRENT 

STANDARD 

This section describes our conclusions regarding the adequacy of the current primary 

PM10 standard. Our approach to reaching conclusions considers the EPA’s assessment of the 

current scientific evidence for PM10-2.5-related health effects in the ISA and takes into account 

the advice received from the CASAC (Cox, 2019) and comments from the members of the 

public. We revisit the overarching question for this chapter:  

• Does the currently available scientific evidence support or call into question the 

adequacy of the protection afforded by the current primary PM10 standard against 

health effects associated with exposures to PM10-2.5?  

In answering this question, we consider the currently available evidence within the context of the 

rationale supporting the decision in the last review to retain the primary PM10 standard. We 

recognize that a final decision on the primary PM10 standard in the current review will be largely 

a public health policy judgement in which the Administrator weighs the evidence, including its 

associated uncertainties.  

 As discussed in section 4.1.1 above, the decision to retain the primary PM10 standard in 

the last review recognized the importance of maintaining some degree of protection against 

PM10-2.5 exposures, given the evidence for PM10-2.5-related health effects, but noted uncertainties 

in the potential public health implications of revising the existing PM10 standard. Regarding 

evidence for PM10-2.5-related health effects, the decision noted that epidemiologic studies had 

reported positive associations between PM10-2.5 and mortality or morbidity in cities across North 

America, Europe, and Asia, encompassing a variety of environments where PM10-2.5 sources and 

composition are expected to vary widely. Although most of these studies examined PM10-2.5 

health effect associations in urban areas, some studies had also linked mortality and morbidity 

with relatively high ambient concentrations of particles of non-urban crustal origin. Drawing 

from this evidence, it was judged appropriate to maintain a standard that provides some measure 

of protection against exposures to PM10-2.5, regardless of location, source of origin, or particle 

composition (78 FR 3176, January 15, 2013). As discussed above in section 4.1.1, it was further 

judged appropriate to retain the PM10 indicator given that the varying concentrations of PM10-2.5 

permitted in urban versus non-urban areas under a PM10 standard, based on the varying levels of 

PM2.5 present (i.e., lower PM10-2.5 concentrations allowed in urban areas, where PM2.5 

concentrations tend to be higher), appropriately reflected differences in the strength of PM10-2.5 
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health effects evidence. With regard to uncertainties, limitations in the estimates of ambient 

PM10-2.5 used in epidemiologic studies, the limited evaluation of copollutant models to address 

the potential for confounding, and the limited number of experimental studies supporting 

biologically plausible pathways for PM10-2.5-related effects were all highlighted. These and other 

limitations in the PM10-2.5 evidence raised questions as to whether additional public health 

improvements would be achieved by revising the existing PM10 standard.  

 Since the last review, the evidence for several PM10-2.5-related health effects has 

expanded, particularly for long-term exposures, broadening our understanding of the range of 

effects linked to PM10-2.5 exposures. As in the last review, epidemiologic studies continue to 

report positive associations with mortality or morbidity in cities across North America, Europe, 

and Asia, where PM10-2.5 sources and composition are expected to vary widely. Such studies 

provide an important part of the body of evidence supporting the strengthened causality 

determinations (and new determinations) for long-term PM10-2.5 exposures and mortality, 

cardiovascular effects, metabolic effects, nervous system effects and cancer (U.S. EPA, 2019). 

Thus, the scientific evidence that has become available since the last review does not call into 

question the decision in that review to maintain a primary standard that provides some measure 

of public health protection against PM10-2.5 exposures, regardless of location, source of origin, or 

particle composition. In addition, recent epidemiologic studies do not call into question the 

judgment in the last review that it is appropriate to retain the PM10 indicator, given that the 

varying concentrations of coarse particles permitted in urban versus non-urban areas under a 

PM10 standard (i.e., based on the varying concentrations of PM2.5 present) appropriately reflect 

the differences in the strength of evidence regarding coarse particle health effects.  

 As in the last review, important uncertainties remain in the evidence base for PM10-2.5-

related health effects. As summarized in section 4.2.1 above, these include uncertainties in the 

PM10-2.5 exposure estimates used in epidemiologic studies, in the independence of PM10-2.5 health 

effect associations, and in the biological plausibility of the PM10-2.5-related effects. Thus, the 

evidence available in the current review is subject to the same broad uncertainties as were 

present in the last review. Consistent with the assessment of the evidence in the 2009 ISA (U.S. 

EPA, 2009), these uncertainties contribute to the determinations in the current  ISA that the 

evidence for key PM10-2.5-related health effects is “suggestive of, but not sufficient to infer” 

causal relationships (U.S. EPA, 2019). Drawing from this information, we reach the conclusion 

that, as in the last review, such uncertainties raise questions regarding the degree to which 

additional public health improvements would be achieved by revising the existing PM10 

standard.  

 When the above information is taken together, we reach the conclusion that the available 

evidence does not call into question the scientific judgments that informed the decision in the last 
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review to retain the current primary PM10 standard in order to protect against PM10-2.5 exposures. 

Specifically, while the available evidence supports maintaining a PM10 standard to provide some 

measure of protection against PM10-2.5 exposures, uncertainties in the evidence lead to questions 

regarding the potential public health implications of revising the existing PM10 standard. Thus, 

consistent with the approach taken in the last review and with the advice from the CASAC in this 

review, we reach the conclusions that the available evidence does not call into question the 

adequacy of the public health protection afforded by the current primary PM10 standard and that 

evidence supports consideration of retaining the current standard in this review. As such, we 

have not evaluated alternative standards in this PA.  

4.5 AREAS FOR FUTURE RESEARCH AND DATA COLLECTION 

As discussed above, a number of key uncertainties and limitations in the health evidence 

have been considered in this review. In this section, we highlight areas for future health-related 

research and data collection activities to address these uncertainties and limitations in the current 

body of evidence. These efforts, if undertaken, could provide important evidence for informing 

future reviews of the PM NAAQS. Key areas for future research efforts are summarized below.   

• The body of experimental inhalation studies of exposure to PM10-2.5 (e.g., controlled 

human exposure and animal toxicology studies) is currently relatively sparse. While 

coarse PM inhalation studies in rats and mice are complicated by substantial differences 

in dosimetry (i.e., compared to humans), additional experimental studies of short- or 

long-term PM10-2.5 exposures could play an important role in weight of evidence 

judgments in future ISAs. Experimental evaluation of effects that are plausibly related to 

the serious health outcomes documented in epidemiologic studies could be particularly 

informative. Such effects could include changes in markers of cardiovascular or 

respiratory function, similar to the effects that have been evaluated following PM2.5 

exposures (e.g., vascular function, blood pressure, heart rate and heart rate variability, 

markers of potential for coagulation, systemic and respiratory inflammation, respiratory 

function, etc.).  

• The potential for exposure error is of particular concern for PM10-2.5, given its less 

homogeneous atmospheric distribution compared to fine particles (U.S. EPA, 2019, 

section 1.2.1.5) and the relatively sparse PM10-2.5 monitoring network. Therefore, efforts 

to develop and validate new exposure estimation approaches, or to further validate 

existing approaches, would be informative. 

• Existing epidemiologic studies have rarely examined associations with PM10-2.5 in 

copollutant models, contributing to uncertainty in the degree to which reported health 

effect associations are independent of potential confounding variables. Additional 

epidemiologic studies that evaluate copollutants models would be informative.  

• Epidemiologic studies currently use a variety of approaches to measure/estimate PM10-2.5 

concentrations, including: (1) difference method with co-located monitors, (2) difference 

method with area-wide averages of monitored PM10 and PM2.5, (3) difference method 
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with area-wide averages of modeled PM10 and PM2.5 or (4) direct measurement of 

PM10-2.5 using a dichotomous sampler. It is important that we better understand how these 

methods compare to one another, both in terms of absolute estimated concentrations and 

in terms of the spatial and temporal correlations in those estimated concentrations 

between methods.  

• Measurement capabilities and the availability of PM10-2.5 ambient concentration data have 

greatly increased since the 2009 ISA (U.S. EPA, 2019, section 2.5.1.1.3). Starting in 

2011, PM10-2.5 has been monitored at NCore stations, IMPROVE stations, and several 

sites run by State and local agencies. To date, epidemiologic studies have used a variety 

of approaches to measure/estimate PM10-2.5 concentrations but have not used direct 

measurements from NCore or IMPROVE stations to evaluate health effects associations 

with PM10-2.5 exposure. A body of epidemiologic studies that evaluate health effect 

associations using monitoring data from these stations could allow more direct 

comparisons of results across studies.  

• Evaluate and expand the PM10-2.5 network, along with speciation of PM10-2.5 including 

multi-elements, major ions, carbon (including carbonate carbon), and bioaerosols 

• Characterize PM10-2.5 in different health-relevant exposure environments (e.g., city center, 

suburban, roadside, agricultural, and rural areas) for mass, elements (including potential 

toxic species), carbonaceous materials (including selected organic compounds and 

carbonate), water-soluble ions, and bioaerosols (including endotoxins, 1,3 beta glucan, 

and total protein).  

• Additional areas of interest for future research include:  

o Further evaluation of the potential for particular PM10-2.5 components, groups of 

components, or other particle characteristics to contribute to exposure-related 

health effects.  

o Research to improve our understanding of concentration-response relationships 

and the confidence bounds around these relationships, especially at lower ambient 

PM10-2.5 concentrations.   

o Identifying novel populations that could be at-risk of PM10-2.5-related health 

effects.  

o Modeling to estimate PM10-2.5 mass and composition in areas with sparse or less-

than-daily monitoring.
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5 REVIEW OF THE SECONDARY STANDARDS 

This chapter presents key policy-relevant considerations and summary conclusions 

regarding the public welfare protection provided by the current secondary PM standards to 

protect against PM-related visibility impairment, climate effects, and materials effects. These 

considerations and conclusions are framed by a series of policy-relevant questions, including the 

following overarching question: 

• Does the currently available scientific evidence and quantitative information support 

or call into question the adequacy of the protection afforded by the current 

secondary PM standards? 

The answer to this question is informed by evaluation of a series of more specific policy-

relevant questions, which expand upon those presented at the outset of this review in the IRP 

(U.S. EPA, 2016). Answers to these questions are intended to inform decisions by the 

Administrator on whether, and if so how, to revise the secondary PM standards. 

Section 5.1 presents our approach for reviewing the secondary standards for PM. Section 

5.2.1 presents our consideration of the available scientific evidence and our consideration of 

quantitative information for visibility effects, while section 5.2.2 considers the available 

scientific evidence for each of the non-visibility welfare effects (climate effects and materials 

effects) separately.1 Section 5.3 summarizes the advice and recommendations received from the 

CASAC during its review of the draft PA, and by public comments received on the draft 

document. Conclusions regarding the public welfare protection provided by the current 

secondary PM standards are summarized in section 5.4. Section 5.5 discusses areas for future 

research and data collection to improve our understanding of PM-related welfare effects in future 

reviews. 

5.1 APPROACH 

In the last review of the PM NAAQS, completed in 2012, the EPA retained the secondary 

24-hour PM2.5 standard, with its level of 35 µg/m3, and the 24-hour PM10 standard, with its level 

of 150 µg/m3 (78 FR 3228, January 15, 2013). The EPA also retained the level, set at 15 µg/m3, 

and averaging time of the annual PM2.5 standard, while revising the form. With regard to the 

                                                 
1 Other welfare effects of PM, such as ecological effects, are being considered in the separate, on-going review of 

the secondary NAAQS for oxides of nitrogen and oxides of sulfur. Accordingly, the public welfare protection 

provided by the secondary PM standards against ecological effects such as those related to deposition of nitrogen- 

and sulfur-containing compounds in vulnerable ecosystems is being considered in that separate review. Thus, the 

Administrator’s conclusion in this review will be focused only and specifically on the adequacy of public welfare 

protection provided by the secondary PM standards from effects related to visibility, climate, and materials. 
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form of the annual PM2.5 standard, the EPA removed the option for spatial averaging (78 FR 

3228, January 15, 2013). Key aspects of the Administrator’s decisions on the secondary PM 

standards for non-visibility effects and visibility effects are described below in section 5.1.1. 

5.1.1 Approach Used in the Last Review 

The 2012 decision on the adequacy of the secondary PM standards was based on 

consideration of the protection provided by those standards for visibility and for the non-

visibility effects of materials damage, climate effects and ecological effects. As noted earlier, the 

current review of the public welfare protection provided by the secondary PM standards against 

ecological effects is occurring in the separate, on-going review of the secondary NAAQS for 

oxides of nitrogen and oxides of sulfur. Thus, the consideration of ecological effects in the 2012 

review is not discussed here. Rather, the sections below focus on the Administrator’s 

consideration of climate and materials effects (section 5.1.1.1) and visibility effects (section 

5.1.1.2). 

5.1.1.1 Non-Visibility Effects 

With regard to the role of PM in climate, the Administrator considered whether it was 

appropriate to establish any distinct secondary PM standards to address welfare effects 

associated with climate impacts. In considering the scientific evidence, she noted the 2009 ISA 

conclusion “that a causal relationship exists between PM and effects on climate” and that 

aerosols2 alter climate processes directly through radiative forcing and by indirect effects on 

cloud brightness, changes in precipitation, and possible changes in cloud lifetimes (U.S. EPA, 

2009, section 9.3.10). Additionally, the major aerosol components with the potential to affect 

climate processes (i.e., black carbon (BC), organic carbon (OC), sulfates, nitrates and mineral 

dusts) vary in their reflectivity, forcing efficiencies, and direction of climate forcing (U.S. EPA, 

2009, section 9.3.10). 

Noting the strong evidence indicating that aerosols affect climate, the Administrator 

further considered what the available information indicated regarding the adequacy of protection 

provided by the secondary PM standards. She noted that a number of uncertainties in the 

scientific information affected our ability to quantitatively evaluate the standards in this regard. 

                                                 
2 In the climate sciences research community, PM is encompassed by what is typically referred to as aerosol. An 

aerosol is defined as a solid or liquid suspended in a gas, but PM refers to the solid or liquid phase of an aerosol. 

In this review of the secondary PM NAAQS the discussion on climate effects of PM uses the term PM throughout 

for consistency with the ISA (U.S. EPA, 2019) as well as to emphasize that the climate processes altered by 

aerosols are generally altered by the PM portion of the aerosol. Exceptions to this practice include the discussion 

of climate effects in the last review, when aerosol was used when discussing suspending aerosol particles, and for 

certain acronyms that are widely used by the climate community that include the term aerosol (e.g., aerosol 

optical depth, or AOD). 
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For example, the ISA and PA noted the spatial and temporal heterogeneity of PM components 

that contribute to climate forcing, uncertainties in the measurement of aerosol components, 

inadequate consideration of aerosol impacts in climate modeling, insufficient data on local and 

regional microclimate variations and heterogeneity of cloud formations. In light of these 

uncertainties and the lack of sufficient data, the 2011 PA concluded that it was not feasible in the 

last review “to conduct a quantitative analysis for the purpose of informing revisions [to the 

secondary PM NAAQS] based on climate” (U.S. EPA, 2011, pp. 5-11 to 5-12) and that there was 

insufficient information available to base a national ambient air quality standard on climate 

impacts associated with ambient air concentrations of PM or its constituents (U.S. EPA, 2011, 

section 5.2.3). The Administrator agreed with this conclusion (78 FR 3225-3226, January 15, 

2013). 

With regard to materials effects, the Administrator also considered effects associated with 

the deposition of PM (i.e., dry and wet deposition), including both physical damage (materials 

effects) and aesthetic qualities (soiling effects). The deposition of PM can physically affect 

materials, adding to the effects of natural weathering processes, by promoting or accelerating the 

corrosion of metals; by degrading paints; and by deteriorating building materials such as stone, 

concrete, and marble (U.S. EPA, 2009, section 9.5). Additionally, the deposition of PM from 

ambient air can reduce the aesthetic appeal of buildings and objects through soiling. The ISA 

concluded that evidence was “sufficient to conclude that a causal relationship exists between PM 

and effects on materials” (U.S. EPA, 2009, sections 2.5.4 and 9.5.4). However, the 2011 PA 

noted that quantitative relationships were lacking between particle size, concentrations, and 

frequency of repainting and repair of surfaces and that considerable uncertainty exists in the 

contributions of co-occurring pollutants to materials damage and soiling processes (U.S. EPA, 

2011, p. 5-29). The 2011 PA concluded that none of the evidence available in the last review 

called into question the adequacy of the existing secondary PM standards to protect against 

material effects (U.S. EPA, 2011, p. 5-29). The Administrator agreed with this conclusion (78 

FR 3225-3226, January 15, 2013). 

In considering non-visibility welfare effects in the last review, as discussed above, the 

Administrator concluded that, while it is important to maintain an appropriate degree of control 

of fine and coarse particles to address non-visibility welfare effects, “[i]n the absence of 

information that would support any different standards…it is appropriate to retain the existing 

suite of secondary standards” (78 FR 3225-3226, January 15, 2013). Her decision was consistent 

with the CASAC advice related to non-visibility effects. Specifically, the CASAC agreed with 

the 2011 PA conclusions that, while these effects are important, “there is not currently a strong 

technical basis to support revisions of the current standards to protect against these other welfare 

effects” (Samet, 2010, p. 5). Thus, the Administrator concluded that it was appropriate to retain 
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all aspects of the existing 24-hour PM2.5 and PM10 secondary standards. With regard to the 

secondary annual PM2.5 standard, the Administrator concluded that it was appropriate to retain a 

level of 15.0 µg/m3 while revising only the form of the standard to remove the option for spatial 

averaging (78 FR 3225-3226, January 15, 2013). 

5.1.1.2 Visibility Effects 

Having reached the conclusion to retain the existing secondary PM standards to protect 

against non-visibility welfare effects, the Administrator next considered the level of protection 

that would be requisite to protect public welfare against PM-related visibility impairment and 

whether to adopt a distinct secondary standard to achieve this level of protection. In reaching her 

final decision that the existing 24-hour PM2.5 standard provides sufficient protection against PM-

related visibility impairment (78 FR 3228, January 15, 2013), the Administrator considered the 

evidence assessed in the 2009 ISA (U.S. EPA, 2009) and the analyses included in the Urban-

Focused Visibility Assessment (2010 UFVA; U.S. EPA, 2010) and the 2011 PA (U.S. EPA, 

2011). She also considered the degree of protection for visibility that would be provided by the 

existing secondary standard, focusing specifically on the secondary 24-hour PM2.5 standard with 

its level of 35 µg/m3. These considerations, and the Administrator’s conclusions regarding 

visibility are discussed in more detail below. 

In the last review, the ISA concluded that, “collectively, the evidence is sufficient to 

conclude that a causal relationship exists between PM and visibility impairment” (U.S. EPA, 

2009, p. 2-28). Visibility impairment is caused by light scattering and absorption by suspended 

particles and gases, including water content of aerosols.3 The available evidence in the last 

review indicated that specific components of PM have been shown to contribute to visibility 

impairment. For example, at sufficiently high relative humidity values, sulfate and nitrate are the 

PM components that scatter more light and thus contribute most efficiently to visibility 

impairment. Elemental carbon (EC) and OC are also important contributors, especially in the 

northwestern U.S. where their contribution to PM2.5 mass is higher. Crustal materials can be 

significant contributors to visibility impairment, particularly for remote areas in the arid 

southwestern U.S. (U.S. EPA, 2009, section 2.5.1). 

Visibility impairment can have implications for people’s enjoyment of daily activities 

and for their overall sense of well-being (U.S. EPA, 2009, section 9.2). In consideration of the 

potential public welfare implication of various degrees of PM-related visibility impairment, the 

                                                 
3 All particles scatter light and, although a larger particle scatters more light than a similarly shaped smaller particle 

of the same composition, the light scattered per unit of mass is greatest for particles with diameters from ~0.3-1.0 

µm (U.S. EPA, 2009, section 2.5.1). Particles with hygroscopic components (e.g., particulate sulfate and nitrate) 

contribute more to light extinction at higher relative humidity than at lower relative humidity because they change 

size in the atmosphere in response to relative humidity. 
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Administrator considered the available visibility preference studies that were part of the overall 

body of evidence in the 2009 ISA and reviewed as a part of the 2010 UFVA. These preference 

studies provided information about the potential public welfare implications of visibility 

impairment from surveys in which participants were asked questions about their preferences or 

the values they placed on various visibility conditions, as displayed to them in scenic 

photographs or in images with a range of known light extinction levels.4 

In noting the relationship between PM concentrations and PM-related light extinction, the 

Administrator focused on identifying an adequate level of protection against visibility-related 

welfare effects. She first concluded that a standard in terms of a PM2.5 visibility index would 

provide a measure of protection against PM-related light extinction that directly takes into 

account the factors (i.e., species composition and relative humidity) that influence the 

relationship between PM2.5 in ambient air and PM-related visibility impairment. A PM2.5 

visibility index standard would afford a relatively high degree of uniformity of visual air quality 

protection in areas across the country by directly incorporating the effects of differences of PM2.5 

composition and relative humidity. In defining a target level of protection in terms of a PM2.5 

visibility index, as discussed below, the Administrator considered specific elements of the index, 

including the basis for its derivation, as well as an appropriate averaging time, level, and form. 

With regard to the basis for derivation of a visibility index, the Administrator concluded 

that it was appropriate to use an adjusted version of the original IMPROVE algorithm,5 in 

conjunction with monthly average relative humidity data based on long-term climatological 

means. In so concluding, the Administrator noted the CASAC conclusion on the reasonableness 

of reliance on a PM2.5 light extinction indicator calculated from PM2.5 chemical composition and 

relative humidity. In considering alternative approaches for a focus on visibility, the 

Administrator recognized that the available mass monitoring methods did not include 

measurement of the full water content of ambient PM2.5, nor did they provide information on the 

composition of PM2.5, both of which contribute to visibility impacts (77 FR 38980, June 29, 

2012). In addition, at the time of the proposal, the Administrator recognized that suitable 

equipment and performance-based verification procedures did not then exist for direct 

                                                 
4 Preference studies were available in four urban areas in the last review. Three western preference studies were 

available, including one in Denver, Colorado (Ely et al., 1991), one in the lower Fraser River valley near 

Vancouver, British Columbia, Canada (Pryor, 1996), and one in Phoenix, Arizona (BBC Research & Consulting, 

2003). A pilot focus group study was also conducted for Washington, DC (Abt Associates, 2001), and a replicate 

study with 26 participants was also conducted for Washington, DC (Smith and Howell, 2009). More details about 

these studies are available in Appendix D. 

5 The revised IMPROVE algorithm (Pitchford et al., 2007) uses major PM chemical composition measurements and 

relative humidity estimates to calculate light extinction. For more information about the derivation of and input 

data required for the original and revised IMPROVE algorithms, see 78 FR 3168-3177, January 15, 2013. 
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measurement of light extinction and could not be developed within the time frame of the review 

(77 FR 38980-38981, June 29, 2012). 

With regard to the averaging time of the index, the Administrator concluded that a 24-

hour averaging time would be appropriate for a visibility index (78 FR 3226, January 15, 2013). 

Although she recognized that hourly or sub-daily (4- to 6-hour) averaging times, within daylight 

hours and excluding hours with relatively high humidity, are more directly related to the short-

term nature of the perception of PM-related visibility impairment and relevant exposure periods 

for segments of the viewing public than a 24-hour averaging time, she also noted that there were 

data quality uncertainties associated with the instruments used to provide the hourly PM2.5 mass 

measurements required for an averaging time shorter than 24 hours. The Administrator also 

considered the results of analyses that compared 24-hour and 4-hour averaging times for 

calculating the index. These analyses showed good correlation between 24-hour and 4-hour 

average PM2.5 light extinction, as evidenced by reasonably high city-specific and pooled R-

squared values, generally in the range of over 0.6 to over 0.8. Based on these analyses and the 

2011 PA conclusions regarding them, the Administrator concluded that a 24-hour averaging time 

would be a reasonable and appropriate surrogate for a sub-daily averaging time. 

With regard to the statistical form of the index, the Administrator settled on a 3-year 

average of annual 90th percentile values. In so doing, she noted that a 3-year average form 

provided stability from the occasional effect of inter-annual meteorological variability that can 

result in unusually high pollution levels for a particular year (78 FR 3198, January 15, 2013; U.S. 

EPA, 2011, p. 4-58). Regarding the annual statistic to be averaged, the 2010 UFVA evaluated 

three different statistics: 90th, 95th, and 98th percentiles (U.S. EPA, 2010, chapter 4). In 

considering these alternative percentiles, the 2011 PA noted that the Regional Haze Program 

targets the 20 percent most impaired days for improvements in visual air quality in Federal Class 

I areas and that the median of the distribution of these 20 percent worst days would be the 90th 

percentile. The 2011 PA further noted that strategies that are implemented so that 90 percent of 

days would have visual air quality that is at or below the level of the standard would reasonably 

be expected to lead to improvements in visual air quality for the 20 percent most impaired days. 

Lastly, the 2011 PA recognized that the available studies on people’s preferences did not address 

frequency of occurrence of different levels of visibility and did not identify a basis for a different 

target for urban areas than that for Class I areas (U.S. EPA, 2011, p. 4-59). These considerations 

led the Administrator to conclude that 90th percentile form was the most appropriate annual 

statistic to be averaged across three years (78 FR 3226, January 15, 2013). 

With regard to the level of the index, the Administrator considered the visibility 

preferences studies conducted in four urban areas (U.S. EPA, 2011, p. 4-61). Based on these 
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studies, the PA identified a range of levels from 20 to 30 deciviews (dv)6 as being a reasonable 

range of “candidate protection levels” (CPLs).7 In considering this range of CPLs, the 

Administrator noted the uncertainties and limitations in public preference studies, including the 

small number of stated preference studies available; the relatively small number of study 

participants and the extent to which the study participants may not be representative of the 

broader study area population in some of the studies; and the variations in the specific materials 

and methods used in each study. She concluded that the substantial degrees of variability and 

uncertainty in the public preference studies should be reflected in a target protection level at the 

upper end of the range of CPLs than if the information were more consistent and certain. 

Therefore, the Administrator concluded that it was appropriate to set a target level of protection 

in terms of a 24-hour PM2.5 visibility index at 30 dv (78 FR 3226-3227, January 15, 2013). 

Based on her considerations and conclusions summarized above, the Administrator 

concluded that the protection provided by a secondary standard based on a 3-year visibility 

metric, defined in terms of a PM2.5 visibility index with a 24-hour averaging time, a 90th 

percentile form averaged over 3 years, and a level of 30 dv, would be requisite to protect public 

welfare with regard to visual air quality (78 FR 3227, January 15, 2013). Having reached this 

conclusion, she next determined whether an additional distinct secondary standard in terms of a 

visibility index was needed given the degree of protection from visibility impairment afforded by 

the existing secondary standards. Specifically, she noted that the air quality analyses showed that 

all areas meeting the existing 24-hour PM2.5 standard, with its level of 35 µg/m3, had visual air 

quality at least as good as 30 dv, based on the visibility index defined above (Kelly et al., 2012b, 

Kelly et al., 2012a). Thus, the secondary 24-hour PM2.5 standard would likely be controlling 

relative to a 24-hour visibility index set at a level of 30 dv. Additionally, areas would be unlikely 

to exceed the target level of protection for visibility of 30 dv without also exceeding the existing 

secondary 24-hour standard. Thus, the Administrator judged that the 24-hour PM2.5 standard 

“provides sufficient protection in all areas against the effects of visibility impairment – i.e., that 

the existing 24-hour PM2.5 standard would provide at least the target level of protection for 

visual air quality of 30 dv which the Administrator judges appropriate” (78 FR 3227, January 15, 

2013). She further judged that “[s]ince sufficient protection from visibility impairment would be 

provided for all areas of the country without adoption of a distinct secondary standard, and 

adoption of a distinct secondary standard will not change the degree of over-protection for some 

areas of the country…adoption of such a distinct secondary standard is not needed to provide 

                                                 
6 Deciview (dv) refers to a scale for characterizing visibility that is defined directly in terms of light extinction. The 

deciview scale is frequently used in the scientific and regulatory literature on visibility.  

7 For comparison, 20 dv, 25 dv, and 30 dv are equivalent to 64, 112, and 191 megameters (Mm-1), respectively. 
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requisite protection for both visibility and nonvisibility related welfare effects” (78 FR 3228, 

January 15, 2013). 

5.1.2 General Approach Used in the Current Review 

To evaluate whether it is appropriate to consider retaining the current suite of secondary 

PM standards, or whether consideration of revision is appropriate, we have adopted an approach 

in this review that builds on the general approach used in the last review and reflects the body of 

evidence and information now available. As summarized above, past approaches have been 

based most fundamentally on using information from PM visibility studies and quantitative 

analyses of PM-related visibility impairment to inform the selection of secondary PM standards 

that, in the Administrator’s judgment, protect the public welfare from any known or anticipated 

effects. These fundamental considerations are again the basis for our approach in this review. 

In conducting this assessment, we draw on the current evidence and quantitative 

assessments of visibility impairment associated with PM in ambient air. In considering the 

scientific and technical information, we consider both the information available at the time of the 

last review and information newly available since the last review, including the evidence 

assessed in the ISA and updated air quality-based analyses (Appendix D). Figure 5-1 below 

illustrates our general approach in developing conclusions regarding the adequacy of the current 

secondary standards and, as appropriate, potential alternative standards. In the boxes in Figure 5-

1, the range of questions that we consider in sections 5.2.1 and 5.2.2 below are represented by a 

summary of policy-relevant questions that frame our consideration of the scientific evidence and 

quantitative analyses. 
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Figure 5-1. Overview of general approach for review of secondary PM standards. 
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5.2 ADEQUACY OF THE CURRENT SECONDARY PM STANDARDS 

In considering the available evidence for welfare effects attributable to PM as presented 

in the ISA, this section poses the following policy-relevant questions:  

• Does the currently available scientific evidence and quantitative information support 

or call into question the adequacy of the welfare protection afforded by the current 

secondary PM standards? 

In answering this question, we have posed a series of more specific questions to aid in 

considering the currently available scientific evidence and quantitative information, as discussed 

below. In considering the scientific and technical information, we reflect upon both the 

information available in the last review and information that is newly available since the last 

review as assessed and presented in the ISA (U.S. EPA, 2019), focusing on welfare effects for 

which the evidence supports either a “causal” or a “likely to be causal” relationship as described 

in the Preamble to the ISA (U.S. EPA, 2015). Table 5-1 lists such causality determinations from 

the ISA for welfare effects. As in the last review, the evidence is sufficient to support a causal 

relationship between PM and visibility effects (section 5.2.1), climate effects (section 5.2.2) and 

materials effects (section 5.2.2). 

Table 5-1. Key causality determinations for PM-related welfare effects. 

Effect 2009 PM ISA 2019 PM ISA 

Visibility effects Causal Causal 

Climate effects Causal Causal 

Materials effects Causal Causal 

 

5.2.1 Visibility Effects 

In the sections below, we consider the nature of visibility-related effects attributable to 

PM (section 5.2.1.1) and the quantitative information currently available (section 5.2.1.2). 

5.2.1.1 Evidence-Based Considerations 

In considering the available evidence of visibility welfare effects attributable to PM as 

presented in the ISA, this section addresses the following policy-relevant questions:  

• Does the current evidence alter our conclusions from the last review regarding the 

nature of visibility effects attributable to PM in ambient air? 

Visibility refers to the visual quality of a human’s view with respect to color rendition 

and contrast definition. It is the ability to perceive landscape form, colors, and textures. Visibility 

involves optical and psychophysical properties involving human perception, judgment, and 

interpretation. Light between the observer and the object can be scattered into or out of the sight 
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path and absorbed by PM or gases in the sight path. As recognized above, the conclusion of the 

ISA that “the evidence is sufficient to conclude that a causal relationship exists between PM and 

visibility impairment” is consistent with conclusions of causality in the last review (U.S. EPA, 

2019, section 13.2.6). These conclusions are based on strong and consistent evidence that 

ambient PM can impair visibility in both urban and remote areas (U.S. EPA, 2009, section 9.2.5).  

These subsequent questions consider the characterization and quantification of light 

extinction and preferences associated with varying degrees of visibility impairment. 

• To what extent is new information available that changes or enhances our 

understanding of the physics of light extinction and/or its quantification (e.g., 

through light extinction or other monitoring methods or through algorithms such as 

IMPROVE)? 

Our understanding of the relationship between light extinction and PM mass has changed 

little since the 2009 ISA (U.S. EPA, 2009). The combined effect of light scattering and 

absorption by particles and gases is characterized as light extinction, i.e., the fraction of light that 

is scattered or absorbed per unit of distance in the atmosphere. Light extinction is measured in 

units of 1/distance, which is often expressed in the technical literature as visibility per 

megameter (abbreviated Mm-1). Higher values of light extinction (usually given in terms of Mm-1 

or dv) correspond to lower visibility. When PM is present in the air, its contribution to light 

extinction is typically much greater than that of gases (U.S. EPA, 2019, section 13.2.1). The 

impact of PM on light scattering depends on particle size and composition, as well as relative 

humidity. All particles scatter light, as described by the Mie theory, which relates light scattering 

to particle size, shape and index of refraction (U.S. EPA, 2019, section 13.2.3; Van de Hulst, 

1981; Mie, 1908). Fine particles scatter more light than coarse particles on a per unit mass basis 

and include sulfates, nitrates, organics, light-absorbing carbon, and soil (Malm et al., 1994). 

Hygroscopic particles like ammonium sulfate, ammonium nitrate, and sea salt increase in size as 

relative humidity increases, leading to increased light scattering (U.S. EPA, 2019, section 

13.2.3). 

Direct measurements of PM light extinction, scattering, and absorption are considered 

more accurate for quantifying visibility impairment than PM mass-based estimates because they 

do not depend on assumptions about particle characteristics (e.g., size, shape, density, component 

mixture, etc.). Measurements of light extinction can be made with high time resolution, allowing 

for characterization of subdaily temporal patterns of visibility impairment. Measurement 

methods include transmissometers for measurement of light extinction and the determination of 

visual range and integrating nephelometers for measurement of light scattering, as well as 

teleradiometers and telephotometers, and photography and photographic modeling (U.S. EPA, 

2009; U.S. EPA, 2004). While some recent research confirms and adds to the body of knowledge 
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available regarding direct measurements as is described in the ISA, no major new developments 

have been made with these measurement methods since the last review (U.S. EPA, 2019, section 

13.2.2.2). 

A theoretical relationship between light extinction and PM characteristics has been 

derived from Mie theory (U.S. EPA, 2019, Equation 13-5) and can be used to estimate light 

extinction by combining mass scattering efficiencies of particles with particle concentrations 

(U.S. EPA, 2019, section 13.2.3; U.S. EPA, 2009, sections 9.2.2.2 and 9.2.3.1). However, 

routine ambient air monitoring rarely includes measurements of particle size and composition 

information with sufficient detail for these calculations. Accordingly, a much simpler algorithm 

has been developed to make estimating light extinction more practical. 

This algorithm, known as the IMPROVE algorithm,8 provides for the estimation of light 

extinction (bext), in units of Mm-1, using routinely monitored components of fine (PM2.5) and 

coarse (PM10-2.5) PM. Relative humidity data are also needed to estimate the contribution by 

liquid water that is in solution with the hygroscopic components of PM. To estimate each 

component’s contribution to light extinction, their concentrations are multiplied by extinction 

coefficients and are additionally multiplied by a water growth factor that accounts for their 

expansion with moisture. Both the extinction efficiency coefficients and water growth factors of 

the IMPROVE algorithm have been developed by a combination of empirical assessment and 

theoretical calculation using particle size distributions associated with each of the major aerosol 

components (U.S. EPA, 2019, section 13.2.3.1, section 13.2.3.3). 

The original IMPROVE algorithm (Equation D-1 in Appendix D), so referenced here to 

distinguish it from subsequent variations developed later, was found to underestimate the highest 

light scattering values and overestimate the lowest values at IMPROVE monitors throughout the 

U.S. (Malm and Hand, 2007; Ryan et al., 2005; Lowenthal and Kumar, 2004) and at sites in 

China (U.S. EPA, 2019, section 13.2.3.3). To resolve these biases, a revised IMPROVE equation, 

shown in Equation D-2 in Appendix D, was developed (Pitchford et al., 2007) that divides PM 

components into smaller and larger sizes of particles in PM2.5, with separate mass scattering 

efficiencies and hygroscopic growth functions for each size category. The revised IMPROVE 

equation was described in detail in the 2009 ISA (U.S. EPA, 2009) and it both reduced bias at 

the lowest and highest scattering values and improved the accuracy of the calculated light bext. 

                                                 
8 The algorithm is referred to as the IMPROVE algorithm as it was developed specifically to use monitoring data 

generated at IMPROVE network sites and with equipment specifically designed ot support the IMPROVE 

program and was evaluated using IMPROVE optical measurements at the subset of monitoring sites that make 

those measurements (Malm et al., 1994). 
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However, poorer precision was observed with the revised IMPROVE equation compared to the 

original IMPROVE equation (U.S. EPA, 2009).9 

Since the time of the last review, Lowenthal and Kumar (2016) have tested and evaluated 

a number of modifications to the revised IMPROVE equation based on evaluations of 

monitoring data from remote IMPROVE sites. In these locations, they observed that the 

multiplier to estimate the concentration of organic matter, [OM], from the concentration of 

organic carbon, [OC], was closer to 2.1 than the value of 1.8 used in the revised IMPROVE 

equation.10 They also observed that water soluble organic matter absorbs water as a function of 

relative humidity, which is not accounted for in either the original or revised IMPROVE 

equations and was therefore underestimated in these equations. They further suggested that light 

scattering by sulfate was overestimated because the assumption that all sulfate is fully 

neutralized ammonium sulfate is not always true (U.S. EPA, 2019, section 13.2.3.3). 

Modifications based on these points are reflected in Equation D-3 in Appendix D. 

In summary, rather than altering our understanding from the previous review, we 

continue to recognize that direct measurements are better at characterizing light extinction than 

estimating light extinction with an algorithm. However, in the absence of advances in the 

monitoring methods and/or network for directly measuring light extinction, the use of the 

IMPROVE equation for estimating light extinction continues to be supported by the evidence, 

with some new refinements to the inputs of the IMPROVE equation. Accordingly, as in the last 

review, the current review focuses on calculated light extinction when quantifying visibility 

impairment resulting from recent concentrations of PM in ambient air. 

• What does the available information indicate with regard to factors that influence 

light extinction and visibility, as well as variation in these factors and resulting light 

extinction across the U.S.? 

The ISA provides a comprehensive discussion of the spatial and temporal patterns of 

PM2.5 composition and its contribution to light extinction from IMPROVE and CSN monitoring 

                                                 
9 In the most recent IMPROVE report, a combination of the original and revised IMPROVE equations (the modified 

original IMPROVE equation) was used (Hand et al., 2011). This equation uses the sea salt term of the revised 

equation but does not subdivide the components into two size classes. Further, it uses a factor of 1.8 to estimate 

organic matter from organic carbon concentrations and also replaces the constant value of 10 Mm-1 used for 

Rayleigh scattering in the original and revised equations with a site-specific term based on elevation and mean 

temperature. 

10 In areas near sources, PM is often less oxygenated, and therefore, in these locations, much of the organic PM mass 

is present as OC (Jimenez et al., 2009). In areas further away from PM sources, organic PM mass is often more 

oxygenated as a result of photochemical activity and interactions with other PM and gaseous components in the 

atmosphere (Jimenez et al., 2009). Under these conditions, the multiplier to convert OC to OM may be higher 

than in locations with less aged organic PM. 
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sites, which are mostly rural and urban, respectively.11 The data from these sites for the periods 

of 2005-2008 and 2011-2014 were used in the ISA to identify differences in species contributing 

to light extinction in urban and rural areas by region and season. This is an expansion over the 

analysis in the 2009 ISA, in that the measurements at that time were primarily based 

measurements from monitors located in rural areas and at remote sites (U.S. EPA, 2019, section 

13.2.4.1, Figures 13-1 through 13-14). 

Focusing on the more recent time period of 2011-2014, some major differences in 

estimated light extinction are apparent among regions of the U.S. Annual average calculated bext 

was considerably greater in the East and Midwest than in the Southwest. Based on IMPROVE 

data, annual average bext was greater than 40 Mm-1 in the Southeast, East Coast, Mid-South, 

Central Great Plains, and Appalachian regions, with the highest annual average bext (greater than 

50 Mm-1) in the Ohio River Valley,12 while annual average bext was below 40 Mm-1 for all 

Western IMPROVE regions. Annual average bext values were also generally higher in the East 

than the West based on CSN data, although the highest annual average bext was in the 

Sacramento/San Joaquin Valley and Los Angeles areas (U.S. EPA, 2019, section 13.2.4.1, Figure 

13-1, Figure 13-3, Figure 13-5). 

Components of PM2.5 contributing to light extinction vary regionally. For example, in the 

Eastern regions, ammonium sulfate accounted for approximately 35 to 60% of the annual 

average bext, with the greatest contributions typically occurring in the summer. The second 

greatest contribution to light extinction came from particulate organic matter (POM), ranging 

from about 20 to 30% of annual average bext with less seasonal variation than ammonium sulfate. 

Ammonium nitrate also contributed approximately 10% to 35% of annual average bext, with 

much higher concentrations in the winter than in the summer (U.S. EPA, 2019, section 13.2.4.1). 

In the Northwest, POM was the largest contributor to annual average bext, up to 70%, in most 

urban and rural regions with the greatest contributions in the fall. This seasonal contribution of 

POM may be related to wildfires. A few exceptions included Boise and sites in North Dakota, 

where ammonium nitrate was the greatest contributor, and sites in the Alaska IMPROVE region, 

where ammonium sulfate was the greatest contributor (U.S. EPA, 2019, section 13.2.4.1). In the 

Southwest, based on IMPROVE data, ammonium sulfate or POM were generally the greatest 

contributors to annual average bext, with nearly equivalent contributions in several regions. Based 

on CSN data, ammonium nitrate was often the greatest contributor, with especially high bext 

contributions in the winter. While PM10-2.5 mass scattering was relatively small in the eastern and 

                                                 
11 Monitors were grouped into 28 IMPROVE regions and 31 CSN regions based on site location and PM 

concentrations for major species. For comparison purposes, and where possible, CSN regions were defined 

similarly to those for the IMPROVE network (Hand et al., 2011; U.S. EPA, 2019, section 13.2.4.1). 

12 A bext value of 40 Mm-1 corresponds to a visual range of about 100 km. 
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northwestern U.S., in the Southwest, PM10-2.5 mass scattering contributed to more than 20% of 

light extinction (U.S. EPA, 2019, section 13.2.4.1). 

Differences also exist between the urban CSN and the mainly rural IMPROVE data. 

Light extinction is generally higher in CSN regions than the geographically corresponding 

IMPROVE regions. Annual average bext was greater than 50 Mm-1 in 11 CSN regions, compared 

to only one IMPROVE region, and was greater than 20 Mm-1 in all CSN regions, compared to 

just over half of the IMPROVE regions. Light absorbing carbon was the greatest contributor to 

light extinction in several Western CSN regions but was not a large contributor in any of the 

IMPROVE regions (U.S. EPA, 2019, Figure 13-11). Ammonium nitrate also accounted for more 

light extinction in the CSN regions, while it was only a top contributor to bext in one IMPROVE 

region (U.S. EPA, 2019, section 13.2.4.1). 

From the 2005-2008 time period to the 2011-2014 time period, the annual average bext in 

most CSN regions in the Eastern U.S. decreased by more than 20 Mm-1. This corresponds to an 

improvement in average visual range in most Eastern U.S. regions of more than 6 Mm-1 (or 15 

km) from 2005-2008 to 2011-2014. Additionally, the contribution of ammonium sulfate to light 

extinction has also changed over this period. Due to decreased atmospheric sulfate 

concentrations, the impact on visibility impairment is evident with a smaller fraction of the total 

bext accounted for by ammonium sulfate in 2011-2014 compared to 2005-2008 (U.S. EPA, 2019, 

section 13.2.4.1). 

In summary, the spatial and temporal analysis of PM monitoring network data in the ISA 

emphasizes that the extent of light extinction by PM2.5 depends on PM2.5 composition and 

relative humidity. Regional differences in PM2.5 composition greatly influence light extinction. 

Changes in PM2.5 composition over time can also affect light extinction based on concentrations 

of specific PM components in ambient air. 

• To what extent are new studies available that might inform judgments about the 

potential adversity to public welfare of PM-attributable visibility impairment and 

the nature of the relationship between PM-attributable visibility impairment and 

public perceptions of such impairment?  

In the last review, visibility preference studies were available from four areas in North 

America,13 as described in section 5.1.1 above. Study participants were queried regarding 

multiple images that, depending on the study, were either photographs of the same location and 

scenery that had been taken on different days on which measured extinction data were available 

                                                 
13 As noted above, preference studies were available in four urban areas in the last review: Denver, Colorado (Ely et 

al., 1991, Pryor, 1996), Vancouver, British Columbia, Canada (Pryor, 1996), Phoenix, Arizona (BBC Research & 

Consulting, 2003), and Washington, DC (Abt Associates, 2001; Smith and Howell, 2009). More details about 

these studies are available in Appendix D. 
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or digitized photographs onto which a uniform “haze” had been superimposed. Results of these 

studies indicated a wide range of judgments on what study participants considered to be 

acceptable visibility across the different study areas, depending on the setting depicted in each 

photograph. As a part of the 2010 UFVA, each study was evaluated separately, and figures were 

developed to display the percentage of participants that rated the visual air quality depicted as 

“acceptable” (U.S. EPA, 2010). Figure 5-2 represents a graphical summary of the results of the 

studies in the four cities and identifies a range encompassing the PM2.5 visibility index values 

from images that were judged to be acceptable by at least 50% of study participants across all 

four of the urban preference studies (U.S. EPA, 2010, p. 4-24).14 As shown in Figure 5-2, much 

lower visibility (considerably more haze resulting in higher values of light extinction) was 

considered acceptable in Washington, D.C. than was in Denver. The median judgment for the 

study groups in the two areas differed by 9.2 dv (which roughly corresponds to about 30 µg/m3 

of PM) (U.S. EPA, 2010).  

 

Figure 5-2. Relationship of viewer acceptability ratings to light extinction. (Source: U.S. 

EPA, 2011, Figure 4-2; U.S. EPA, 2010, Figure 2-16) 

                                                 
14 Figure 5-2 shows the results of a logistical regression analysis using a logit model of the acceptable or 

unacceptable ratings from participants of the studies. The logit model is a generalized linear model used for 

binomial regression analysis which fits explanatory data about binary outcomes (in this case, a person rating an 

image as acceptable or unacceptable) to a logistic function curve. A detailed description is available in Appendix 

J of the 2010 UFVA (U.S. EPA, 2010).  
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Since the time of the last review, no new visibility preference studies have been 

conducted in the U.S. Outside of the U.S., a visibility preference study was carried out in 

Beijing, China (Fajardo et al., 2013). This study found a higher range of acceptable visibility 

impairment among participants than was found in preference studies previously conducted in the 

U.S. This finding may be related to the common occurrence of higher PM2.5 concentrations in 

Beijing (with associated visibility impairment) than is typical in the U.S. (U.S. EPA, 2019, 

section 13.2.5). Similarly, there is little newly available information regarding acceptable levels 

of visibility impairment in the U.S. 

• To what extent have important uncertainties in the evidence from the last review 

been addressed, and have new uncertainties emerged? 

While some refinements have been made to the IMPROVE equation to better estimate 

light extinction since the last review, there has been no expansion of monitoring efforts for direct 

measurement of light extinction. At the time of the last review, it was noted that a PM2.5 light 

extinction monitoring program could help with characterizing visibility conditions and the 

relationships between PM component concentrations and light extinction.  

Little to no new research is available that helps to expand our understanding of visibility 

preferences or our characterization of visibility conditions. Uncertainties and limitations 

consistent with those identified in the last review persist in this review. 

• Given the potential for people to have different preferences based on the visibility they are 

used to based on conditions that they commonly encounter, and the potential for them to 

also have different preferences for different types of scenes, the currently available 

preference studies may not capture the range of preferences of people in the U.S. 

• The available preference studies were conducted 15 to 30 years ago and may not reflect 

the visibility preferences of the U.S. population today. Given that air quality has 

improved over the last several decades, the available studies may not reflect current 

preferences of people in the U.S. 

• The available preference studies have used different methods to evaluate what level of 

visibility impairment is acceptable. Variability in study methodology may influence an 

individual’s response as to what level of visibility impairment is deemed acceptable, and 

thereby influence the results of the study. 

• Many factors that are not captured by the methods used in the currently available 

preference studies may influence people’s judgments on acceptable visibility. For 

example, an individual’s perception of an acceptable level of visibility impairment could 

be influenced by the duration of visibility impairment experienced, the time of day during 

which light extinction is greatest, and the frequency of episodes of visibility impairment, 

as well as the intensity of the visibility impairment (i.e., the focus of the available 

studies). 
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Overall, the body of evidence regarding visibility effects remains largely unchanged since 

the time of the last review. While one new study provides refinements to the methods for 

estimating light extinction, uncertainties and limitations in the scientific evidence during the last 

review remain. 

5.2.1.2 Quantitative Assessment-Based Considerations 

Beyond our consideration of the scientific evidence, discussed in section 5.2.1.1 above, 

we have also considered quantitative analyses of PM air quality and visibility impairment with 

regard to the extent they could inform conclusions on the adequacy of the public welfare 

protection provided by the current secondary PM standards. In the last review, quantitative 

analyses focused on daily visibility impairment, given the short-term nature of PM-related 

visibility effects. Such quantitative analyses conducted as part of the last review informed the 

decision on the secondary standards in that review (U.S. EPA, 2010, U.S. EPA, 2011; 78 FR 

3189-3192, January 15, 2013). The information newly available in this review includes an 

updated equation for estimating light extinction, summarized in section 5.2.1.1 above, as well as 

more recent air monitoring data, that together allow for development of an updated assessment 

with the potential to substantially add to our understanding of PM-related visibility impairment. 

Thus, we have conducted updated analyses for this review based on the currently available 

technical information, tools, and methods. 

• How much visibility impairment is estimated to occur in areas that meet the current 

secondary PM standards? What are the factors contributing to the estimates in areas 

with higher values? 

Consistent with the analyses conducted in the last review, we have conducted analyses 

examining the relationship between PM mass concentrations and calculated light extinction 

using the 3-year design values15 for the current secondary standards and a 3-year average 

visibility metric based on light extinction estimated using IMPROVE equations.16 These analyses 

are intended to inform our understanding of visibility impairment in the U.S. under recent air 

quality conditions, particularly those conditions that meet the current standards, and the relative 

influence of various factors on light extinction. Given the relationship of visibility with short-

term PM, we focus particularly on the short-term PM standards. 

                                                 
15 A design value is a statistic that summarizes the air quality data for a given area in terms of the indicator, 

averaging time, and form of the standard. Design values can be compared to the level of the standard and are 

typically used to designate areas as meeting or not meeting the standard and assess progress towards meeting the 

NAAQS. 

16 This is the 3-year visibility metric that was used to evaluate visibility impairment in the last review. Given that 

there has been almost no new research since the time of the last review to better inform our understanding of 

visibility preferences in the U.S., there is no new information available to inform selection of a visibility metric 

for evaluating visibility impairment in the current review different from the one identified in the last review.  
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Given that visibility-related effects are often associated with short-term PM 

concentrations, and recognizing the relatively larger role of PM2.5 and its components in light 

extinction and as inputs to the IMPROVE equation, we have given somewhat more attention to 

consideration of the 24-hour PM2.5 standard. Analyses were conducted using three versions of 

the IMPROVE equation (Equations D-1 through D-3 in Appendix D) to estimate light extinction 

to better understand the influence of variability in inputs across the three equations. This analysis 

included 67 monitoring sites that are geographically distributed across the U.S. in both urban and 

rural areas (see Figure D-1 in Appendix D). These sites are those that have a valid 24-hour PM2.5 

design value for the 2015-2017 period and met strict criteria for PM species for this analysis.17 

We first present results for these 67 sites using the original IMPROVE equation, with 

modifications to the equation consistent with those made in evaluating light extinction in the last 

review (described in detail in section D.1 of Appendix D). We then present results for these 67 

sites with light extinction calculated using the Lowenthal and Kumar (2016) IMPROVE equation 

described in section 5.2.1.1 above. For a subset of 20 of the 67 monitoring sites where PM10 data 

were available and met completeness criteria for this analysis, we then present results of a second 

analysis that included the coarse fraction as an input to the IMPROVE equations for calculating 

light extinction to better characterize the influence of coarse PM on light extinction.  

In considering the relationship between the 24-hour PM2.5 mass-based design value and  

the 3-year visibility metric using recent air quality data, we first examine the relationship using 

the original IMPROVE equation, consistent with the methods used in the last review (Kelly et 

al., 2012b; 78 FR 3201, January 15, 2013; Appendix D). In those areas that meet the current 24-

hour PM2.5 standard, all sites have light extinction estimates at or below 27 dv (Figure 5-3; 78 FR 

3218, January 15, 2013). This is also true for the one location that exceeds the current 24-hour 

PM2.5 standard (Figure 5-3). These findings are consistent with the findings of the analysis in the 

last review that used the same IMPROVE equation with data from 102 sites with data from 

2008-2010. This indicates similar findings from this analysis as was the case with the similar 

analysis in the last review, i.e., the updated quantitative analysis shows that the 3-year visibility 

metric was no higher than 30 dv18 at sites meeting the current secondary PM standards, and at 

                                                 
17 For this analysis, completeness criteria for speciated PM data at these sites included having all 12 quarters in the 

2015-2017 period with at least 11 days in each quarter with a valid PM2.5 mass, sulfate, nitrate, organic carbon, 

elemental carbon, sea salt (chlorine or chloride), and fine soil (aluminum, silica, calcium, iron, and titanium) 

measurement. 

18 For comparison purposes in these air quality analyses, we use a 3-year visibility metric with a level of 30 dv, 

which is the highest level of visibility impairment judged to be acceptable by at least 50 percent of the 

participants in the preference studies that were available at the time of the last review (78 FR 3191, January 15, 

2013). 
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most such sites the 3-year visibility index values are much lower (e.g., an average of 20 dv 

across the 67 sites). 

 

 

Figure 5-3. Comparison of 90th percentile of daily light extinction, averaged over three 

years, and 98th percentile of daily PM2.5 concentrations, averaged over three years, for 

2015-2017 using the original IMPROVE equation. (Note: Dashed lines indicate the level 

of current 24-hour PM2.5 standard (35 µg/m3) and the target level of protection identified for 

the 3-year visibility metric (30 dv).) 

 

When light extinction was calculated using the refined equation from Lowenthal and 

Kumar (2016), the resulting 3-year visibility metrics are slightly higher at all sites compared to 

light extinction estimates calculated using the original IMPROVE equation (Figure 5-4). As 

noted in section 5.2.1.1, this version of the IMPROVE equation uses a multiplier of 2.1 to 

convert the measured OC to OM for input into the equation and also accounts for water 

absorption by water soluble organic matter as a function of relative humidity, likely contributing 

to the slightly higher estimates of light extinction. As noted in section 5.2.1.1, the Lowenthal and 

Kumar (2016) refinements to the IMPROVE equation are based on evaluations of monitoring 

data from remote IMPROVE sites. More remote areas tend to have more aged organic particles 

than urban areas, and these adjustments to the IMPROVE equation account for the higher 

concentration of organic matter as a result of more aged organic particles at these sites. It is 
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important to note that, since the Lowenthal and Kumar (2016) refinements to the IMPROVE 

equation likely result in one of the higher estimates of light extinction, this equation may 

overestimate light extinction in non-remote areas, including those urban areas in our analyses. 

For those sites that meet the current 24-hour PM2.5 standard, the 3-year visibility metric is 

at or below 30 dv when light extinction is calculated using the Lowenthal and Kumar (2016) 

equation, with the exception of one site in Fairbanks, Alaska. This site just meets the current 24-

hour PM2.5 standard and has a 3-year visibility index value of 31 dv (compared to 27 dv when 

light extinction is calculated with the original IMPROVE equation) (see Table D-3 in Appendix 

D). The conditions at this site, however, may differ considerably from those under which the 

Lowenthal and Kumar (2016) IMPROVE equation, with 2.1 as the multiplier to estimate OM 

from OC, has been evaluated. Some of these differences, which include higher OC 

concentrations, with OC as a much higher fraction of OM, much lower temperatures, and the 

complete lack of sunlight for long periods, may affect the quantitative relationships of OC and 

OM with visibility (e.g., Hand et al., 2012; Hand et al., 2013). 

 

 

Figure 5-4. Comparison of 90th percentile of daily light extinction, averaged over three 

years, and 98th percentile of daily PM2.5 concentrations, averaged over three years, for 

2015-2017 using the Lowenthal and Kumar equation. (Note: Dashed lines indicate the 

level of current 24-hour PM2.5 standard (35 µg/m3) and the target level of protection 

identified for the 3-year visibility metric (30 dv).) 
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In considering visibility impairment under recent air quality conditions, we recognize that 

the differences in the inputs to equations estimating light extinction can influence the resulting 

values. For example, given the varying chemical composition of emissions from different 

sources, the 2.1 multiplier in the Lowenthal and Kumar (2016) equation may not be appropriate 

for all source types. At the time of the last review, the EPA judged that a 1.6 multiplier for 

converting OC to OM was more appropriate, for the purposes of estimating visibility index at 

sites across the U.S., than the 1.4 or 1.8 multipliers used in the original and revised IMPROVE 

equations, respectively. A multiplier of 1.8 or 2.1 would account for the more aged and 

oxygenated organic PM that tends to be found in more remote regions than in urban regions, 

whereas a multiplier of 1.4 may underestimate the contribution of organic PM found in remote 

regions when estimating light extinction (78 FR 3206, January 15, 2013; U.S. EPA, 2012b, p. 

IV-5). The information and analyses available in the current review indicate that it may be 

appropriate to select inputs to the IMPROVE equation (e.g., the multiplier for OC to OM) on a 

regional basis rather than a national basis when calculating light extinction. This is especially 

true when comparing sites with localized PM sources (such as sites in urban or industrial areas) 

to sites with PM derived largely from biogenic precursor emissions (that contribute to 

widespread secondary organic aerosol formation), such as those in the southeastern U.S. We 

note, however, that conditions involving PM from such different sources have not been well 

studied in the context of applying a multiplier to estimate light extinction, contributing 

uncertainty to estimates of light extinction for such conditions. 

At the time of the last review, the EPA noted that PM2.5 is the size fraction of PM 

responsible for most of the visibility impairment in urban areas (77 FR 38980, June 29, 2012). 

Data available at the time of the last review suggested that, generally, PM10-2.5 was a minor 

contributor to visibility impairment most of the time (U.S. EPA, 2010) although the coarse 

fraction may be a major contributor in some areas in the desert southwestern region of the U.S. 

Moreover, at the time of the last review, there were few data available from PM10-2.5 monitors to 

quantify the contribution of coarse PM to calculated light extinction. Since that time, an 

expansion in PM10-2.5 monitoring efforts has increased the availability of data for use in 

estimating light extinction with both PM2.5 and PM10-2.5 concentrations included as inputs in the 

equations. Collocated PM10-2.5 monitoring data were available at 20 of the 67 PM2.5 sites (see 

Appendix D) for 2015-2017. Thus, the analysis in this review addressed light extinction 

estimated with coarse and fine PM at sites where feasible. All 20 of these sites met the 24-hour 

PM2.5 standard and 24-hour PM10 standard, and they all had 3-year visibility metrics at or below 

30 dv when light extinction was calculated with and without the coarse fraction for any of the 

three versions of the IMPROVE equation. Generally, the contribution of the coarse fraction to 
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light extinction at these sites is minimal, contributing less than 1 dv to the 3-year visibility 

metric. However, we note that in our analysis, none of the locations included areas that would be 

expected to have greater concentrations of coarse PM, such as the southwest. In such locations, if 

PM10 and PM10-2.5 data were available, the coarse fraction may be a more important contributor 

to light extinction and visibility impairment than in those locations with lower concentrations of 

coarse PM. These results are consistent with those in the analyses in the ISA, which found that 

mass scattering from PM10−2.5 was relatively small (less than 10%) in the eastern and 

northwestern U.S., whereas mass scattering was much larger in the Southwest (more than 20%) 

particularly in southern Arizona and New Mexico (U.S. EPA, 2019, section 13.2.4.1, p. 13-36). 

In summary, the findings of these updated quantitative analyses are generally consistent 

with those in the last review. The 3-year visibility metric was generally below 25 dv in most 

areas that meet the current 24-hour PM2.5 standard, with one location slightly above 30 dv, 

rounding to 31 dv. Small differences in the 3-year visibility metric were observed between the 

variations of the IMPROVE equation, which may suggest that it may be more appropriate to use 

one version over another in different regions of the U.S. based on PM characteristics such as 

particle size and composition to more accurately estimate light extinction. There was also very 

little difference in estimates of light extinction when the coarse fraction was included in the 

equation, although this may be more important in areas that have a higher concentration of 

coarse PM than those included in this analysis. 

5.2.2 Non-Visibility Effects 

5.2.2.1 Evidence-Based Considerations 

In considering the available evidence for non-visibility welfare effects attributable to PM 

as presented in the ISA, this section poses the following policy-relevant questions:  

• To what extent has new scientific evidence improved our understanding of the 

nature and magnitude of non-visibility welfare effects of PM in ambient air, 

including the variability associated with such effects? To what extent have important 

uncertainties in the evidence from the last review been addressed, and have new 

uncertainties emerged? 

We address these questions for PM and climate effects (section 5.2.2.1.1) and materials 

effects (section 5.2.2.1.2) below. 

5.2.2.1.1 Climate Effects 

In considering the available evidence of climate effects attributable to PM, this section 

poses the following policy-relevant question: 

• To what extent is new information available that changes or enhances our 

understanding of the climate impacts of PM-related aerosols, particularly regarding 
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a quantitative relationship between PM concentrations and effects on climate (e.g., 

through radiative forcing)? 

In the last review, the 2009 PM ISA concluded that there was “sufficient evidence to 

determine a causal relationship between PM and climate effects – specifically on the radiative 

forcing of the climate system, including both direct effects of PM on radiative forcing and 

indirect effects that involve cloud feedbacks that influence precipitation formation and cloud 

lifetimes” (U.S. EPA, 2009, section 9.3.10).19 Since the last review, climate impacts have been 

extensively studied and the ISA concludes that “overall the evidence is sufficient to conclude 

that a causal relationship exists between PM and climate effects” (U.S. EPA, 2019, section 

13.3.9). Recent research reinforces and strengthens the evidence evaluated in the 2009 ISA. New 

evidence provides greater specificity about the details of these radiative forcing effects and 

increased understanding of additional climate impacts driven by PM radiative effects. The 

Intergovernmental Panel on Climate Change (IPCC) assesses the role of anthropogenic activity 

in past and future climate change. In the last review, the 2009 ISA relied heavily on the Fourth 

IPCC Assessment Report (AR4); since that time the IPCC has issued an updated report. The 

Fifth IPCC Assessment Report (AR5; IPCC, 2013) reports on the key scientific advances in 

understanding the climate effects of PM since AR4. The ISA draws substantially upon AR5 in 

summarizing these effects. 

Atmospheric PM has the potential to affect climate in multiple ways, including absorbing 

and scattering of incoming solar radiation, alterations in terrestrial radiation, effects on the 

hydrological cycle, and changes in cloud properties (U.S. EPA, 2019, section 13.3.1). 

Atmospheric PM interacts with incoming solar radiation. Many species of PM (e.g., sulfate and 

nitrate) efficiently scatter solar energy. By enhancing reflection of solar energy back to space, 

scattering PM exerts a cooling effect on the surface below. Certain species of PM such as black 

carbon (BC), brown carbon (BrC), or dust can also absorb incoming sunlight. A recent study 

found that whether absorbing PM warms or cools the underlying surface depends on several 

factors, including the altitude of the PM layer relative to cloud cover and the albedo of the 

surface (Ban-Weiss et al., 2014). PM also perturbs incoming solar energy by influencing cloud 

cover and cloud lifetime. For example, PM provides nuclei upon which water vapor condenses, 

forming cloud droplets. Finally, absorbing PM deposited on snow and ice can diminish surface 

albedo and lead to regional warming (U.S. EPA, 2019, section 13.3.2). 

                                                 
19 Radiative forcing (RF) for a given atmospheric constituent is defined as the perturbation in net radiative flux, at 

the tropopause (or the top of the atmosphere) caused by that constituent, in watts per square meter (Wm-2), after 

allowing for temperatures in the stratosphere to adjust to the perturbation but holding all other climate responses 

constant, including surface and tropospheric temperatures (Fiore et al., 2015, Myhre et al., 2013). A positive 

forcing indicates net energy trapped in the Earth system and suggests warming of the Earth’s surface, whereas a 

negative forcing indicates net loss of energy and suggests cooling (U.S. EPA, 2019, section 13.3.2.2). 
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PM has direct and indirect effects on climate processes. PM interactions with solar 

radiation through scattering and absorption, collectively referred to as aerosol-radiation 

interactions (ARI), are also known as the direct effects of PM on climate, as opposed to the 

indirect effects that involve aerosol-cloud interactions (ACI). The direct effects of PM on climate 

result primarily from particles scattering light away from Earth and sending a fraction of solar 

energy back into space, decreasing the transmission of visible radiation to the surface of the 

Earth and resulting in a decrease in the heating rate of the surface and the lower atmosphere. The 

IPCC AR5, taking into account both model simulations and satellite observations, reports a 

radiative forcing from aerosol-radiation interactions (RFari) from anthropogenic PM of -0.35 ± 

0.5 watts per square meter (Wm-2) (Boucher, 2013), which is slightly reduced compared to AR4. 

Estimates of effective radiative forcing20 from aerosol-radiation interactions (ERFari), which 

include the rapid feedback effects of temperature and cloud cover, rely mainly on model 

simulations, as this forcing is complex and difficult to observe (U.S. EPA, 2019, section 

13.3.4.1). The IPCC AR5 best estimate for ERFari is -0.45 ± 0.5 Wm-2, which reflects this 

uncertainty (Boucher, 2013).  

By providing cloud condensation nuclei, PM increases cloud droplet number, thereby 

increasing cloud droplet surface area and albedo (Twomey, 1977). The climate effects of these 

perturbations are more difficult to quantify than the direct effects of aerosols with RF but likely 

enhance the cooling influence of clouds by increasing cloud reflectivity (traditionally referred to 

as the first indirect effect) and lengthening cloud lifetime (the second indirect effect). These 

effects are reported as the radiative forcing from aerosol-cloud interactions (RFaci) and the 

effective radiative forcing from aerosol-cloud interactions (ERFaci) (U.S. EPA, 2019, section 

13.3.3.2). IPCC AR5 estimates ERFaci at -0.45 Wm-2, with a 90% confidence interval of -1.2 to 

0 Wm-2 (U.S. EPA, 2019, section 13.3.4.2).21 Studies have also calculated the combined 

effective radiative forcing from aerosol-radiation and aerosol-cloud interactions (ERFari+aci) 

(U.S. EPA, 2019, section 13.3.4.3). IPCC AR5 reports a best estimate of ERFari+aci of -0.90 (-

1.9 to -0.1) Wm-2, consistent with these estimates (Boucher, 2013). 

PM can also strongly reflect incoming solar radiation in areas of high albedo, such as 

snow- and ice-covered surfaces. The transport and subsequent deposition of absorbing PM such 

as BC to snow- and ice-covered regions can decrease the local surface albedo, leading to surface 

                                                 
20 Effective radiative forcing (ERF), new in the IPCC AR5, takes into account not just the instantaneous forcing but 

also a set of climate feedbacks, involving atmospheric temperature, cloud cover, and water vapor, that occur 

naturally in response to the initial radiative perturbation (U.S. EPA, 2019, section 13.3.2.2). 

21 While the ISA includes estimates of RFaci and ERFaci from a number of studies (U.S. EPA, 2019, sections 

13.3.4.2, 13.3.4.3, 13.3.3.3), this PA focuses on the single best estimate with a range of uncertainty, as reported in 

IPCC AR5 (Boucher, 2013). 
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heating. The absorbed energy can then melt the snow and ice cover and further depress the 

albedo, resulting in a positive feedback loop (U.S. EPA, 2019, section 13.3.3.3; Bond et al., 

2013; U.S. EPA, 2012a). Deposition of absorbing PM, such as BC, may also affect surface 

temperatures over glacial regions (U.S. EPA, 2019, section 13.3.3.3). The IPCC AR5 best 

estimate of RF from the albedo effect is +0.04 Wm-2, with an uncertainty range of +0.02 to +0.09 

Wm-2 (Boucher, 2013). 

While research on PM-related effects on climate has expanded since the last review, there 

are still significant uncertainties associated with the accurate measurement of PM contributions 

to the direct and indirect effects of PM on climate.  

• To what extent does the currently available information provide evidence of a 

quantitative relationship between specific PM constituents (i.e., BC, OC, sulfate) and 

climate-related effects? 

Since the last review, a number of new studies have examined the individual climate 

effects associated with key PM components, including sulfate, nitrate, OC, BC, and dust, along 

with updated quantitative estimates of the radiative forcing associated with the individual 

species. 

Sulfate particles form through oxidation of SO2 by OH in the gas phase and in the 

aqueous phase by a number of pathways, including in particular those involving ozone and H2O2 

(U.S. EPA, 2019, section 13.3.5.1). The main source of anthropogenic sulfate is from coal-fired 

power plants, and global trends in the anthropogenic SO2 emissions are estimated to have 

increased dramatically during the 20th and early 21st centuries, although the recent 

implementation of more stringent air pollution controls on sources has led to a reversal in such 

trends in many places (U.S. EPA, 2019, section 13.3.5.1). Sulfate particles are highly reflective. 

Consistent with other recent estimates, on a global scale, the IPCC AR5 estimates that sulfate 

contributes more than other PM types to RF, with RFari of -0.4 (-0.6 to -0.2) Wm-2, where the 

5% and 95% uncertainty range is represented by the numbers in the parentheses (Myhre et al., 

2013). This uncertainty range indicates the challenges associated with estimating SO2 from 

sources in developing regions and estimating the lifetime of sulfate against wet deposition. 

Sulfate is also a major contributor to the influence of PM on clouds (Takemura, 2012). A total 

effective radiative forcing (ERFari+aci) for anthropogenic sulfate has been estimated to be nearly 

-1.0 Wm-2 (Zelinka et al., 2014, Adams et al., 2001). 

Nitrate particles form through the oxidation of nitrogen oxides and occur mainly in the 

form of ammonium nitrate. Ammonium preferentially associates with sulfate rather than nitrate, 

leading to formation of ammonium sulfate at the expense of ammonium nitrate (Adams et al., 

2001). As anthropogenic emissions of SO2 decline, more ammonium will be available to react 

with nitrate, potentially leading to future increases in ammonium nitrate particles in the 
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atmosphere (U.S. EPA, 2019, section 13.3.5.2; Hauglustaine et al., 2014; Lee et al., 2013; 

Shindell et al., 2013). Warmer global temperatures, however, may decrease nitrate abundance 

given that it is highly volatile at higher temperatures (Tai et al., 2010). The IPCC AR5 estimates 

RFari of nitrate of -0.11 (-0.3 to -0.03) Wm-2 (Boucher, 2013), which is one-fourth of the RFari 

of sulfate.  

Primary organic carbonaceous PM, including BrC, are emitted from wildfires, 

agricultural fires, and fossil fuel and biofuel combustion. Secondary organic aerosols (SOA) 

form when anthropogenic or biogenic nonmethane hydrocarbons are oxidized in the atmosphere, 

leading to less volatile products that may partition into PM (U.S. EPA, 2019, section 13.3.5.3). 

Organic particles are generally reflective, but in the case of BrC, a portion is significantly 

absorbing at shorter wavelengths (<400 nm). The IPCC AR5 estimates an RFari for primary 

organic PM from fossil fuel combustion and biofuel use of -0.09 (-0.16 to -0.03) Wm-2 and an 

RFari estimate for SOA from these sources of -0.03 (-0.27 to +0.20) Wm-2 (Myhre et al., 2013). 

The wide range in these estimates, including inconsistent signs for forcing, reflect uncertainties 

in the optical properties of organic PM and its atmospheric budgets, including the production 

pathways of anthropogenic SOA (Scott et al., 2014; Myhre et al., 2013; McNeill et al., 2012; 

Heald et al., 2010). The IPCC AR5 also estimates an RFari of -0.2 Wm-2 for primary organic PM 

arising from biomass burning (Boucher, 2013). 

Black carbon (BC) particles occur as a result of inefficient combustion of carbon-

containing fuels. Like directly emitted organic PM, BC is emitted from biofuel and fossil fuel 

combustion and by biomass burning. BC is absorbing at all wavelengths and likely has a large 

impact on the Earth’s energy budget (Bond et al., 2013). The IPCC AR5 estimates a RFari from 

anthropogenic fossil fuel and biofuel use of +0.4 (+0.5 to +0.8) Wm-2 (Myhre et al., 2013). 

Biomass burning contributes an additional +0.2 (+0.03 to +0.4) Wm-2 to BC RFari, while the 

albedo effect of BC on snow and ice adds another +0.04 (+0.02 to +0.09) Wm-2 (Myhre et al., 

2013; U.S. EPA, 2019, section 13.3.5.4, section 13.3.4.4). 

Dust, or mineral dust, is mobilized from dry or disturbed soils as a result of both 

meteorological and anthropogenic activities. Dust has traditionally been classified as scattering, 

but a recent study found that dust may be substantially coarser than currently represented in 

climate models, and thus more light-absorbing (Kok et al., 2017). The IPCC AR5 estimates 

RFari as -0.1 ± 0.2 Wm-2 (Boucher, 2013), although the results of the study by Kok et al. (2017) 

would suggest that in some regions dust may have led to warming, not cooling (U.S. EPA, 2019, 

section 13.3.5.5). 

The new research available in this review expands upon the evidence available at the time 

of the last review. Consistent with the evidence available in the last review, the key PM 
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components, including sulfate, nitrate, OC, BC, and dust, that contribute to climate processes 

vary in their reflectivity, forcing efficiencies, and direction of forcing.  

• To what extent does newly available evidence change or improve our understanding 

of the spatial and temporal variation in climate responses to PM? 

Radiative forcing due to PM elicits a number of responses in the climate system that can 

lead to significant effects on weather and climate over a range of spatial and temporal scales, 

mediated by a number of feedbacks that link PM and climate. Since the last review, the evidence 

base has expanded with respect to the mechanisms of climate responses and feedbacks to PM 

radiative forcing, described below, although considerable uncertainties continue to exist. We 

focus our discussion primarily on the climate impacts in the U.S. 

Unlike well-mixed, long-lived greenhouse gases in the atmosphere, PM has a very 

heterogenous distribution across the Earth. As such, patterns of RFari and RFaci tend to correlate 

with PM loading, with the greatest forcings centralized over continental regions. The climate 

response is more complicated since the perturbation to one climate variable (e.g., temperature, 

cloud cover, precipitation) can lead to a cascade of effects on other variables. While the initial 

PM radiative forcing may be concentrated regionally, the eventual climate response can be much 

broader spatially or be concentrated in remote regions (U.S. EPA, 2019, section 13.3.6). The 

complex climate system interactions lead to variation among climate models, with some studies 

showing relatively close correlation between forcing and surface response temperatures (e.g., 

Leibensperger et al., 2012), while other studies show much less correlation (e.g., Levy et al., 

2013). Many studies have examined observed trends in PM and temperature in the U.S. Climate 

models have suggested a range of factors which can influence large-scale meteorological 

processes and may affect temperature, including local feedback effects involving soil moisture 

and cloud cover, changes in the hygroscopicity of the PM, and interactions with clouds alone 

(U.S. EPA, 2019, section 13.3.7). While evidence in this review suggests that PM influenced 

temperature trends across the southern and eastern U.S. in the 20th century, uncertainties 

continue to exist and further research is needed to better characterize the effects of PM on 

regional climate in the U.S. 

• To what extent have important uncertainties identified in the last review been 

reduced and/or have new uncertainties emerged? 

Since 2009, significant progress has been made in evaluating PM-related climate effects 

and uncertainties. The IPCC AR5 states that “climate-relevant aerosol processes are better 

understood, and climate-relevant aerosol properties are better observed, than at the time of the 

AR4” (Boucher, 2013). However, significant uncertainties remain that make it difficult to 
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quantify the climate effects of PM. Such uncertainties include those related to our understanding 

of: 

• The magnitude of PM radiative forcing and the portion of that associated with 

anthropogenic emissions;  

• The contribution of regional differences in PM concentrations, and of individual 

components, to radiative forcing;  

• The mechanisms of climate responses and feedbacks resulting from PM-related radiative 

forcing; and, 

• The process by which PM interacts with clouds and how to represent such interactions in 

climate models. 

While research has progressed significantly since the last review, substantial uncertainties 

still remain with respect to key processes linking PM and climate, because of the small scale of 

PM-relevant atmospheric processes compared to the resolution of state-of-the-art models, and 

because of the complex cascade of indirect impacts and feedbacks in the climate system that 

result from an initial PM-related radiative perturbation (U.S. EPA, 2019, section 13.3.9). 

5.2.2.1.2 Materials Effects 

In considering the available evidence on materials effects attributable to PM, this section 

poses the following policy-relevant question: 

• To what extent is new information available to link PM to materials effects, 

including degradation of surfaces, and deterioration of materials such as metal, 

stone, concrete and marble? 

In the last review, the 2009 ISA concluded that there was “a causal relationship between 

PM and effects on materials” (U.S. EPA, 2009, sections 2.5.4 and 9.5.4). Rather than altering our 

conclusions from the last review, the current evidence continues to support our prior conclusion 

regarding materials effects associated with PM deposition. Effects of deposited PM, particularly 

sulfates and nitrates,22 to materials include both physical damage and impaired aesthetic 

qualities. Because of their electrolytic, hygroscopic, and acidic properties and their ability to sorb 

corrosive gases, particles contribute to materials damage by adding to the effects of natural 

weathering processes, by potentially promoting or accelerating the corrosion of metals, 

degradation of painted surfaces, deterioration of building materials, and weakening of material 

components. The majority of the newly available evidence on materials effects of PM are from 

                                                 
22 In the case of materials effects, it is difficult to isolate the effects of gaseous and particulate N and S wet 

deposition so both will be considered along with other PM-related deposition effects on materials in this review 

of the PM NAAQS. 
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outside the U.S. on buildings and other items of cultural heritage; however, they provide limited 

new data for consideration in this review (U.S. EPA, 2019, section 13.4). 

Materials damage from PM generally involves one or both of two processes: soiling and 

corrosion (U.S. EPA, 2019, section 13.4.2). Soiling and corrosion are complex, interdependent 

processes, typically beginning with deposition of atmospheric PM or SO2 to exposed surfaces. 

Constituents of deposited PM can interact directly with materials or undergo further chemical 

and/or physical transformation to cause soiling, corrosion, and physical damage. Weathering, 

including exposure to moisture, ultraviolet (UV) radiation and temperature fluctuations, affects 

the rate and degree of damage (U.S. EPA, 2019, section 13.4.2). 

Soiling is the result of PM accumulation on an object that alters its optical characteristics 

or appearance. These soiling effects can impact the aesthetic value of a structure or result in 

reversible or irreversible damage to the surface. The presence of air pollution can increase the 

frequency and duration of cleaning and can enhance biodeterioration processes on the surface of 

materials. For example, deposition of carbonaceous components of PM can lead to the formation 

of black crusts on surfaces, and the buildup of microbial biofilms23 can discolor surfaces by 

trapping PM more efficiently (U.S. EPA, 2009, p. 9-195; U.S. EPA, 2019, section 13.4.2). The 

presence of PM may alter light transmission or change the reflectivity of a surface. Additionally, 

the organic or nutrient content of deposited PM may enhance microbial growth on surfaces. 

Since the last review, very little new evidence has become available related to deposition 

of SO2 to materials such as limestone, granite, and metal. Deposition of SO2 onto limestone can 

transform the limestone into gypsum, resulting in a rougher surface, which allows for increased 

surface area for accumulation of deposited PM (Camuffo and Bernardi, 1993; U.S. EPA, 2019, 

section 13.4.2). Oxidation of deposited SO2 that contributes to the transformation of limestone to 

gypsum can be enhanced by the formation of surface coatings from deposited carbonaceous PM 

(both elemental and organic carbon) (McAlister et al., 2008, Grossi et al., 2007). Ozga et al. 

(2011) characterized damage to two concrete buildings in Poland and Italy. Gypsum was the 

main damage product on surfaces of these buildings that were sheltered from rain runoff, while 

PM embedded in the concrete, particularly carbonaceous particles, were responsible for 

darkening of the building walls (Ozga et al., 2011).  

Building on the evidence available in the 2009 ISA, research has progressed on the 

theoretical understanding of soiling of cultural heritage in a number of studies. Barca et al. 

(2010) developed and tested a new methodological approach for characterizing trace elements 

and heavy metals in black crusts on stone monuments to identify the origin of the chemicals and 

                                                 
23 Microbial biofilms are communities of microorganisms, which may include bacteria, algae, fungi and lichens, that 

colonize an inert surface. Microbial biofilms can contribute to biodeterioration of materials via modification of 

the chemical environment. 
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the relationship between the concentrations of elements in the black crusts and local 

environmental conditions. Recent research has also used isotope tracers to distinguish between 

contributions from local sources versus atmospheric pollution to black crusts on historical 

monuments in France (Kloppmann et al., 2011). A study in Portugal found that biological 

activity played a major role in soiling, specifically in the development of colored layers and in 

the detachment process (de Oliveira et al., 2011). Another study found damage to cement 

renders, often used for restoration, consolidation, and decorative purposes on buildings, 

following exposure to sulfuric acid, resulting in the formation of gypsum (Lanzon and Garcia-

Ruiz, 2010). 

Corrosion of stone and the decay of stone building materials by acid deposition and 

sulfate salts were described in the 2009 ISA (U.S. EPA, 2009, section 9.5.3). Since that time, 

advances have been made on the quantification of degradation rates and further characterization 

of the factors that influence damage of stone materials (U.S. EPA, 2019, section 13.4.2). Decay 

rates of marble grave stones were found to be greater in heavily polluted areas compared to a 

relatively pristine area (Mooers et al., 2016). The time of wetness and the number of 

dissolution/crystallization cycles were identified as hazard indicators for stone materials, with 

greater hazard during the spring and fall when these indicators are relatively high (Casati et al., 

2015). 

A study examining the corrosion of steel as a function of PM composition and particle 

size found that changes in the composition of resulting rust gradually changed with particle size 

(Lau et al., 2008). In a study of damage to metal materials under in Hong Kong, which generally 

has much higher PM concentrations than those observed in the U.S., Liu et al. (2015) found that 

iron and steel were corroded by both PM and gaseous pollutants (SO2 and NO2), while copper 

and copper alloys were mainly corroded by gaseous pollutants (SO2 and O3) and aluminum and 

aluminum alloy corrosion was mainly attributed to PM and NO2. 

A number of studies have also found materials damage from PM components besides 

sulfate and black carbon and atmospheric gases besides SO2. Studies have characterized impacts 

of nitrates, NOX, and organic compounds on direct materials damage or on chemical reactions 

that enhance materials damage (U.S. EPA, 2019, section 13.4.2). Other studies have found that 

soiling of building materials can be attributed to enhanced biological processes and colonization, 

including the development and thickening of biofilms, resulting from the deposition of PM 

components and atmospheric gases (U.S. EPA, 2019, section 13.4.2). 

Since the last review, other materials have been studied for damage attributable to PM, 

including glass and photovoltaic panels. Soiling of glass can impact its optical and thermal 
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properties, and can lead to increased cleaning costs and frequency. The development of haze24 on 

modern glass has been measured and modeled, with a strong correlation between the size 

distribution of particles and the evolution of the mass deposited on the surface of the glass. 

Measurements showed that, under sheltered conditions, mass deposition accelerated regularly 

with time in areas closest to sources of PM (i.e., near roadways) and coarse mineral particles 

were more prevalent compared to other sites (Alfaro et al., 2012). Model predictions were found 

to correctly simulate the development of haze at site locations when compared with 

measurements (Alfaro et al., 2012). 

Soiling of photovoltaic panels can lead to decreased energy efficiency. For example, 

soiling by carbonaceous PM decreased solar efficiency by nearly 38%, while soil particles 

reduced efficiency by almost 70% (Radonjic et al., 2017). The rate of photovoltaic power output 

can also be degraded by soiling and has been found to be related to the rate of dust accumulation. 

In five sites in the U.S. representing different meteorological and climatological conditions,25 

photovoltaic module power transmission was reduced by approximately 3% for every g/m2 of 

PM deposited on the cover plate of the photovoltaic panel, independent of geographical location 

(Boyle et al., 2017). Another study found that photovoltaic module power output was reduced by 

40% after 10 months of exposure without cleaning, although a number of anti-reflective coatings 

can generally mitigate power reduction resulting from dust deposition (Walwil et al., 2017). 

Energy efficiency can also be impacted by the soiling of building materials, such as light-colored 

marble panels on building exteriors, that are used to reflect a large portion of solar radiation for 

passive cooling and to counter the urban heat island effect. Exposure to acidic pollutants in urban 

environments have been found to reduce the solar reflectance of marble, decreasing the cooling 

effect (Rosso et al., 2016). Highly reflective roofs, or cool roofs, have been designed and 

constructed to increase reflectance from buildings in urban areas, to both decrease air 

conditioning needs and urban heat island effects, but these efforts can be impeded by soiling of 

materials used for constructing cool roofs. Methods have been developed for accelerating the 

aging process of roofing materials to better characterize the impact of soiling and natural weather 

on materials used in constructing cool roofs (Sleiman et al., 2014). 

                                                 
24 In this discussion of non-visibility welfare effects (section 5.2.2), haze is used as it has been defined in the 

scientific literature on soiling of glass, i.e., the ratio of diffuse transmitted light to direct transmitted light 

(Lombardo et al., 2010). This differs from the definition of haze as used in the discussion of visibility welfare 

effects in section 5.2.1, where it is used as a qualitative description of the blockage of sunlight by dust, smoke, 

and pollution. 

25 Of the five sites studied, three were in rural, suburban, and urban areas representing a semi-arid environment 

(Front Range of Colorado), one site represented a hot and humid environment (Cocoa, Florida), and one 

represented a hot and arid environment (Albuquerque, New Mexico) (U.S. EPA, 2019, section 13.4.2; Boyle et 

al., 2017). 
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• To what extent has new information emerged for quantifying material damage 

attributable to PM through dose-response relationships or damage functions? Are 

there studies linking perceptions of reduced aesthetic appeal of buildings and other 

objects to PM or wet deposition of N and S species? 

Some progress has been made since the last review in the development of dose-response 

relationships for soiling of building materials, although some key relationships remain poorly 

characterized. The first general dose-response relationships for soiling of materials were 

generated by measuring contrast reflectance of a soiled surface to the reflectance of the unsoiled 

substrate for different materials, including acrylic house paint, cedar siding, concrete, brick, 

limestone, asphalt shingles, and window glass with varying total suspended particulate (TSP) 

concentrations (Beloin and Haynie, 1975; U.S. EPA, 2019, section 13.4.3). Continued efforts to 

develop dose-response curves for soiling have led to some advancements for modern materials, 

but these relationships remain poorly characterized for limestone. A recent study quantified the 

dose-response relationships between PM10 and soiling for painted steel, white plastic, and 

polycarbonate filter material, but there was too much scatter in the data to produce a dose-

response relationship for limestone (Watt et al., 2008). A dose-response relationship for silica-

soda-lime window glass soiling by PM10, NO2, and SO2 was quantified based on 31 different 

locations (Lombardo et al., 2010; U.S. EPA, 2019, section 13.4.3, Figure 13-32, Equation 13-8). 

The development of this dose-response relationship required several years of observation time 

and had inconsistent data reporting across the locations. 

Since the last review, there has also been progress in developing methods to more rapidly 

evaluate soiling of different materials by PM mixtures. Modern buildings typically have simpler 

lines, less detailed surfaces, and a greater use of glass, tile, and metal, which are easier to clean 

than stone. There have also been major changes in the types of materials used for buildings, 

including a variety of polymers available for use as coatings and sealants. New economic and 

environmental considerations beyond aesthetic appeal and structural damage are emerging (U.S. 

EPA, 2019, section 13.4.3). Changes in building materials and design, coupled with new 

approaches in quantifying the dose-response relationship between PM and materials effects, may 

reduce the amount of time needed for observations to support the development of material-

specific dose-response relationships. 

In addition to dose-response functions, damage functions have also been used to quantify 

material decay as a function of pollutant type and load. Damage can be determined from sample 

surveys or inspection of actual damage and a damage function can be developed to link the rate 

of material damage to time of replacement or maintenance. A cost function can then link the time 

for replacement and maintenance to a monetary cost, and an economic function links cost to the 

dose of pollution based on the dose-response relationship (U.S. EPA, 2019, section 13.4.3). 
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Damage functions are difficult to assess because it depends on human perception of the level of 

soiling deemed to be acceptable and evidence in this area remains limited in the current review. 

Since the last review, damage functions for a wide range of building materials (i.e., stone, 

aluminum, zinc, copper, plastic, paint, rubber, stone) have been developed and reviewed 

(Brimblecombe and Grossi, 2010). One study estimated long-term deterioration of building 

materials and found that damage to durable building material (such as limestone, iron, copper, 

and discoloration of stone) is no longer controlled by pollution as was historically documented 

but rather that natural weathering is a more important influence on these materials in modern 

times (Brimblecombe and Grossi, 2009). Even as PM-attributable damage to stone and metals 

has decreased over time, it has been predicted that there will be potentially higher degradation 

rates for polymeric materials, plastic, paint, and rubber due to increased oxidant concentrations 

and solar radiation (Brimblecombe and Grossi, 2009). 

• To what extent have important uncertainties identified in the last review been 

reduced and/or have new uncertainties emerged? 

While there are a number of new studies in the ISA that investigate the effect of PM on 

newly studied materials and further characterize the effects of PM on previously studied 

materials, there remains insufficient evidence to relate soiling or damage to specific PM levels or 

to establish a quantitative relationship between PM in ambient air and materials degradation. 

Uncertainties that were identified in the last review still largely remain with respect to 

quantitative relationships between particle size, concentration, chemical concentrations, and 

frequency of repainting and repair. No new studies are available that link perceptions of reduced 

aesthetic appeal of buildings and other objects to PM-related materials effects. Moreover, 

uncertainties about the deposition rates of airborne PM to surfaces and the interaction of co-

pollutants still remain. 

5.2.2.2 Quantitative Assessment-Based Considerations 

Beyond our consideration of the scientific evidence, discussed above in section 5.2.2.1 

above, we also consider the extent to which quantitative analyses of PM air quality and 

quantitative assessments for climate and materials effects could inform conclusions on the 

adequacy of the public welfare protection provided by the current secondary PM standards. We 

have evaluated the potential support for conducting new analyses of PM air quality 

concentrations and non-visibility welfare effects. 

5.2.2.2.1 Climate Effects 

While expanded since the last review, our current understanding of PM-related climate 

effects is still limited by significant uncertainties. Large spatial and temporal heterogeneities in 

direct and indirect PM climate forcing can occur for a number of reasons, including the 
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frequency and distribution of emissions of key PM components contributing to climate forcing, 

the chemical and microphysical processing that occurs in the atmosphere, and the atmospheric 

lifetime of PM relative to other pollutants contributing to climate forcing (U.S. EPA, 2019, 

section 13.3). These issues particularly introduce uncertainty at the local and regional scales in 

the U.S. that would likely be most relevant to a quantitative assessment of the potential effects of 

a national PM standard on climate in this review. Limitations and uncertainties in the evidence 

make it difficult to quantify the impact of PM on climate and in particular how changes in the 

level of PM mass in ambient air would result in changes to climate in the U.S. Thus, as in the last 

review, the data remain insufficient to conduct quantitative analyses for PM effects on climate in 

the current review. 

5.2.2.2.2 Materials Effects 

As at the time of the last review, sufficient evidence is not available to conduct a 

quantitative assessment of PM-related soiling and corrosion effects. While soiling associated 

with PM can lead to increased cleaning frequency and repainting of surfaces, no quantitative 

relationships have been established between characteristics of PM or the frequency of cleaning 

or repainting that would help inform our understanding of the public welfare implications of 

soiling (U.S. EPA, 2019, section 13.4). Similarly, while some information is available with 

regard to microbial deterioration of surfaces and the contribution of carbonaceous PM to the 

formation of black crusts that contribute to soiling, the available evidence does not support 

quantitative analyses (U.S. EPA, 2019, section 13.4). While some new evidence is available with 

respect to PM-attributable materials effects, the data are insufficient to conduct quantitative 

analyses for PM effects on materials in the current review. 

5.3 CASAC ADVICE 

As part of its review of the draft PA, the CASAC has provided advice on the adequacy of 

the current PM secondary standards. In its comments on the draft PA, the CASAC concurs with 

staff’s overall preliminary conclusions that it is appropriate to consider retaining the current 

secondary PM standards without revision (Cox, 2019). The CASAC “finds much of the 

information…on visibility and materials effects of PM2.5 to be useful, while recognizing that 

uncertainties and controversies remain about the best ways to evaluate these effects” (Cox, 2019, 

p. 13 of consensus responses). Regarding climate, while the CASAC recommends that the EPA 

consider recent research evaluating the impacts of reducing PM2.5 and suggests that the EPA 

include quantitative analyses to more thoroughly address these effects,26 the committee also 

                                                 
26 While this final PA does consider research evaluating the impacts of PM on climate, we have not conducted 

analyses to quantify the impacts of changes in U.S. ambient PM concentrations on regional and national climate 

endpoints in the U.S. that would be of potential relevance for the NAAQS review. This approach to addressing 
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agrees with the EPA that “the available evidence does not call into question the protection 

afforded by the current secondary PM standards and concurs that they should be retained” (Cox, 

2019, p. 3 of letter). 

A number of public comments have been received in this review to date, including 

comments focused on the draft PA. A limited number of public comment submissions on the 

draft PA provide comments related to the adequacy of the secondary standards. Of those who 

provide comments on the secondary standards, the majority of commenters support the 

preliminary conclusion that it is appropriate to consider retaining the current secondary PM 

standards, without revision. These commenters generally cite a lack of newly available evidence 

and information that would inform quantitative assessments and consideration of alternate 

secondary standards to protect against PM-related effects on visibility, climate, and materials. 

One commenter (the Independent PM Review Panel), however, supports revision of the 

secondary PM standards to provide additional protection against PM-related visibility effects, 

citing inconsistencies between preliminary conclusions in the draft PA to consider retaining the 

current secondary PM standards and the currently available scientific evidence regarding public 

visibility preferences and indices for evaluating visibility impairment. This commenter also 

recognizes the regional heterogeneity in PM2.5 mass and light extinction and that one single level 

may not be appropriate in all regions of the country. 

5.4 CONCLUSIONS ON THE SECONDARY PM STANDARDS 

This section discusses staff conclusions for the Administrator’s consideration in judging 

the adequacy of the current secondary PM standards. These conclusions are based on 

consideration of the assessment and integrative synthesis of evidence presented in the ISA, as 

well as our analyses of recent air quality. Further, the staff conclusions have taken into account 

advice from the CASAC and public comments on the draft PA and the associated preliminary 

staff conclusions. Taking into consideration the responses to specific questions discussed above, 

we revisit the overarching policy question for this chapter: 

                                                 
the CASAC’s comments on climate reflects our consideration of the timeline for this review as well as the 

uncertainties that would be inherent in such analyses and their likely impact on decision making. As discussed 

above (section 5.2.2.2.1), limitations in the evidence would result in considerable uncertainty in analyses that 

attempt to quantify the impact of changes in ambient PM in the US on climate in the U.S. 

 

 



 5-37  

• Does the currently available scientific evidence and quantitative information support 

or call into question the adequacy of the protection afforded by the current 

secondary PM standards? 

As provided in section 109(b)(2) of the CAA, the secondary standard is to “specify a 

level of air quality the attainment and maintenance of which in the judgment of the 

Administrator…is requisite to protect public welfare from any known or anticipated adverse 

effects associated with the presence of such air pollutant in the ambient air.” Effects on welfare 

include, but are not limited to, “effects on soils, water, crops, vegetation, man-made materials, 

animals, wildlife, weather, visibility, and climate, damage to and deterioration of property, and 

hazards to transportation, as well as effects on economic values and on personal comfort and 

well-being” (CAA section 302(h)). The secondary standards are not meant to protect against all 

known or anticipated PM-related effects, but rather those that are judged to be adverse to the 

public welfare (78 FR 3212, January 15, 2013). Similarly, the extent to which secondary 

standards are concluded to provide adequate protection from such effects also depends on 

judgments by the Administrator. 

Therefore, we recognize that, as is the case in NAAQS reviews in general, the extent to 

which the current secondary PM standards are judged to be adequate will depend on a variety of 

factors and judgments to be made by the Administrator. Such judgments include those 

concerning the extent or severity of welfare effects that may be considered adverse to the public 

welfare, and accordingly, what level of protection from such known or anticipated effects may be 

judged requisite. In general, the public welfare significance of PM-related effects for different air 

quality conditions and in different locations depend upon the type and severity of the effects, as 

well as the strength of the underlying information and associated uncertainties. Thus, in the 

discussion below, our intention is to focus on such aspects of the currently available evidence 

and quantitative analyses. 

With regard to visibility, climate, and materials effects of PM, our response to the 

question above takes into consideration the discussions that address the specific policy-relevant 

questions in prior sections of this chapter (see sections 5.2.1 and 5.2.2) and the approach 

described in section 5.1 that builds on the approach from the last review. With respect to the 

evidence-based considerations, we note that the currently available evidence, while somewhat 

expanded since the last review, does not include evidence of effects at lower concentrations or 

other welfare effects of PM than those identified at the time of the last review. There continue to 

be significant uncertainties related to quantifying the relationships between PM mass 

concentrations in ambient air and welfare effects, including visibility impairment, climate 

effects, and materials effects.  
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With respect to the visibility effects of PM, the currently available evidence continues to 

support a causal relationship. With respect to evidence for visibility effects of PM, we note that 

the currently available evidence, while somewhat expanded since the last review, does not 

include evidence of effects at lower concentrations than those identified at the time of the last 

review. Consistent with the evidence available at the time of the last review, significant 

limitations remain in directly measuring light extinction. However, a number of small 

refinements have been made to the algorithm commonly used to estimate light extinction (U.S. 

EPA, 2019, section 13.2.3.3; section 5.2.1.1 above). Light extinction by PM2.5 is dependent on 

PM2.5 composition and relative humidity, which varies regionally, with component contributions 

to light extinction also changing over time with changes in emissions, as can be seen in analyses 

of recent air quality. We also note that no new research is available on methods of characterizing 

visibility or on how visibility is valued by the public, such as visibility preference studies. Thus, 

while limited new research has further informed our understanding of the influence of 

atmospheric components of PM2.5 on light extinction, the available evidence to inform 

consideration of the public welfare implications of PM-related visibility impairment remains 

relatively unchanged. 

With respect to quantitative-based considerations, analyses using recent air quality and 

considering updated and alternative methods for estimating visibility impairment provide results 

generally similar to those given a focus in the decision for the last review. We recognize that 

conclusions reached regarding visibility in the last review were based primarily on the 

quantitative analyses that considered the relationship of estimated visibility impairment (light 

extinction) with design values for the secondary 24-hour PM2.5 standard. These analyses 

demonstrated that visibility index values were below 30 dv – the value identified as the target 

level of protection for visibility-related welfare effects – at all locations that met the daily 

standard. In our evaluation in this chapter, we have considered the currently available 

information regarding the equations to estimate light extinction and the inputs to the equations 

and regarding identification of the target level of protection. With regard to the equations, we 

have utilized both the most recently published equations as well as alternatives considered in the 

last review in recognition of the uncertainties inherent in the quantitative relationship between 

PM and light extinction and the variability in applicability to different locations. Further, we 

have considered key coefficients in estimating and adjusting concentrations of specific PM2.5 

components, a key example of which is the multiplier used to estimate the concentration of 

organic matter from the concentration of organic carbon. For consistency with the analysis on 

which the decision was based in the last review, we have focused on a 3-year average of the 90th 

percentile of daily light extinction (calculated using old and new algorithms) in considering 

visibility impairment at the analyzed locations.  
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In reaching a conclusion in the 2012 review with regard to the adequacy of visibility 

protection provided by the secondary PM standards, the Administrator identified 30 dv as an 

appropriate target level of protection. We have not identified new information in this review that 

would challenge this public policy. Thus, in our consideration of the current information and 

analyses in this document, we have compared the results of the updated analyses to the value of 

30 dv, finding only one site that exceeds this target level of protection while meeting the current 

daily standards, albeit just marginally at 31 dv. In so finding, we additionally note the 

uncertainties recognized above regarding estimation of OM for use in the IMPROVE equations, 

and also the variability across sites in characteristics that affect the relationship between PM in 

ambient air and light extinction, and in characteristics that affect human visibility and 

preferences in that regard. Based on the findings of this comparison, in light of all of these 

considerations, we find it reasonable to conclude that the quantitative information available in 

this review does not call into question the adequacy of visibility-related public welfare protection 

provided by the current secondary PM standards. As a result, we have not conducted additional 

analyses to evaluate the level of visibility protection that might be afforded by potential 

alternative standards. 

With respect to the non-visibility welfare effects of PM, the currently available evidence 

continues to support causal relationships between climate effects and PM and materials effects 

and PM. The currently available evidence related to climate effects and PM, while expanded 

since the last review, has not appreciably improved our understanding of the spatial and temporal 

heterogeneity of PM components that contribute to climate forcing. We note that, as at the time 

of the last review, the evidence describes differences among individual PM components in their 

reflective properties and direction of climate forcing. We also note that, while climate research 

has continued, there are still significant limitations in our ability to quantify contributions of PM, 

and of individual PM components, to the direct and indirect effects of PM on climate (e.g. 

changes to the pattern of rainfall, changes to wind patterns, effects on vertical mixing in the 

atmosphere). While climate models have been improved and refined since the last review, 

climate models simulating aerosol-climate interactions on regional scales (e.g., ~100 km) tend to 

have more variability in estimates of the PM-related climate effects than simulations at the global 

scale, and fewer studies are available that simulate specific regions (e.g., the U.S.) than that 

provide global-scale simulations. While new research has added to the understanding of climate 

forcing on a global scale, there remain significant limitations to quantifying potential adverse 

effects from PM on climate in the U.S. and how they would vary in response to changes in PM 

concentrations in the U.S. That is, the information currently available with regard to climate does 

not provide a clear understanding of a quantitative relationship between concentrations of PM 

mass in ambient air and associated climate-related effects, and consequently, precludes a 
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quantitative evaluation of the level of protection provided by a PM concentration-based 

secondary standard from adverse climate-related effects on the public welfare in the U.S. Thus, 

on the whole, we do not find the currently available information to provide support for different 

conclusions than were reached in the last review with regard to climate-related effects of PM in 

ambient air. 

 In considering the currently available evidence related to materials effects and PM, we 

note that there is newly available evidence that informs our understanding on the soiling process 

and types of materials affected, and provides limited information on dose-response relationships 

and damage functions, although most of the recent evidence comes from studies outside of the 

U.S. In particular, there is a growing body of research on PM and energy efficiency-related 

materials, such as solar panels and passive cooling building materials, affecting the optical and 

thermal properties, thereby impacting the intended energy efficiency of these materials. While 

new research has added to the understanding of PM-related materials effects, there remains a 

lack of research related to quantifying materials effects and understanding the public welfare 

implications of such effects. 

In summary, with regard to the two main non-visibility effects – climate effects and 

materials effects – the available evidence, as in the last review, documents a causal role for PM 

in ambient air. This evidence, however, as in the last review, also includes substantial 

uncertainties with regard to quantitative relationships with PM concentrations and concentration 

patterns that limit our ability to quantitatively assess the public welfare protection provided by 

the standards from these effects. Thus, as a whole, the current information, which is not 

appreciably different from that available in the last review, does not call into question the 

adequacy of protection provided by the current standards for these effects. 

Based on all of the above considerations and consistent with CASAC advice, we find that 

the available evidence does not call into question the protection afforded by the current 

secondary PM standards against PM-related welfare effects. Thus, our conclusion for the 

Administrator’s consideration is that it is appropriate to consider retaining the current secondary 

PM standards, without revision. In so concluding, we recognize, as noted above, that the final 

decision on this review of the secondary PM standards to be made by the Administrator is largely 

a public welfare judgment, based on his judgment as to the requisite protection of the public 

welfare from any known or anticipated adverse effects. This final decision will draw upon the 

available scientific evidence and quantitative analyses on PM-attributable welfare effects, along 

with consideration of CASAC advice and public comments, and on judgments about the 

appropriate weight to place on the range of uncertainties inherent in the evidence and analyses. 
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5.5 AREAS FOR FUTURE RESEARCH AND DATA COLLECTION 

In this section, we highlight key uncertainties in the available information related to the 

effects of PM on public welfare. Such key uncertainties and areas for future research, model 

development, and data gathering are outlined below. We note, however, that a full set of research 

recommendations is beyond the scope of this discussion. Rather, listed below are key 

uncertainties, research questions and data gaps that have been thus far highlighted in this review 

of the secondary PM standards. 

• A critical aspect of our consideration of the evidence and quantitative information for 

visibility impairment is our understanding of human perception of visibility impairment 

in the preference studies. This is essential to the Administrator’s consideration of the 

public welfare implications of visibility effects and to decisions on the adequacy of 

protection provided by the secondary PM standards from them. Additional information 

related to several areas would reduce uncertainty in in our interpretation of the available 

information for purposes of characterizing visibility impairment. These areas include the 

following: 

− Expanding the number and geographic coverage of preference studies in urban, 

rural and Class I areas to account for the potential for people to have different 

preferences based on the conditions that they commonly encounter and potential 

differences in preferences based on the scene types; 

− Evaluating visibility preferences of the U.S. population today, given that the 

currently available preference studies were conducted more than 15 years ago, 

during which time air quality in the U.S. has improved; 

− Accounting for the influence that varying study methods may have on an 

individual’s response as to what level of visibility impairment is acceptable; and 

− Providing insights regarding people’s judgments on acceptable visibility based on 

those factors that can influence an individual’s perception of visibility 

impairment, including the duration of visibility impairment experiences, the time 

of day during which light extinction is greatest, and the frequency of episodes of 

visibility impairment, as well as the intensity of the visibility impairment. 

• Direct monitoring of PM2.5 light extinction would help to characterize visibility and the 

relationships between PM component concentrations and light extinction and to evaluate 

and refine light extinction calculation algorithms for use in areas near anthropogenic 

sources, and would provide measurements for future visibility effects assessments. 

• Substantial uncertainties still remain with respect to key processes linking PM and 

climate, because of the small scale of PM-relevant atmospheric processes compared to 

the resolution of state-of-the-art models, and because of the complex cascade of indirect 

impacts and feedbacks in the climate system that result from an initial PM-related 

radiative perturbation. Such uncertainties include those related to our understanding of: 

− The magnitude of PM radiative forcing and the portion of that associated with 

anthropogenic emissions;  
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− The contribution of regional differences in PM concentrations, and of individual 

components, to radiative forcing; and, 

− The process by which PM interacts with clouds and how to represent such 

interactions in climate models. 

• Research on more accurate U.S. and global emission inventories would provide source-

specific data on PM and PM component contributions to climate effects, particularly 

those effects resulting from climate forcing. 

• While CASAC highlighted a number of studies as providing quantitative information 

regarding the impact of reductions in PM2.5 on direct and indirect climate effects, these 

studies largely are conducted at a global scale and assume a zeroing out or near-zeroing 

out of global PM emissions. Research is needed regarding the impacts of incremental 

changes in PM mass on direct and indirect climate effects on a regional scale, thereby 

limiting our ability to quantify the impact of these changes at this time. 

• Insufficient evidence is available to relate soiling or damage to specific PM 

concentrations or to establish a quantitative relationship between PM concentrations in 

ambient air and materials degradation. Additional information would reduce uncertainty 

in in our interpretation of the available information, including in the following areas: 

− Identifying quantitative relationships between particle size, PM concentration, 

chemical concentrations, and frequency of repainting and repair; 

− Understanding human perceptions of reduced aesthetic appeal of buildings, and 

other objects to PM-related materials effects; and 

− Characterizing deposition rates of airborne PM to surfaces and the interaction of 

co-pollutants. 
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APPENDIX A. SUPPELMENTAL INFORMATION ON 

PM AIR QUALITY ANALYSES 

This appendix provides supplemental information on the data sources and methods used 

to generate the figures and table presented in Chapter 2 of this PA. Sections A.1 to A.4 describe 

the data sources and methods used to generate figures and tables in section 2.3.2. Section A.5 

describes the data sources and methods used to generate figures and tables in section 2.3.3. 

Section A.6 describes the data sources and methods used to generate figures and tables in section 

2.4.  

A.1 DATA SOURCES AND METHODS FOR GENERATING NATIONAL 

PM2.5, PM10, PM10-2.5, AND PM2.5 SPECIATION FIGURES 

• PM2.5 annual average and 98th percentile mass concentrations: calculated from regulatory-

quality (Federal Reference Method or Federal Equivalent Method) 24-hour average 

values from monitors with at least 75% completeness for each year. When a single site 

has multiple monitors, the figure shows the average of the annual averages and 98th 

percentiles from each monitor at the site.  We downloaded the monitor-level 

concentrations for all sites in the United States for all available days (including potential 

exceptional events) for 2000-2017 from the EPA’s Air Quality System (AQS, 

https://www.epa.gov/aqs) 

• PM10 annual average and 98th percentile mass concentrations: calculated from both 

regulatory and non-regulatory methods using 24-hour average values from monitors with 

at least 75% completeness for each year. When a single site has multiple monitors, the 

figure shows the average of the annual averages and 98th percentiles from each monitor at 

the site.  We downloaded the monitor-level concentrations for all sites in the United 

States for all available days (including potential exceptional events) for 2000-2017 from 

the EPA’s Air Quality System (AQS, https://www.epa.gov/aqs) 

• PM10-2.5 annual average and 98th percentile mass concentrations: calculated from both 

regulatory and non-regulatory methods using 24-hour average values from monitors with 

at least 75% completeness for each year. When a single site has multiple monitors, the 

figure shows the average of the annual averages and 98th percentiles from each monitor at 

the site.  We downloaded the monitor-level concentrations for all sites in the United 

States for all available days (including potential exceptional events) for 2000-2017 from 

the EPA’s Air Quality System (AQS, https://www.epa.gov/aqs) 

• PM2.5 speciated annual average mass concentrations: calculated from filter-based, 24-hour 

averages from monitors with at least 75% completeness for each year. We downloaded 

data from monitors that are part of the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) network, Chemical Speciation Network (CSN), and the 

NCore Multipollutant Monitoring Network for 2015-2017. 

https://www.epa.gov/aqs
https://www.epa.gov/aqs
https://www.epa.gov/aqs
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• The 2000-2017 trends are calculated from the Pearson correlation coefficient for monitors 

having at least 75% of the available years with 75% completeness within each year.  

When a single site has multiple monitors, the average of the annual averages and 98th 

percentiles from each monitor at the site is taken prior to calculation of the Pearson 

correlation coefficient.   

A.2 DATA SOURCES AND METHODS FOR GENERATING NEAR-

ROAD PM2.5 DESIGN VALUE TABLE AND INCREMENT FIGURES 

• PM2.5 design values: calculated using the data handling described by 40 CFR Appendix N 

to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5.  We 

downloaded the design values for all sites in the United States for all available days 

(including potential exceptional events) for 2015-2017 from the EPA’s Air Quality 

System (AQS, https://www.epa.gov/aqs) 

• PM2.5 hourly, daily, and annual average mass concentrations: calculated from regulatory-

quality (Federal Reference Method or Federal Equivalent Method) monitors. When a 

single site has multiple monitors, the figures shows the average from all monitors at the 

site.  We downloaded the monitor-level concentrations for all sites in the United States 

for all available days (including potential exceptional events) for 2000-2017 from the 

EPA’s Air Quality System (AQS, https://www.epa.gov/aqs) 

• Near-road sites: designated from the list of near-road sites found at 

https://www3.epa.gov/ttnamti1/files/nearroad/Near-

road%20Monitoring%20Network%20Site%20List%20-%20May%202017.xlsx. 

• The near-road PM2.5 increment is calculated by excluding the near-road site within a 

CBSA, predict the interpolated concentration at the near-road site location using Inverse 

Distance Weighting (IDW), and subtract the predicted concentration from the actual 

concentration at the near-road site for each daily or hourly average.  Only CBSAs with at 

least one non-near-road site within 5km of the near-road site are considered.  For the 

Elizabeth, NJ figure, the Elizabeth Lab site was considered a near-road site for the IDW 

calculation. 

A.3 DATA SOURCES FOR SUB-DAILY PM2.5 CONCENTRATION 

FIGURE 

• PM2.5 hourly average mass concentrations: calculated from regulatory-quality Federal 

Equivalent Method monitors. The 2-hour and 5-hour averages were calculated for periods 

with each hourly average available. Only sites with a valid annual or 24-hour design 

value for 2015-2017 are shown in the figure. The percentages of 2-hour average PM2.5 

mass concentrations above 140 μg/m3 at individual sites are illustrated in Figure A-1. 

Frequency distributions of 5-hour averages are presented in Figure A-2.   

  

https://www.epa.gov/aqs
https://www.epa.gov/aqs
https://www3.epa.gov/ttnamti1/files/nearroad/Near-road%20Monitoring%20Network%20Site%20List%20-%20May%202017.xlsx
https://www3.epa.gov/ttnamti1/files/nearroad/Near-road%20Monitoring%20Network%20Site%20List%20-%20May%202017.xlsx
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Figure A-1. Percentages of 2015-2017 2-hour average PM2.5 mass concentrations above 140 

μg/m3. 

 

  

Figure A-2. Frequency distribution of 2015-2017 5-hour averages for sites meeting both or 

violating either PM2.5 NAAQS for October to March (blue) and April to September 

(red). 
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A.4 DATA SOURCES FOR ULTRAFINE FRACTION OF PM2.5 MASS 

FIGURE 

• Annual average particle number and mass concentrations for Bondville, IL: calculated 

from 24-hour average values for years with 66% data completion in 75% of the months 

of the year from 2000-2017.  We downloaded the mass concentrations from the EPA’s 

Air Quality System (AQS, https://www.epa.gov/aqs) and particle number concentrations 

from NOAA’s Earth System Research Laboratory‘s Global Monitoring Division 

(https://www.esrl.noaa.gov/gmd ). 

A.5 METHODS FOR PREDICTING AMBIENT PM2.5 BASED ON HYBRID 

MODELING APPROACHES 

A.5.1 Data Sources for 2011 PM2.5 Spatial Fields 

• The “HU2017” fields were provided by Professor Yang Liu of Emory University in the 

form of comma-separated-values files (*.csv) of daily average PM2.5 on a national grid.   

• The “DI2016” fields were provided by Dr. Qian Di of Harvard in the form of MATLAB 

files (*.mat) of daily average PM2.5 on a national grid. 

• The “VD2019” fields were provided by Dr. Aaron van Donkelaar in the form of netCDF 

files (*.nc) of annual average concentration.  These files are also available at: 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140. 

• The “downscaler” files were developed in terms of daily average Downscaler predictions 

on a national grid following methods described in the risk assessment appendix. 

A.5.2 Data Averaging and Coefficient of Variation 

• PM2.5 concentration fields were loaded into R version 3.4.4, and daily fields were 

averaged to the annual period.  Concentrations for each method at prediction points were 

then averaged to the corresponding CMAQ grid cells to enable consistent comparisons 

for Figure 2-24, 2-26, and Table 2-3. 

• The coefficient of variation (CoV) was calculated for each grid cell using the following 

formula 

𝐶𝑜𝑉(%) =
100

𝑃̅
√
∑ (𝑃𝑖 − 𝑃̅)2𝑁
𝑖=1

𝑁
 

where P is the prediction for each of the four methods (i.e., N=4). 

A.6 ANALYSES OF BACKGROUND PM 

• Data sources for Figure 2-30: Smoke and fire detections observed by MODIS in August 

2017  

− Image was produced using the NASA Worldview platform 

(https://worldview.earthdata.nasa.gov/). Layers selected were 1) Corrected 

https://www.epa.gov/aqs
https://www.esrl.noaa.gov/gmd
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
https://worldview.earthdata.nasa.gov/
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Reflectance and 2) Fires and Thermal Anomalies, both from Aqua/MODIS. Day 

selected was August 4, 2017. 

• Data sources for Figure 2-31: Fine PM mass time series during 2017 from North Cascades 

IMPROVE site 

− Image was archived from the IMPROVE website 

(http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_Pm

HazeComp; hosted by CIRA/CSU and sponsored by NPS and USFS) for the 

North Cascades (NOCA1) site in 2017. 

• Data sources for Figure 2-32: Speciated annual average fine PM mass from IMPROVE at 

select remote monitors in 2004 and 2016 

− Speciated IMPROVE data from 2004 and 2016 

(http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_Pm

HazeComp) were averaged annually for each monitor. Corresponding monitor 

locations are shown in Figure 2-32. 

 

http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx?appkey=SBCF_PmHazeComp
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This appendix presents supplemental information on the methods used to conduct the analyses 

discussed in section 3.2.3.2 of this PA. It also presents information on additional sensitivity 

analyses. Section B.1 provides supplemental information on the forest plots presented in Figures 

3-3 to 3-6. Sections B.2 and B.3 provide supplemental information on the study-reported PM2.5 

concentrations presented in Figure 3-7 and Figure 3-8. Sections B.4 to B.6, and sections B.8 to 

B.10, present supplemental information and sensitivity analyses related to the analyses of study 

area pseudo-design values in section 3.2.3.2.2. Section B.7 presents comparisons between annual 

and daily design values in CBSAs.  

B.1 FOREST PLOTS   

Forest Plots exhibiting effect estimates and 95% confidence intervals from epidemiologic 

studies that have the potential to be most informative in reaching conclusions on the adequacy of 

the current primary PM2.5 standards are shown in Figure 3-3 to Figure 3-6. Epidemiologic studies 

included in these figures support “causal” or “likely to be causal” relationships with PM 

exposures in the ISA U.S. EPA, 2019 and include mortality (all-cause mortality, CVD mortality, 

respiratory mortality, lung cancer mortality), and morbidity (asthma incidence, lung cancer 

incidence, lung function and lung development, CVD and respiratory emergency room visit or 

hospital admission) health endpoints. Further, studies included in Figure 3-3 to Figure 3-6 were 

restricted to multi-city studies in the United States or Canada. Multi-city studies within a single 

State were not included, with the exception of respiratory morbidity endpoints, where multi-city 

studies were limited. For some of the major cohort studies included in the previous ISA, like the 

American Cancer Society (ACS) cohort, we included new studies that reanalyze epidemiologic 

associations for multiple mortality endpoints (e.g. lung cancer mortality and IHD mortality) and 

an extension of follow-up periods (e.g., Pope et al. (2015b), Turner et al. (2016), Jerrett et al. 

(2016), and Thurston et al. (2016b)), as well as a reanalysis (Krewski et al. (2009) of the original 

ACS dataset, including an extended follow-up period, that was evaluated in the previous ISA 

(EPA, 2009). In total, 67 studies were included in Figure 3-3 to Figure 3-6.  

B.2 MONITORED PM2.5 CONCENTRATIONS IN KEY EPIDEMIOLOGIC 

STUDIES  

Of the 67 key studies identified in Figure 3-3 to Figure 3-6, Figure 3-7 includes key 

epidemiologic studies that report an overall study mean or median concentration of PM2.5 (as 

opposed to a study mean/median range across study area locations) and based on ambient PM2.5 
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monitored data. The plot includes studies that report significant effect estimates (22 studies) and 

studies that only report non-significant effect estimates (5 studies). Further, to be included, only 

key studies for which the years of air quality data used to estimate exposures overlap entirely 

with the years during which health events are reported were included. The PM2.5 concentrations 

reported by studies that estimate exposures from air quality corresponding to only part of the 

study period, often including only the later years of the health data (e.g., Miller et al., 2007; Hart 

et al., 2011; Thurston et al., 2013; Weichenthal et al., 2014; Weichenthal et al., 2016a; Pope et 

al., 2015a; Villeneuve et al., 2015; Turner et al., 2016), are not likely to reflect the full ranges of 

ambient PM2.5 concentrations that contributed to reported associations.1 

Some of the included studies also provide city-specific study mean concentrations and 

city-specific health events. Hence, PM2.5 exposure estimates corresponding to the 10th and 25th 

percentiles of those events were determined in the following manner. City-specific cases and 

PM2.5 concentrations were input in ascending order by PM2.5 concentration. The city-specific 

percent of cases was calculated as a proportion of the total study cases and the cumulative 

percent of cases was determined. The PM2.5 concentration associated with the cumulative percent 

closest to the 10th and 25th percentiles were input in Figure 3-7 and the cumulative percent values 

closest to the associated 10th and 25th percentile inputs are shown in Table B-12. Data for Bell et 

al. (2008) and Zanobetti and Schwartz (2009) were previously provided by the study authors, as 

described in Rajan (2011).   

 

Table B-1. PM2.5 concentrations corresponding to the 25th and 10th percentiles of estimated 

health events. 

Citation 
10th Percentile PM2.5 

(µg/m3) (Cumulative 
percent value closest) 

25th Percentile PM2.5 

(µg/m3) (Cumulative 
percent value closest) 

Bell et al. (2008) 9.8 11.5 

Franklin et al. (2007) 10.4 (11.1%) 12.9 (25.3%) 

Stieb et al. (2009) 6.7 (16.5%) 6.8 (20.5%) 

Szyszkowicz (2009) 6.4 (4.1%) 6.5 (18.6%) 

Zanobetti and Schwartz (2009) 10.3 12.5 

                                                 
1 This is an issue only for some studies of long-term PM2.5 exposures. While this approach can be reasonable in the 

context of an epidemiologic study evaluating health effect associations with long-term PM2.5 exposures, under the 

assumption that spatial patterns in PM2.5 concentrations are not appreciably different during time periods for 

which air quality information is not available (e.g., Chen et al., 2016), our interest is in understanding the 

distribution of ambient PM2.5 concentrations that could have contributed to reported health outcomes. 

2 That is, 25% of the total health events occurred in study locations with mean PM2.5 concentrations (i.e., averaged 

over the study period) below the 25th percentiles identified in Figure 3-7 and 10% of the total health events 

occurred in study locations with mean PM2.5 concentrations below the 10th percentiles identified.  
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B.3 HYBRID MODEL PREDICTED PM2.5 CONCENTRATIONS IN KEY 

EPIDEMIOLOGIC STUDIES  

Figure 3-8 focuses on multicity studies that are part of the evidence supporting “causal” 

or “likely to be causal” determinations in the ISA and that use air quality data to estimate PM2.5 

exposures for the entire range of years during which health events occurred. In addition, as 

detailed in section 3.2.3.2.1, we also consider the approach used to validate model predictions, 

and the studies included in Figure 3-8 are those for which relatively robust model validation 

analyses are reported to have been conducted for the full range of years during which PM2.5 

exposures are estimated in the health study.3 All studies that met the criteria for inclusion were 

conducted in the U.S.   

Figure 3-8 presents overall means of hybrid model-predicted PM2.5 concentrations for 

key studies, and the concentrations corresponding to the 25th and 10th percentiles of estimated 

exposures or health events, when available. For Di et al. (2017b), we present 25th and 10th 

percentiles of annual PM2.5 concentrations by zip code corresponding to long-term exposure 

estimates, while for Di et al. (2017a), we present daily air pollution concentrations (short-term 

exposure estimates) corresponding to the 25th and 10th percentiles of deaths at the zip-code level. 

These values, along with other percentiles, are illustrated in Figure B-1 and Figure B-2 (Jenkins, 

2019a, Jenkins, 2019b). The study authors for Di et al. (2017b) additionally provided 

information on population weighted percentile values corresponding to long-term PM2.5 exposure 

(Chan, 2019). These are presented in Table B-2. For other studies included in Figure 3-8 [Kloog 

et al. (2012), Kloog et al. (2014), Shi et al. (2016), Wang et al. (2017)], 25th percentiles of 

exposure estimates were derived from study manuscripts of air quality descriptive statistics and 

can be found in Table B-3.  

                                                 
3 For example, due to lack of spatial field availability before 1998, Crouse et al. (2015) use median annual PM2.5 

concentrations for the 1998-2006 time period (van Donkelaar et al., 2010; van Donkelaar et al., 2015a;van 

Donkelaar et al., 2013) to predict exposures during the 1984-2006 period. Similarly, for Pinault et al. (2016), 

model validation is for 2004 to 2008 (van Donkelaar et al., 2015b) while exposures are estimated for 1998 to 

2012. Paciorek et al. (2009), which presents the model validation results for Puett et al. (2009) and Puett et al. 

(2011), notes that PM2.5 monitoring was sparse prior to 1999, with many of the available PM2.5 monitors in rural 

and protected areas. Therefore, Paciorek et al. (2009) conclude that coverage in the validation set for most of the 

study period (1988-1998) is poor and that their model “strongly” underestimates uncertainty Paciorek et al. 

(2009), p. 392 in published manuscript). Hystad et al. (2013) used exposure fields developed by calibrating 

satellite-based PM2.5 surfaces from a recent period (van Donkelaar et al., 2010) to estimate exposure for the 1975 

to 1994 (Hystad et al., 2012).  Hystad et al. (2012) noted that a random effect model was used to estimate PM2.5 

based on TSP measurements and metropolitan indicator variables because only small number of PM2.5 

measurements were available, and no measurements were made prior to 1984.  Thus, these studies are not 

included in Figure 3-8. 
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Figure B-1. Percentiles of annual PM2.5 concentrations by zip code corresponding to long-

term exposure estimates in Di et al., 2017b. 
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Table B-2. Population weighted percentiles of annual PM2.5 concentrations by zip code 

corresponding to long-term exposure estimates in Di et al., 2017b. 

 

Percentile Population Weighted PM2.5 

(µg/m3) 

0.0 0.0 

5.0 7.1 

10.0 7.9 

15.0 8.6 

20.0 9.1 

25.0 9.5 

30.0 9.9 

35.0 10.3 

40.0 10.6 

45.0 11.0 

50.0 11.4 

55.0 11.7 

60.0 12.1 

65.0 12.5 

70.0 12.9 

75.0 13.4 

80.0 13.9 

85.0 14.4 

90.0 15.1 

95.0 16.1 

100.0 32.6 
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Figure B-2. Daily air pollution concentrations (short-term exposure estimates) 

corresponding to various percentiles of deaths at the zip-county level in Di et al., 2017a.  
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Table B-3. PM2.5 concentrations corresponding to the 25th and 10th percentiles of estimated 

exposures in Figure 3-8. 

Citation 10th Percentile PM2.5 (µg/m3) 25th Percentile PM2.5 (µg/m3) 

Di et al. (2017a) 4.7 6.7 

Di et al. (2017b) 7.3 9.1 

Kloog et al. (2012)  6.4 

Kloog et al. (2014)  7.9 

Shi et al. (2016)  4.6 

Shi et al. (2016)  6.2 

Wang et al. (2017)  9.1 

 

B.4 DESIGN VALUE BOX PLOT INCLUSION CRITERIA  

Studies selected from Figure 3-3 to Figure 3-6 for inclusion in Figure 3-9 and Figure B-9 

(box plots of pseudo-design value distributions) are those studies that define the study area/s 

(city or county) and study-specific populations or study area health events. Studies that provide 

county/city-specific health counts across the study period include: Lepeule et al. (2012); 

Kioumourtzoglou et al. (2016); Franklin et al. (2008); Zanobetti et al. (2014); Yap et al. (2013); 

Ostro et al. (2016); and Weichenthal et al. (2016b). In U.S. studies for which health counts were 

not provided, county-specific population data derived from the 2015 American Community 

Survey data4 was used. For Canadian studies, city-specific population from 2016 Statistics 

Canada5 was used.  

In constructing the plots in Figure 3-9 and Figure B-9, several assumptions were made. In 

studies that report mortality, hospital admissions data or emergency department visits, it was 

assumed that the number of cases is directly proportional to the population of the area.  To test 

this assumption, census population data and case event data is used in a sensitivity analysis and 

discussed in Section B.6. It was assumed that the population of a county did not change 

substantially over time relative to other counties, and that the rank order is consistent over time 

since only U.S. 2015 Census data and 2016 data from Statistics Canada was used. In studies that 

state the study area is the entire U.S. (i.e. in Medicare studies), it was assumed that cases came 

from each county of the U.S. (i.e., proportional to the county population 65 years or older for 

Medicare studies) and therefore, air quality was used from all U.S. counties with data.  

                                                 
4Available from: https://data.census.gov/cedsci/ 

5 Available from: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E&TABID=1 

https://data.census.gov/cedsci/
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E&TABID=1
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 Studies that had health data that started before 1999 in the U.S. and before 2000 in 

Canada were excluded since U.S. and Canadian PM2.5 monitoring became more widespread 

starting around these times. 29 studies met these criteria and are found in Figure 3-9 and Figure 

B-9. Details on study-area assignment (Section B.4.1), population/health events assignment 

(Section B.4.2), and air quality linkages (Section B.4.3) for studies included in the pseudo-design 

value (DV) box plots are outlined below.  

B.4.1 Study area assignment 

The first step in developing Figure 3-9 and Figure B-9 was to identify the study area. The 

U.S. based analysis is at the county-level and each U.S. county within the study area was 

identified for each specific study. For the studies that provided city names, the U.S. cities were 

used to identify all counties from the metropolitan area of that city, unless the entire city is 

contained within a single county or unless otherwise noted. In cases of studies where the study 

authors state that data was used for the entire U.S., all U.S. counties were included in the study 

area assignment. For example, all counties were included in studies using Medicare or National 

Center for Health Statistics (NCHS) data, unless the study identified a subset of cities or counties 

included. For some studies, there are uncertainties related to how we chose counties to represent 

study areas. Many studies identify the counties or cities used for the study; however, some only 

said that they used HA or ED visit data from a specific state or region and didn’t specify any 

counties or cities. In those instances, we operated under the assumption that every county that 

fell within the state or region identified contributed to the study population.6  

 For studies based in Canada, city was used as the geographic unit for the study area, since 

Canadian air quality data is available at the city-level. In cases where a study notes that the study 

is a national study, all cities for which air quality was available were included to define the study 

area.  

 Studies were excluded from Figure 3-9 and Figure B-9 if the counties included are unclear 

or not identified. Studies were also excluded in situations where the study population selection 

criteria was not random and not likely to be proportional to the underlying population, or the 

population selection criteria was not clearly specified (e.g., such as in cohort studies like the 

American Cancer Society cohort (ACS), Nurses’ Health Study cohort (NHS), and the Health 

Professionals Follow-up Study (HPFS)).   

B.4.2 Study population assignment 

 Based on the study areas identified in step 1, area-specific health events or populations 

were then assigned to U.S. counties and Canadian cities. If the study reported health events for 

                                                 
6 As discussed below (section B.4.3), not all counties have PM2.5 monitor.  
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U.S. counties or Canadian cities, we assigned those events to the specific counties or cities 

identified. In the absence of reported health events at these geographic levels for studies where 

hospital admissions or emergency department visits data, Medicare data, NCHS data, or other 

national survey data was used, we assumed that study participants were randomly selected and 

that the number of health events reported in the study was directly proportional to the population 

of the area. For these studies, area-specific populations were assigned using U.S. 2015 American 

Community Survey population data or 2016 Canadian population data (Statistics Canada).7 For 

the remaining studies (i.e., for which the number of study participants or health events in each 

location was not provided and for which the study population selection process appeared to not 

be random or proportional to underlying populations), area-specific populations were not 

assigned, and the studies were excluded from analysis.  

 In U.S. studies that evaluate cities, and for which some cities are associated with more 

than one county, 2016 “City-to-County finder” data from Stats America8 was used to find the 

proportional distribution of city population within each county, and the same proportional 

distribution strategy was used to divide the reported health events between counties.  An 

example of the proportional distribution of city populations within counties is illustrated in Table 

B-4, using a subset of cities reported in Zanobetti et al. (2014). Note, for cities not listed in Table 

B-4, the city population was associated with one county and as a result, the health events for the 

specific city were assigned to the corresponding county.  

Table B-4. Percent of population by county associated with each city reported in the study 

area. 

City Counties (% of population) 

Atlanta, GA Dekalb (6.7%), Fulton (93.3%) 

Austin, TX Travis (95.5%), Williamson (4.5%) 

Columbus, OH Franklin (97.9%), Fairfield (1.2%) 

Dallas, TX 
Dallas (93.9%), Collin (3.9%), 
Denton (2.2%) 

Fort Worth, TX Tarrant (99%), Denton (1%) 

Holland, MI Ottawa (78.8%), Allegan (21.2%) 

Houston, TX Harris (98%), Fort Bend (2%) 

Lansing, MI Ingham (96%), Eaton (4%) 

Middletown, OH Butler (94.5%), Warren (5.5%) 

                                                 
7 While this approach contributes uncertainty to our analyses of pseudo-design values, we do not expect the rank 

order of county population to substantially differ over the time periods of the studies and, therefore, we do not 

expect this uncertainty to systematically bias our results. 

8 Available from: http://www.statsamerica.org/Default.aspx 

http://www.statsamerica.org/Default.aspx
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New York, NY 

Kings (30.6%), Queens (27.3%),  
New York (19.4%), Bronx (16.9%), 
Richmond (5.7%) 

Oklahoma City, OK 
Oklahoma (81.3%), Cleveland (11%),  
Canadian (7.7%) 

Tulsa, OK Tulsa (98.4%), Osage (1.6%) 

Charleston, SC Charleston (93.3%), Berkeley (6.7%) 

 

B.4.3 Air Quality data assignment by study area, by study period 

The third step in developing Figure 3-9 and Figure B-9 was to assign air quality data by 

study area, by study period. Ambient air quality data for PM2.5 in the United States and Canada 

became more widely available across a broad proportion of the United States and Canada in the 

late 1990s. To ensure a large proportion of air quality data points and subsequent 3-year design 

values were available, the studies selected were those that examine air quality data starting in 

1999 for U.S. studies and 2000 for Canadian studies. Construction of pseudo-design value box 

plots (Figure 3-9 and Figure B-9) is described below. The air quality metric is termed a “pseudo-

design value”, since both FRM/FEM monitors, as well as high quality non-FRM/FEM data, are 

used to expand the number of areas with air quality data.9 Air quality data in the U.S. was 

obtained from the EPA Air Quality System (AQS)10. For regulatory monitors, design values 

were calculated using the data handling described by 40 CFR Appendix N to Part 50 - 

Interpretation of the National Ambient Air Quality Standards for PM2.5. For non-regulatory data, 

only monitors with 75% completeness for each of the 12 quarters in a 3-year design value period 

were included. For Canadian air quality data, only sites with 75% completeness for each year of 

the 3-year design value period were included.11 These criteria are slightly different than that of 

actual design values, which have strict rounding conventions and substitution tests for sites with 

less than 75% completeness for each quarter. For each given study and each previously identified 

study area, each valid pseudo-DV was identified over each study period. For each county, or 

city, the maximum PM2.5 pseudo-design value for each 3-year period of the study was identified. 

Next, by county/city, the study-period average of the maximum pseudo-design value was 

calculated (“average maximum pseudo-design value” or “average max pseudo-DV”).  For each 

study, locations were ordered by increasing average max pseudo-DVs and the corresponding 

population or number of health events was used to calculate the cumulative percent of population 

                                                 
9 As noted in section B.5, sensitivity analyses using only regulatory FRM/FEM monitors gave similar results.  
10Available from: https://www.epa.gov/aqs 
11 Available from: http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en 

https://www.epa.gov/aqs
http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en
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at or below each corresponding average max pseudo-DV. Next, the average max pseudo-DV 

associated with the cumulative population closest to the 5th, 25th, 50th, 75th and 95th percentiles 

were identified. The actual cumulative percents that are closest to the 5th, 25, 50th, 75th, and 95th 

percentiles, for all long- and short-term exposure studies and for annual and 24-hr PM2.5 

concentrations, are illustrated in Figure B-3 and Figure B-4. The average max pseudo-DVs 

associated with these percentiles in these studies are then presented in Table B-5 and Table B-6. 

Counties that had no air quality monitors or no valid design values did not contribute to the 

percentile calculation.   
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Figure B-3. Cumulative population percentile closest to the 5th, 25th, 50, 75, and 95th 

percentile: studies of long-term exposure and annual PM2.5 concentrations (top panel) 

and studies of short-term exposure and annual PM2.5 concentrations (bottom panel).
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Figure B-4. Cumulative population percentile closest to the 5th, 25th, 50, 75, and 95th 

percentile: studies of long-term exposure and 24-hr PM2.5 concentrations (top panel) 

and studies of short-term exposure and 24-hr PM2.5 concentrations (bottom panel). 
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Table B-5. Annual average maximum pseudo-DVs corresponding to population or health 

event percentiles in box-and-whisker plots in Figure 3-9. 12 

Citation 

Pseudo DVs by percentiles 

5th percentile 25th percentile 50th percentile 75th percentile 95th percentile 

Baxter et al., 2017 7.53 11.86 14.63 16.70 21.95 

Bell et al., 2008 8.55 11.35 13.72 15.94 23.05 

Bell et al., 2014 12.43 12.43 13.30 13.40 16.47 

Bell et al., 2015 8.18 10.81 12.81 15.31 20.95 

Bravo et al., 2017 8.17 11.20 13.03 14.93 17.40 

Dai et al., 2014 10.13 12.43 14.94 16.96 21.96 

Di et al., 2017b 6.63 9.98 11.70 13.88 19.38 

Di et al., 2017a 6.63 9.98 11.70 13.88 19.38 

Dominici et al., 2006 9.15 12.05 14.10 17.00 24.70 

Franklin et al., 2008 11.30 14.13 15.79 19.97 22.56 

Kioumourtzoglou et al., 2016 8.49 10.86 13.36 15.70 20.50 

Kloog et al., 2012 6.35 9.50 11.17 12.94 14.04 

Kloog et al., 2014 11.10 12.44 13.77 15.22 16.96 

Lee et al., 2015a 9.20 10.53 11.60 12.98 13.20 

Lepeule et al., 2012 8.65 8.65 14.26 14.82 16.29 

Malig et al., 2013 8.25 11.05 15.39 19.31 21.04 

McConnell et al., 2010 10.50 16.30 16.30 20.56 24.11 

Ostro et al., 2016 10.97 13.52 19.00 19.32 20.45 

Peng et al., 2009 8.32 11.86 14.70 16.86 21.96 

Pinault et al., 2016 4.33 6.00 7.31 8.62 10.57 

Shi et al., 2016 6.11 8.70 9.93 10.95 13.63 

Urman et al., 2014 9.85 16.70 21.59 22.87 25.58 

Wang et al., 2017 7.27 9.03 11.09 13.13 14.94 

Weichenthal et al., 2016b 4.20 6.67 7.39 8.42 8.44 

Weichenthal et al., 2016c 4.22 7.22 7.39 8.42 8.44 

Yap et al., 2013 12.68 17.67 21.05 22.56 23.93 

Zanobetti et al., 2009 11.60 14.15 16.90 22.30 24.00 

                                                 
12 As a sensitivity analysis, we also calculated study period averages of maximum design values using only 

regulatory FRM/FEM monitors for Di et al. (2017a) and Di et al. (2017b) and Shi et al. (2016). Results were 

similar to those based on the pseudo-design values using both regulatory and non-regulatory monitors. Using only 

regulatory monitors for the studies by Di et al. (2017a) and Di et al. (2017b), 5th, 25th, 50th, 75th and 95th 

percentiles of annual design values were 7.4, 9.7, 11.7, 13.9 and 17.6 g/m3, respectively. For these studies, 5th, 

25th, 50th, 75th and 95th percentiles of 24-hour design values were 19, 26, 30, 36 and 49 g/m3, respectively. For 

Shi et al., 2016, 5th, 25th, 50th, 75th and 95th percentiles of annual design values were 7.7, 9.1, 10.4, 11.4 and 13.0 

g/m3, respectively while 5th, 25th, 50th, 75th and 95th percentiles of 24-hour design values were 21, 26. 29, 31 and 

35 g/m3, respectively. 
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Zanobetti and Schwartz, 
2009 9.72 12.18 14.43 17.30 23.05 

Zanobetti et al., 2014 8.82 11.92 14.59 16.43 20.95 

Table B-6. 24-hr average maximum pseudo-DVs corresponding to population or health 

event percentiles in box-and-whisker plots in Figure B-9. 

Citation 

Pseudo DVs by percentiles 

5th percentile 25th percentile 50th percentile 75th percentile 95th percentile 

Baxter et al., 2017 22.00 31.00 38.67 45.50 58.33 

Bell et al., 2008 19.20 30.34 36.40 42.67 62.20 

Bell et al., 2014 34.67 34.67 37.67 40.00 40.33 

Bell et al., 2015 21.23 28.10 33.56 39.57 55.78 

Bravo et al., 2017 19.00 28.00 33.00 37.50 43.00 

Dai et al., 2014 22.13 31.34 38.14 45.25 64.80 

Di et al., 2017b 17.35 25.38 30.27 35.50 51.18 

Di et al., 2017a 17.35 25.38 30.27 35.50 51.18 

Dominici et al., 2006 22.00 31.00 37.50 44.50 68.00 

Franklin et al., 2008 28.93 30.75 40.75 55.00 64.75 

Kioumourtzoglou et al., 2016 20.22 29.72 34.38 40.07 54.05 

Kloog et al., 2012 20.77 30.40 32.50 36.80 37.89 

Kloog et al., 2014 30.00 34.00 37.20 39.50 45.60 

Lee et al., 2015a 19.73 23.00 24.33 26.33 29.23 

Lepeule et al., 2012 22.00 22.00 30.20 34.77 41.29 

Malig et al., 2013 28.50 40.50 48.00 52.00 65.20 

McConnell et al., 2010 23.00 47.00 47.00 56.00 65.00 

Ostro et al., 2016 27.67 40.33 50.27 54.68 64.47 

Peng et al., 2009 20.50 31.34 38.33 44.27 58.91 

Pinault et al., 2016 12.44 20.67 24.20 28.04 33.07 

Shi et al., 2016 18.84 25.00 29.23 31.00 35.25 

Urman et al., 2014 20.00 48.00 57.78 61.92 67.52 

Wang et al., 2017 17.63 21.85 25.00 29.05 33.33 

Weichenthal et al., 2016b 16.13 22.44 23.83 26.39 27.06 

Weichenthal et al., 2016c 14.33 23.83 25.06 26.39 27.06 

Yap et al., 2013 41.50 55.00 58.75 61.00 71.00 

Zanobetti et al., 2009 28.00 38.50 43.50 63.00 72.50 

Zanobetti and Schwartz, 
2009 21.59 30.34 37.53 44.60 62.20 

Zanobetti et al., 2014 22.67 31.11 37.91 41.25 55.78 
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For each study in Figure 3-9 and Figure B-9, an assessment of the percent of 3-year 

average pseudo-DVs available for each study area and study period is presented in Figure B-5.  

For example, in a study with a study area of 5 counties that was completed for study a period 

from 2000-2004, 3 possible 3-year average pseudo-DVs exist per county (i.e. 2000-2002, 2001-

2003, and 2002-2004), with a total of 15 possible pseudo-DVs. However, if one county only has 

one valid 3-year average pseudo-DV, then the study would have 13 out of a possible 15 pseudo-

DVs.  Figure B-5 displays a percent of 3-year average pseudo-DV data points available in each 

study.    

 

  

Figure B-5. Studies used in box-and-whisker plots (Figure 3-9 and Figure B-9) and the 

percent of pseudo-DVs available by study.  
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There are important uncertainties to consider when assigning air quality to a study area. 

Pseudo-design values are based on individual monitors in each county included in study areas. 

Counties may or may not reflect actual non-attainment areas, which can include multiple 

counties or parts of counties. For studies conducted in Canada, this potential mismatch is of 

greater concern. Pseudo-design values are not actual design values. Our analyses considered all 

available monitoring data, even from monitors not meeting strict completeness requirements for 

determining non-attainment. While we conclude this is a reasonable approach, as it allows the 

consideration of ambient PM2.5 concentrations in a greater proportion of study areas than if the 

analysis were restricted only to valid design values, it remains an uncertainty in our analyses. 

Additional uncertainties are discussed above in section 3.2.3.2.2.  

 

B.5 PERCENT OF STUDY AREA POPULATION CAPTURED IN DESIGN 

VALUE PLOTS 

Figure 3-9 and Figure B-9 include annual (Figure 3-9) and 24-hour (Figure B-9) pseudo-

design values corresponding to 5,25,50,75, and 95th percentiles of study populations or health 

events for U.S. and Canadian studies of long-term or short-term exposures, and for studies of 

mortality or morbidity outcomes. Further analyses were completed to determine the proportion 

of the study area populations captured in these analyses. Within each study, the cumulative 

population of counties with a valid 3-year average pseudo-DV was determined as a proportion of 

the total population in counties included in the study. For example, if valid air quality data was 

available in each county of the study area, then 100% of the study area population would be 

captured within the design value box plots. For most studies included in Figure 3-9 and Figure 

B-9, valid pseudo-DVs are available for counties accounting for at least about 70% of the total 

study area population (Table B-7 and Table B-8).  

When design values are calculated using only the regulatory monitors, as discussed in 

section B.4.3 above, the total study area population captured in the calculation declines. For 

example, for Di et al. (2017b) and Di et al. (2017a), when calculation of design values was 

completed using air quality data only from regulatory monitors, the analyses captured 67.35% of 

population for annual design values (compared to 70.38% of population for annual pseudo-

design values when data from all monitors was used). Similarly, analyses captured 67.43% of 

population for 24-hour design values from regulatory monitors alone, compared to 70.47% of 

population for pseudo-design values when data from all monitors was used. For Shi et al. (2016), 

calculation of annual and 24-hour design values from regulatory monitors captured 71.37% of 

population, compared to 77.22% of population when data from all the monitors was used.   
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Table B-7. Percent population included in annual pseudo-DV boxplots (Figure 3-9). 

Citation Population Used 
Study Area 
Counties Total Population 

Population with 
DV 

Population 
with DV 

(%) 

Baxter et al., 2017 US 2015 113 113,053,365 100,129,153 88.57 

Bell et al., 2008 US 2015 (65+yrs) 202 23,206,934 21,974,015 94.69 

Bell et al., 2014 US 2015 (65+yrs) 4 490,357 490,357 100.00 

Bell et al., 2015 US 2015 (65+yrs) 202 23,206,934 22,529,386 97.08 

Bravo et al., 2017 US 2015 (65+yrs) 807 31,056,109 21,909,224 70.55 

Dai et al., 2014 US 2015 95 95,890,830 91,262,160 95.17 

Di et al., 2017b US 2015 (65+yrs) 3220 48,387,814 34,057,020 70.38 

Di et al., 2017a US 2015 (65+yrs) 3220 48,387,814 34,057,020 70.38 

Dominici et al., 2006 US 2015 (65+yrs) 202 23,206,934 20,272,093 87.35 

Franklin et al., 2008 Franklin 2008 25 1,313,983 1,313,983 100.00 

Kioumourtzoglou et 
al., 2016 Kiomourtzoglou 2016 222 11,391,912 11,050,835 97.01 

Kloog et al., 2012 US 2015 (65+yrs) 67 2,361,375 1,588,345 67.26 

Kloog et al., 2014 US 2015 (65+yrs) 366 9,099,500 6,471,367 71.12 

Lee et al., 2015a US 2015 305 25,153,808 14,033,573 55.79 

Lepeule et al., 2012 Lepeule 2012 11 14,562 12,932 88.81 

Malig et al., 2013 US 2015 35 36,607,640 36,533,148 99.80 

McConnell et al., 
2010 

US 2015 (18 and 
under) 7 5,008,800 5,008,587 100.00 

Ostro et al., 2016 Ostro Asthma 2016 8 43,904 43,904 100.00 

Peng et al., 2009 US 2015 (65+yrs) 119 13,944,304 13,732,109 98.48 

Pinault et al., 2016 Canada 2016 5162 35,151,728 18,242,308 51.90 

Shi et al., 2016 US 2015 (65+yrs) 67 2,361,375 1,823,456 77.22 

Urman et al., 2014 Urman 2014 5-7yrs 5 1,811 1,811 100.00 

Wang et al., 2017 US 2015 (65+yrs) 616 9,779,426 6,336,200 64.79 

Weichenthal et al., 
2016b Weichenthal MI 2016 16 30,101 30,101 100.00 

Weichenthal et al., 
2016c Canada 2016 15 4,673,938 4,673,938 100.00 

Yap et al., 2013 

Yap 2013 Asthma 1-
9yrs 12 146,224 146,224 100.00 

Zanobetti et al., 2009 US 2015 (65+yrs) 35 6,630,577 5,974,387 90.10 

Zanobetti and 
Schwartz, 2009 US 2015 156 126,026,116 114,529,073 90.88 

Zanobetti et al., 2014 Zanobetti 2014 126 6,828,055 6,703,284 98.17 
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Table B-8. Percent population included in 24-hr pseudo-DV boxplots (Figure B-9). 

Citation Population Used 
Study Area 
Counties Total Population 

Population with 
DV 

Population 
with DV (%) 

Baxter et al., 2017 US 2015 113 113,053,365 97,125,414 85.91 

Bell et al., 2008 US 2015 (65+yrs) 202 23,206,934 21,903,002 94.38 

Bell et al., 2014 US 2015 (65+yrs) 4 490,357 490,357 100.00 

Bell et al., 2015 US 2015 (65+yrs) 202 23,206,934 22,564,564 97.23 

Bravo et al., 2017 US 2015 (65+yrs) 807 31,056,109 21,083,502 67.89 

Dai et al., 2014 US 2015 95 95,890,830 91,262,160 95.17 

Di et al., 2017b US 2015 (65+yrs) 3220 48,387,814 34,097,655 70.47 

Di et al., 2017a US 2015 (65+yrs) 3220 48,387,814 34,097,655 70.47 

Dominici et al., 2006 US 2015 (65+yrs) 202 23,206,934 20,097,018 86.60 

Franklin et al., 2008 Franklin 2008 25 1,313,983 1,313,983 100.00 

Kioumourtzoglou et 
al., 2016 Kiomourtzoglou 2016 222 11,391,912 11,050,835 97.01 

Kloog et al., 2012 US 2015 (65+yrs) 67 2,361,375 1,546,500 65.49 

Kloog et al., 2014 US 2015 (65+yrs) 366 9,099,500 6,429,318 70.66 

Lee et al., 2015a US 2015 305 25,153,808 12,127,123 48.21 

Lepeule et al., 2012 Lepeule 2012 11 14,562 12,932 88.81 

Malig et al., 2013 US 2015 35 36,607,640 35,908,846 98.09 

McConnell et al., 
2010 

US 2015 (18 and 
under) 7 5,008,800 5,008,587 100.00 

Ostro et al., 2016 Ostro Asthma 2016 8 43,904 43,904 100.00 

Peng et al., 2009 US 2015 (65+yrs) 119 13,944,304 13,596,370 97.50 

Pinault et al., 2016 Canada 2016 5162 35,151,728 18,242,308 51.90 

Shi et al., 2016 US 2015 (65+yrs) 67 2,361,375 1,823,456 77.22 

Urman et al., 2014 Urman 2014 5-7yrs 5 1,811 1,811 100.00 

Wang et al., 2017 US 2015 (65+yrs) 616 9,779,426 6,306,215 64.48 

Weichenthal et al., 
2016b Weichenthal MI 2016 16 30,101 30,101 100.00 

Weichenthal et al., 
2016c Canada 2016 15 4,673,938 4,673,938 100.00 

Yap et al., 2013 
Yap 2013 Asthma 1-
9yrs 12 146,224 146,224 100.00 

Zanobetti et al., 2009 US 2015 (65+yrs) 35 6,630,577 5,974,387 90.10 

Zanobetti and 
Schwartz, 2009 US 2015 156 126,026,116 114,529,073 90.88 

Zanobetti et al., 2014 Zanobetti 2014 126 6,828,055 6,703,284 98.17 
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B.6 SENSITIVITY ANALYSIS: BOX PLOTS USING COUNTS OF 

HEALTH EVENTS VERSUS STUDY AREA POPULATION 

 As discussed in Section 3.2.3.2.2, Figure 3-9 and Figure B-9 present box-and-whisker 

plots reflecting the PM2.5 3-year average maximum pseudo-design values that correspond to 

various percentiles of the study area population or study area health events. When area-specific 

health events are available, Figure 3-9 and Figure B-9 present percentiles of air quality and study 

area health events. There is uncertainty regarding the extent to which the populations in counties 

included in key studies reflect the true distribution of cases in those studies. Many studies used 

registry data, or similar data sources that may be expected to capture the majority of cases within 

a study location; however, these studies often didn’t report the exact number of cases per area. 

When the number of cases were not available, we instead used the underlying county-level 

population obtained using 2015 U.S. census data. While this approach contributes uncertainty to 

our analyses of pseudo-design values, for the limited number of studies with information on the 

number of cases per county, the distributions of pseudo-design values relative to the number of 

cases were similar to the distributions relative to the county population (particularly for annual 

pseudo-design values). Figure B-6 provides a comparison of studies where health event data are 

available, to assess the distribution of pseudo-design values when study area population is used 

versus study area health events.  
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Figure B-6. PM2.5 pseudo-design values corresponding to various percentiles of study area 

populations and health events for studies of 24-hour PM2.5 exposures and long-term 

studies (top panel) and annual PM2.5 exposures and long-term studies (bottom panel). 

 

B.7 COMPARISONS BETWEEN ANNUAL AND DAILY DESIGN 

VALUES 

As discussed above in section 3.2.3.2, for an area to meet the NAAQS, all valid design 

values in that area, including the highest annual and 24-hour values, must be at or below the 

levels of the standards. Because monitors are often required in locations with high PM2.5 

concentrations (section 2.2.3), areas meeting an annual PM2.5 standard with a particular level 

would be expected to have long-term average PM2.5 concentrations (i.e., averaged across space 

and over time in the area) somewhat below that standard level. Figure B-7 and Table B-9 
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indicate that, based on recent air quality in U.S. CBSAs, maximum annual PM2.5 design values 

are often 10% to 20% higher than annual average concentrations (i.e., averaged across multiple 

monitors in the same CBSA). The difference between the maximum annual design value and 

average concentration in an area can be smaller or larger than this range, likely depending on 

factors such as the number of monitors, monitor siting characteristics, and the distribution of 

ambient PM2.5 concentrations. Given that higher PM2.5 concentrations have been reported at 

some near-road monitoring sites, relative to the surrounding area (section 2.3.2.2.2), recent 

requirements for PM2.5 monitoring at near-road locations in large urban areas (section 2.2.3.3) 

may increase the ratios of maximum annual design values to averaged concentrations in some 

areas. Such ratios may also depend on how the average concentrations are calculated (i.e., 

averaged across monitors versus across modeled grid cells). Compared to annual design values, 

Figure B-8 indicates a more variable relationship between maximum 24-hour PM2.5 design 

values and annual average concentrations.  
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Figure B-7. Comparison of CBSA average annual design values and CBSA maximum 

annual design values for 2015-2017. (Note: Includes all CBSAs with at least 3 valid annual 

DVs.)    
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Table B-9. National Averages of ratios of maximum annual design values to averaged 

concentrations.  

 

Year of 
monitoring data 

Number of monitors 
per CBSA 

Number 
of CBSAs 

Ratio of max Annual 
DV to CBSA average 

Ratio of max 24-hr 
DV to CBSA average 

2009-2011 

3 or more 67 1.12 1.13 

4 or more 33 1.14 1.16 

5 or more 18 1.17 1.19 

2012-2014 

3 or more 60 1.15 1.15 

4 or more 38 1.17 1.18 

5 or more 23 1.19 1.21 

2015-2017 

3 or more 65 1.16 1.19 

4 or more 38 1.19 1.21 

5 or more 30 1.20 1.24 
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Figure B-8. Comparison of CBSA average annual design values and CBSA maximum daily 

design values for 2015-2017. (Note: Dashed lines indicate the level of the current 24-hour 

PM2.5 standard (35 ug m/3) and the current annual PM standard (12 ug m/3). Includes all 

CBSAs with at least 3 valid daily and 3 valid annual DVs.)13.  

                                                 
13 The CBSA maximum 2015-2017 daily design value (y-axis) was cut off at 60 µg/m3, to improve the visualization 

of data, but this removed the Fairbanks CBSA from the plot, which had a daily design value of 85 µg/m3 and an 

annual design value of 15.7 µg/m3. 
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B.8 24-HOUR PSEUDO-DESIGN VALUES AND DISTRIBUTIONS 

ACROSS STUDY AREAS 

As described in section 3.2.3.2.2 of the PA, and section B.4 of this appendix, for 

locations evaluated in key epidemiologic studies we identify annual and 24-hour PM2.5 pseudo-

design values and the number of people (or health events). Figure 3-9 in the PA presents box-

and-whisker plots summarizing those data for annual pseudo-design values. Figure B-9 (below) 

presents box-and-whisker plots summarizing those data for 24-hour pseudo-design values. 
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Figure B-9. PM2.5 24-hour pseudo-design values corresponding to various percentiles[1] of 

study area populations or health events for studies of long-term and short-term PM2.5 

exposures.[2]  

                                                 
[1] Whiskers reflect PM2.5 pseudo-design values corresponding to 5th and 95th percentiles of study area populations 

(or health events), boxes correspond to the 25th and 75th percentiles, and the vertical lines inside the boxes 

correspond to 50th percentiles. Asterisks next to study citations denote statistically significant effect estimates. 

[2] For most of the studies included in Figure B-9, pseudo-design values are available for >70% of study area 

populations (or health events). Exceptions are Kloog et al. (2012), Lee et al. (2015b), Pinault et al. (2016), Wang 

et al. (2017), and Bravo et al. (2017), with pseudo-design values available for 65%, 48%, 51%, 68%, and 64% of 

study area populations, respectively.  
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B.9 PSEUDO-DESIGN VALUE DISTRIBUTION BY AVERAGE COUNTY 

PSEUDO-DESIGN VALUES PER 1 µG/M3 

Figure 3-9 and Figure B-9 exhibit distributions of pseudo-DVs corresponding to study 

areas within each study and based on averaging pseudo-DVs. That is, for each study location, 

maximum 3-year pseudo-design values are averaged over study periods. Depending on the years 

of air quality evaluated by the study, for some locations those averages could reflect air quality 

that violated the current standards during part of the study period and met the current standards 

during part of the study period. We have examined this issue in greater detail for the studies by 

Di et al. (2017b) and Shi et al. (2016).  

Figure B-10 and 0 present the relationship between annual pseudo-DVs averaged over the 

study period and the individual 3-year pseudo-DVs that contribute to those study-period averages 

for Di et al. (2017b). Of the 6,315 3-year pseudo-DVs available for this study, 3,915 (62%) are 

less than or equal to 12.04 µg/m3 (i.e., lower than the current annual standard). Of the counties 

that have study-period average pseudo-DV’s ≤ 12.04 µg/m3, 89.3% of individual 3-year pseudo-

DVs are ≤ 12.04 µg/m3 (i.e., 3,410 of 3,820 3-year pseudo-DVs).  
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Figure B-10. County average pseudo-DV by 1 µg/m3 and distribution of individual county 

pseudo-DVs within each 1 µg/m3 interval for study counties in Di et al., 2017b. Note: X-

axis values of 11 correspond to county average pseudo-DVs from 11.0 to 12.0 µg/m3. 

Thus, x-axis values of 11 or below correspond to pseudo-DVs at or below the level of the 

current annual standard. 
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Table B-10. County average pseudo-DV by 1 µg/m3 and distribution of county pseudo-DVs 

within each 1 µg/m3 interval for study counties in Di et al., 2017b 

 

 

 Figure B-11 and Table B-11 present the relationship between annual pseudo-DVs 

averaged over the study period and the individual 3-year pseudo-DVs that contribute to those 

study-period averages for Shi et al. (2016). Of the 116 3-year pseudo-DVs available for this 

study, 102 (88%) are less than or equal to 12.04 µg/m3. Of the counties that have study-period 

average pseudo-DV’s ≤ 12.04 µg/m3 98.1% of individual 3-year pseudo-DVs are ≤ 12.04 µg/m3 

(i.e., 102 of 104 3-year pseudo-DVs).  

County average pseudo-DV PM2.5 
concentration (µg/m3) interval 

Count (percent) of pseudo-DV’s ≤ 
12.04 µg/m3 

Count (percent) of pseudo-DV’s > 
12.04 µg/m3 

2.04 < PM2.5 ≤ 3.04 93 (100.00) 0 (0.00) 

3.04 < PM2.5 ≤ 4.04 117 (100.00) 0 (0.00) 

4.04 < PM2.5 ≤ 5.04 198 (100.00) 0 (0.00) 

5.04 < PM2.5 ≤ 6.04 235 (100.00) 0 (0.00) 

6.04 < PM2.5 ≤ 7.04 293 (99.35) 2 (0.68) 

7.04 < PM2.5 ≤ 8.04 283 (100.00) 0 (0.00) 

8.04 < PM2.5 ≤ 9.04 501 (100.00) 0 (0.00) 

9.04 < PM2.5 ≤ 10.04 533 (99.84) 1 (0.19) 

10.04 < PM2.5 ≤ 11.04 619 (92.23) 61 (8.97) 

11.04 < PM2.5 ≤ 12.04 538 (66.03) 346 (39.14) 

12.04 < PM2.5 ≤ 13.04 332 (30.46) 635 (65.67) 

13.04 < PM2.5 ≤ 14.04 128 (13.19) 525 (80.40) 

14.04 < PM2.5 ≤ 15.04 38 (5.14) 433 (91.93) 

15.04 < PM2.5 ≤ 16.04 7 (1.27) 228 (97.02) 

16.04 < PM2.5 ≤ 17.04 0 (0.47) 70 (100.00) 

17.04 < PM2.5 ≤ 18.04 0 (0.00) 21 (100.00) 

18.04 < PM2.5 ≤ 19.04 0 (0.00) 11 (100.00) 

19.04 < PM2.5 ≤ 20.04 0 (0.00) 33 (100.00) 

20.04 < PM2.5 ≤ 21.04 0 (0.00) 12 (100.00) 

21.04 < PM2.5 ≤ 22.04 0 (0.00) 11 (100.00) 

22.04 < PM2.5 ≤ 23.04 0 (0.00) 11 (100.00) 

Total 3,915 (62.0) 2,400 (38.0) 
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Figure B-11. County average pseudo-DV by 1 µg/m3 and distribution of individual county 

pseudo-DVs within each 1 µg/m3 interval for study counties in Shi et al., 2016. Note: X-

axis values of 11 correspond to county average pseudo-DVs from 11.0 to 12.0 µg/m3. 

Thus, x-axis values of 11 or below correspond to pseudo-DVs at or below the level of the 

current annual standard. 
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Table B-11. County average pseudo-DVs by 1 µg/m3 and distribution of county pseudo-

DVs within each 1 µg/m3 interval for study counties in Shi et al., 2016.  

County average pseudo-DV PM2.5 
concentration (µg/m3) interval 

Count (percent) of pseudo-DV’s ≤ 
12.04 µg/m3 

Count (percent) of pseudo-DV’s > 
12.04 µg/m3 

4.04 < PM2.5 ≤ 5.04 8 (100.00) 0 (0.00) 

5.04 < PM2.5 ≤ 6.04 5 (100.00) 0 (0.00) 

6.04 < PM2.5 ≤ 7.04 7 (100.00) 0 (0.00) 

7.04 < PM2.5 ≤ 8.04 16 (100.00) 0 (0.00) 

8.04 < PM2.5 ≤ 9.04 12 (100.00) 0 (0.00) 

9.04 < PM2.5 ≤ 10.04 26 (100.00) 0 (0.00) 

10.04 < PM2.5 ≤ 11.04 21 (95.45) 1 (0.00) 

11.04 < PM2.5 ≤ 12.04 7 (87.50) 1 (0.00) 

12.04 < PM2.5 ≤ 13.04 0 (0.00) 4 (0.00) 

13.04 < PM2.5 ≤ 14.04 0 (0.00) 8 (0.00) 

Total 102 (88.0) 14 (12.0) 
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B.10  DETAILS OF KEY EPIDEMIOLOGIC STUDIES, INCLUDING STUDY DESIGN, EXPOSURE 

METRIC, AND STATISTICAL ANALYSIS 

Table B-12 below summarizes additional details related to the designs of the U.S. and Canadian epidemiologic studies 

included in Figure 3-7, Figure 3-8, Figure 3-9, and Figure B-9 and the risk assessment (Table 3-4).  

Table B-12. Study characteristics from key studies.  

Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Baxter et al., 
2017 

ST All-cause 
mortality 

77 US Cities Time Series study 
(NCHS data) 

Average daily 
monitored PM2.5 

concentration in each 
city. 2-day moving 

average (lag 0-1 days) 
of PM2.5 conc. Included 

in the model. 

Poisson regression model and 
meta-regression 

 
In stage 1, ran single city Poisson 
time-series models; adjusted for 

temperature and dew point 
temperature, including variables for 
previous day temperature, temporal 

trends, and trends by age. 
In stage 2, meta-regression with 

cluster analysis (5 clusters) based 
on characteristics of residential 

infiltration. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Bell et al., 2008 ST CVD HA Age 
65+ 

202 US Counties with 
populations≥200,000 

Time Series study 
(MEDICARE 

enrollees) 

Daily monitored PM2.5 

concentrations. Used 
lag0 PM2.5 in the 

model. 

2-stage Bayesian hierarchical model  
 

In stage 1, adjusted for temperature 
and dew point temperature, 

including variables for previous 
day’s conditions, day-of-the-week, 
temporal trends, and differential 

temporal trends by age. In stage 2, 
county-specific estimates were 
combined, accounting for their 

statistical uncertainty. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Bell et al., 2014 ST CVD, Asthma, 
and COPD HA 

Age 65+ 

4 Counties in MA and 
CT 

Time-series study 
(MEDICARE 

enrollees) 

PM2.5 Teflon filter 
samples obtained from 
CT and MA DEP and 

used to measure PM2.5 

total mass. 
Fairfield County (2 

monitors): Estimated 
exposures using 

population-weighted 
averaging of values and 

assigned exposure to 
the nearest monitor.  

Exposures were 
averaged, weighted by 

each tracts’ 2000 
census population. For 
other counties, values 
from the single monitor 
within the county were 
used. Explored various 
lags and presented lag0 

PM2.5 model. 

Log-linear Poisson regression 
analysis 

 
Adjusted for temperature and dew 

point temperature, including 
previous day’s temperature and dew 
point temperature, day-of-the-week 

temporal trends, and region. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Bell et al., 2015 ST HF HA 65+ 213 U.S. Counties Time-series study 
(MEDICARE 

enrollees) 

For each county and 
day, PM2.5 

measurements for 
monitors within a county 

were averaged. 
Explored various lags 
and presented lag0 

PM2.5 model. 

2-stage Bayesian hierarchical model 
 

The stage 1 model included county-
specific model adjusted for weather 
(temperature, dew point, previous 
days’ temperature and dew point), 

day-of-the-week, and temporal 
trends. In stage 2 county-specific 

effect estimates were pulled 
together to present overall 

association. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Bravo et al., 
2017 

ST CVD HA Age 
65+ 

418 U.S. Counties Time-series study 
(MEDICARE 

enrollees) 

Exposure estimated 
from monitoring data 

and monitors with 
multiple measurements 
for the same day and 

county were averaged. 
Explored various lags 
and distributed lags of 

PM2.5 exposure. 

2-stage Bayesian hierarchical model 
 

The stage 1 included log-linear 
Poisson regression models with 

over-dispersion fit at county-level. 
Model adjusted for same-day 
temperature and dew point 

temperature, 3-day moving average 
of temperature and dew point 

temperature, temporal trends in 
hospitalizations, day-of-the-week, 

and age. Fitted distributed lag model 
with multiple lags (0- to 7-day lags) 

of PM2.5 conc simultaneously in the 
county-specific model.  

The stage 2 estimated the 
association for the entire study area 
using two-level normal independent 
sampling estimation with priors thus 
allowing to combine risk estimates 

across counties while accounting for 
within county SE and between-
county variability in the true RR. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Bravo et al., 
2017 

ST CVD HA Age 
65+ 

708 U.S. Counties Time-series study 
(MEDICARE 

enrollees) 

Daily PM2.5 
concentrations 

estimated at census 
tracts using the 

downscaler method. 24-
hr county-level PM2.5 

estimates for counties 
with population > 

50,000 were calculated 
from a population-

weighted average of 
PM2. Concentrations 

predicted by the 
downscaler at census 

tracts within each 
county using 2000 U.S> 
Census Data. Explored 

various lags and 
distributed lags of 
PM2.5 exposure. 

2-stage Bayesian hierarchical model 
 

The stage 1 included log-linear 
Poisson regression models with 

over-dispersion fit at county-level. 
Model adjusted for same-day 
temperature and dew point 

temperature, 3-day moving average 
of temperature and dew point 

temperature, temporal trends in 
hospitalizations, day-of-the-week, 

and age. Fitted distributed lag model 
with multiple lags (0- to 7-day lags) 

of PM2.5 conc simultaneously in the 
county-specific model.  

The stage 2 estimated the 
association for the entire study area 
using two-level normal independent 
sampling estimation with priors thus 
allowing to combine risk estimates 

across counties while accounting for 
within county SE and between-
county variability in the true RR. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Burnett and 
Goldberg, 2003 

ST All-cause 
mortality 

8 Canadian Cities Time-series study Monitored 
measurements 

Generalized additive model (GAM) 
analysis to generate pooled 

estimate of air pollution effect 
among the eight cities.  

 
The model adjusted for day-of-the-

week, temporal trends, and weather 
variables (daily average 

temperature, daily average relative 
humidity, and barometric pressure 

lagged 0 and 1 days). 

Burnett et al., 
2004 

ST All-cause 
mortality 

12 Canadian Cities Time-series study 
(data from Statistics 

Canada) 

Daily summary pollution 
exposure 

measurements based 
on averaging data over 
all monitors within each 
city. Various lags and 

moving average 
assessed and 

presented data for lag 1 
for PM2.5. 

Random-effects regression model.  
 

Adjusted for temporal trends in 
mortality and effects of weather 

using humidex index at lag 0 and lag 
1 (a measure of combined effect of 

temperature and humidity) 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Crouse et al., 
2012 

LT All-cause 
mortality 

11 Canadian Cities National Cohort 
study (Subset of 
Canadian census 
mortality follow-up 

study; 43%) 

Mean annual 
concentration from 

ground-based monitors 
averaged from 1987-

2001. Participants were 
assigned exposure 

based on 11 census 
divisions.  

Another set of exposure 
estimate was derived 
from satellite remote 
sensing for period 

2001-2006. Estimates 
at grid-level assigned to 
the cohort members by 

linking grid to the 
enumeration area of 
residence in 1991.  

2 different modelling approach. 
Approach 1: Cox proportional 

hazards model, and Approach 2: 
nested, spatial random-effects Cox 

model with spatial clusters.  
 

Models adjusted for individual-level 
covariates, urban/rural indicator, and 

ecological covariates (% 
unemployed, % without high school 
diploma, lowest income quintile, and 

rural/urban indicator). 

Dai et al., 2014 ST All-cause, CVD, 
and Respiratory 

mortality 

75 U.S. Cities (with 
available daily 

mortality data and 
PM2.5 data for at 

least 400 days 
between 2000 and 

2006)  

Time-series study 
(NCHS) 

Mean daily monitored 
PM2.5 concentrations.  
For cities with more 

than one sampling site, 
concentration data were 
averaged. Average of 2-

day lag (lag 0 and 1) 
PM2.5 used. 

Two stage: Stage 1. City-specific 
season-stratified time-series 

analysis using Poisson regression in 
GAM  

 
Model adjusted for 24-hr average 
temperature from closest weather 

station to the city center at lag0 and 
lag1, temporal trends, and day-of-

the-week. Stage 2. Multivariate 
random effects meta-analysis to 
combined 300 (i.e. 75 cities * 4 

seasons) effect estimates to obtain 
overall association.  
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Di et al., 2017b LT All-cause 
mortality 65+ 

US Nationwide Open Cohort 
(MEDICARE 

enrollees) 

Artificial neural network 
that incorporated 
satellite-based 
measurements, 

simulation outputs from 
a chemical transport 

model, land-use terms, 
meteorological data, 

and other data to 
predict daily 

concentrations of PM2.5. 
The neural network was 
fit with monitored PM2.5 

data and daily PM2.5 
concentrations were 

predicted for nationwide 
grids that were 1x1 km. 
For each calendar year 
during which a person 
was at risk of death the 
annual average PM2.5 

concentration was 
assigned according to 
the ZIP Code of the 

person’s residence. As 
part of a sensitivity 
analysis, monitored 

PM2.5 data was 
matched with each 
person in the study 

within a distance of 50 
km of the nearest 
monitoring site. 

Two-pollutant Cox proportional 
hazards model with generalized 

estimating equation to account for 
correlation between ZIP codes.  

 
Accounted for individual variables, 
(sex, race, Medicaid eligibility, and 

average age at study entry), zip 
code-level variables (% Hispanic, % 
Black, median household income, 
median value of housing, % > 65 
living below poverty level, % > 65 

with less than high school 
education, % of owner-occupied 

housing units, and population 
density), county-level variables 
(county-level BMI and % ever 

smokers), hospital service area-level 
variables ( % low-density lipoprotein 

level measured, % glycated 
hemoglobin level measured, and % 

>1 ambulatory visits), 32 km2 
gridded weather and 1 km2 gridded 
pollution variables (annual average 

PM2.5 concentration, annual average 
temperature, and annual average 

humidity), monitor level air pollution 
variables (PM2.5 monitored data), 
and a regional dummy variable.  

 

Di et al., 2017b 
(< 12 ug/m3) 

Analysis restricted to 
persons-years with 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

PM2.5 exposures lower 
than 12 ug/m3 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Di et al., 2017a ST All-cause 
mortality 65+ 

US Nationwide Case-crossover 
study (MEDICARE 

enrollees) 

Artificial neural network 
that incorporated 
satellite-based 
measurements, 

simulation outputs from 
a chemical transport 

model, land-use terms, 
meteorological data, 

and other data to 
predict daily 

concentrations of PM2.5. 
The neural network was 
fit with monitored PM2.5 

data and daily PM2.5 
concentrations were 

predicted for nationwide 
grids that were 1x1 km. 

For each case day 
(date of death) and its 
control days, the 24-

hour PM2.5 
concentrations were 

assigned based on zip 
code of residence of the 
individual. As part of a 

sensitivity analysis, 
monitored PM2.5 data 

was matched with each 
person in the study 

within a distance of 50 
km of the nearest 
monitoring site. 

Conditional logistic regression.  
 

“Case Day” defined as death. For 
the same person, compared daily air 
pollution exposure on the case day 
vs. daily air pollution exposure on 
“control days.” Control days were 
chosen (1) on the same day of the 
week as the case day to control for 
potential confounding effect by day 

of week; (2) before and after the 
case day to control for time trend; 
and (3) only in the same month as 

the case day to control for seasonal 
and subseasonal patterns. 

Individual-level covariates and zip 
code-level covariates that did not 
vary day to day (e.g., age, sex, 

race/ethnicity, SES, smoking, and 
other behavioral risk factors) were 

not considered to be confounders as 
they remain constant when 

comparing case days vs control 
days. 

The regression model adjusted for 
air and dew point temperature. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Dominici et al., 
2006 

ST HF and COPD 
HA 65+ 

204 Urban U.S. 
counties 

Time-series study 
(MEDICARE 

enrollees) 

Monitored PM2.5 

concentrations. Of the 
204 counties, 90% had 
daily PM2.5 data across 

the study period and the 
remaining counties had 

PM2.5 data collected 
once every 3 days for at 
least 1 full year. Various 

lags and distributed 
lags assessed and 

presented. 

2-stage Bayesian hierarchical 
models to estimate county-specific, 

region-specific, and national-
average associations.  

 
Stage 1 model included single lag 
and distributed lag over-dispersed 

Poisson regression models to 
estimate county-specific risk. 

Models adjusted for temperature 
and dew point on the same day and 
the 3 previous days, calendar time 
to control for seasonality and other 

time-varying influences, daily 
numbers of individuals at risk, and 

day-of-the-week. In Stage 2, to 
produce a national average 

estimate, Bayesian hierarchical 
models were used to combine RRs 
across counties and accounting for 

within-county statistical error and for 
between-county variability or 

heterogeneity. To produce regional 
estimates. The Stage 2 hierarchical 
models described above was used 

for 7 regions separately. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Franklin et al., 
2007 

ST All-cause, CVD, 
and Respiratory 

mortality 

27 U.S. communities 
(with PM2.5 

monitoring and daily 
mortality data for at 
least 2 years of 6-
year study period 

1997-2000) 

Case-crossover 
study (NCHS) 

Monitored PM2.5 
concentrations with 

data for at least 2 years 
of a 6-year period. 

Within a community, 
any monitor that was 

not well correlated with 
others was excluded, 

and values were 
averaged to account for 

true variability in 
concentrations across 
the days measured in 
the county. Calculated 
and presented various 
lags and averages for 

PM2.5. 

2-stage time-stratified analysis: 1) 
Conditional logistic regression 

analysis to generate community 
specific estimates; 2) Meta-

regression analysis to combined 
community specific estimates to 
generate overall pooled effect 

estimate.   
 

Stage 1 of the model adjusted for 
day-of-the-week, as well as 

apparent temperature at lag0 and 
lag1. Cases were defined as 

“deaths” and control days for a 
particular subject were chosen to be 

every third day within the same 
month and year that death occurred. 

Effect modification of age and 
gender was examined using 

interaction terms in stage 1, while 
effect modification of community-
specific characteristics including 

geographic location, annual PM2.5 
concentration > 15 ug/m3 and 

central AC prevalence was used in 
stage 2. 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Franklin et al., 
2008 

ST All-cause, CVD, 
and Respiratory 

mortality 

25 U.S communities 
(with PM2.5 

monitoring and daily 
mortality data for at 

least 4 years 
between 2000-2005) 

Case-crossover 
study (NCHS) 

Monitored PM2.5 

concentrations with 
data for at least 4 years 

of a 6-year period. 
Within a community, 
any monitor that was 

not well correlated with 
others was excluded, 

and values were 
averaged to account for 

true variability in 
concentrations across 
the days measured in 
the county. Calculated 
and presented various 
lags and averages for 

PM2.5. 

2-stage time-stratified analysis: 1) 
Conditional logistic regression 

analysis to generate community 
specific estimates; 2) Meta-

regression analysis to combined 
community specific estimates to 
generate overall pooled effect 

estimate.   
 

Stage 1 of the model adjusted for 
day-of-the-week, as well as 

apparent temperature at lag0 and 
lag1. Cases were defined as 

“deaths” and control days for a 
particular subject were chosen to be 

every third day within the same 
month and year that death occurred. 

Effect modification of age and 
gender was examined using 
interaction terms in stage 1. 



 B-47  

 

 

Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Gharibvand et 
al., 2016 

LT Lung cancer 
incidence 

US Nationwide  Cohort study 
(AHSMOG-2 study) 

Using monitored PM2.5 
data from 2000-2001, 

inverse distance 
weighted interpolations 

methods, monthly 
pollution surfaces for 
PM2.5 were created. 
Monthly exposure 

averages were based 
on daily PM2.5 

measurements. 
Participants were 
assigned monthly 

exposure based on their 
baseline residential 

address. 

Cox proportional hazards model  
 

Covariates included sex, race, 
smoking status, years since 

participant quit smoking, average 
number of cigarettes per day during 

all smoking years, and education 
level. Additional covariates included 
calendar time, alcohol consumption, 
family income, BMI, physical activity, 

and marital status. 3 variables 
identified a priori as either as 

confounders or effect modifiers: 
hours/day spent outdoors, years of 

pre-study residence length at 
enrollment address, and moving 

distance from enrollment address 
during follow-up. 

Hart et al., 2015 
(monitored) 

LT All-cause 
mortality 

US Nationwide  Cohort study 
(Nurses’ Health 

study) 

Calculated monthly 
average PM2.5 from the 

nearest monitoring 
location for all 

addresses. 
Nearest monitor 
exposures were 
validated against 

personal exposures to 
PM2.5 of ambient origin. 

Cox proportional hazards model.  
 

Information on potential confounders 
was available every two years (4 

years for diet information) and each 
woman was assigned updated 

covariate values for each 
questionnaire cycle.  Confounders 

examined include age, race, region, 
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Hart et al., 2015 
(modeled) 

LT All-cause 
mortality 

US Nationwide  Cohort study 
(Nurses’ Health 

study) 

Spatio-temporal models 
of PM2.5 were 

developed to estimate 
monthly PM2.5 

exposures at each 
geocoded questionnaire 

mailing address. The 
model was developed 
using monitored data 

and included 
meteorological and 

GIS-derived covariates, 
such as urban land use 
within 1 km, elevation, 
tract- and county-level 

population density, 
distance to the nearest 
road for road classes 

A1-A3 and point-source 
emission density within 

7.5 km. 
Modeled exposures 

were validated against 
personal exposures to 
PM2.5 of ambient origin. 

 
Previous 12-month 
moving average of 

exposure either from 
nearest monitor or 

spatio-temporal models 
were assigned to study 

participants. 

season, physical activity, BMI, 
hypercholesterolemia, family history 
 of MI, smoking history, Current 
smoking status, diet, SES 
(education level, occupation of both 
of the nurses’ parents when she was 
16, marital status, and husband’s 
education if applicable). Also 
adjusted for area-level SES (census 
tract level median income and 
house value), and long-term 
temporal trends. 

Risk set regression calibration for 
time-varying exposures was used to 

correct for bias due to exposure 
measurement error in the hazard 

ratios of all-cause mortality using the 
personal exposure validation data. 

Ito et al., 201314 ST All-cause 
mortality 

 

150 U.S. cities Time-series study 24-hr average PM2.5 
mass data in a given 
city, and when data 

Poisson regression analysis 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

from multiple monitors 
were available in a 

given city, computed 
the average of the daily 

values after 
standardizing each 
site’s data using the 
mean and standard 
deviation of the sites 

data. 
 

Pollutant concentration 
is expressed in the 

model as a deviation 
from the monthly mean 
to reduce the influence 
of the seasonal cycles 
of the pollutants on the 

overall associations and 
help focus on the short-

term associations. 

First city- and season-specific 
Poisson regression was run, and 
then city-specific estimates were 
combined using random effects 

approach  
 
 

Adjusted for temporal trends (annual 
cycles and influenza epidemics), 

immediate and delayed 
temperature, and day-of-week 

pattern, for entire years (2001-2006) 
and for warm (April-September) and 

cold (October-March) seasons. 
 

In second stage, assessed effect 
modification using land-use 

variables and average air pollution 
levels. 

                                                 
14 This study is not referenced individually in the ISA, but is study 3 of the National Particle Component Toxicity (NPACT) Initiative published in HEI 

(Lippmann et al., 2013). 
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Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Jerrett et al., 
2016 

LT IHD mortality 
30+ 

U.S. Nationwide Cohort study (ACS 
Cancer Prevention 

Study II) 

Multiple exposure 
estimation approaches 

evaluated within the 
study – risk assessment 
uses results based on 
an ensemble approach 

that incorporates 
chemical transport 
modeling, land use 

data, satellite data, and 
data from ground-based 

monitors 

Cox proportional hazards regression 
 

Covariates included current and 
former smoking status as well as 
smoking duration, amount, age 
started, second hand cigarette 
smoke (hours/day exposed), 

exposure to PM2.5 in the workplace 
for each of the subject’s major 

lifetime occupation, self-reported 
exposure to dust/fumes at work, 
marital status, level of education, 
BMI, alcohol consumption, dietary 

vegetable/fruit/fiber index, dietary fat 
index, missing nutrition information. 

Ecologic characteristics included 
median household income, 

percentage of people with < 125% 
of poverty-level income, percentage 

of persons > 16 who are 
unemployed, percentage of adults 
with < 12th grade education, and 

percentage of population who were 
Black or Hispanic. 
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Kioumourtzoglou 
et al., 2016 

LT All-cause 
mortality 65+ 

207 U.S. 
communities 

Open Cohort study 
(MEDICARE 

enrollees) 

City-specific annual and 
2-year PM2.5 averages 

using data from all 
available monitors in 

each city using US EPA 
monitors. Calculated 

average annual, 
summer and winter 

temperatures for each 
city using National 

Climatic Data. 

2-stage approach for modelling.  
 

In Stage 1, Cox proportional 
hazards model was fit for each city 
stratified by age, gender, race and 
follow-up time in study. Control for 

slowly varying potential confounders 
(e.g., SES) and confounders that 

vary across subjects, city, and time. 
City-characteristics for: proportion of 

city population > 65, median 
household income, proportion in 

poverty, proportion of city families in 
poverty, proportion of white, black, 
and Asian residents, proportion of 
residents with/without high-school 
degrees and a college degree, and 
city-specific smoking and obesity 
rates.  Population-weighted city 

averages were developed based on 
census data at the county level. Also 

included average annual 
temperature in the model. 

In stage 2, combined the city-
specific estimates using a random 
effects meta-analysis to generate 
region-specific effects. Assessed 

effect modification by annual 
temperature levels, and population 
and city characteristics (greenness, 
poverty, racial composition, etc.). 
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Klemm and 
Mason, 2003 

ST All-cause 
mortality 

Harvard Six-City 
study reanalysis 

Time-series study 24-hour monitored 
PM2.5 samples in 6 

communities 

Generalized additive and 
Generalized linear models  

 
Model adjusted for temporal trends, 
day-of-the-week, weather (average 
daily temperature and average daily 

dew point temperature). 
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Kloog et al., 
2012 

ST CVD HA Age 
65+ 

New England Area 
with 6 U.S. States 

Mixed study design 
(with time series 

and cohort 
components) 

Spatiotemporal model: 
Used day-specific 

calibrations of aerosol 
optical depth (AOD) 
data, using ground 

PM2.5 measurements. 
Incorporated land use 

regressions and 
meteorological 

variables (temperature, 
wind speed, visibility, 
elevation, distance to 
major road, percent of 

open space, point 
emissions and area 
emissions).  Model 

used to predict daily 
PM2.5 concentrations at 

a 10 x 10 km spatial 
resolution. 

Short-term exposure: 
used the mean of PM2.5 

on the day of admission 
and day before 

admission. Long-term 
exposure: calculated as 
the mean exposure in 
each zip-code across 

the study period.  Short 
term exposure was 

defined as the 
difference between the 
two-day average and 

the long-term average. 

Equivalence between Poisson 
regression and the piecewise 

constant proportional hazard model 
to model the time to a hospital 
admission as a function of both 

long-term and short-term exposure 
simultaneously and enabling 

simultaneously examination of short 
term and long-term associations 

with hospital admissions 
(Hierarchical mixed Poisson 

regression model).  
 

The model adjusts for temperature, 
age, percent minorities, median 

income and percent of people with 
no high school education. 
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Kloog et al., 
2014 

ST CVD and COPD 
HA Age 65+ 

7 U.S. Mid-Atlantic 
States and D.C. 

Case-crossover 
design (MEDICARE 

enrollees) 

Spatiotemporal model: 
Used day-specific 

calibrations of aerosol 
optical depth (AOD) 
data, using ground 

PM2.5 measurements. 
Incorporated land use 
regression (elevation, 

distance to major roads, 
percent of open space, 

point emissions and 
area emissions) and 

meteorological 
variables (temperature, 

wind speed, relative 
humidity and visibility).  
Model used to predict 

daily PM2.5 
concentrations at a 10 x 

10 km spatial 
resolution. 

Daily predicted PM2.5 
exposure estimates 
were matched to zip 

codes. 
 

Conditional logistic regression 
analysis  

 
Temperature with the same moving 
average as PM2.5 was included in 

the model as a potential confounder. 
Study design samples only cases 

and compares each subject’s 
exposure experience in a time 

period just before a case-defining 
event with the subject’s exposure at 
other times, eliminating confounding 
(unmeasured or measured) that do 

not vary over time. Cases were 
matched on day of the week and 

defined the relevant exposure time 
window as the mean exposure of 

the day of and day before the 
patient’s hospital admission. Effect 
modification: 1) assessed whether 
subject residence within 30 km of a 
monitor or farther modified the PM2.5 
association; 2) examined interaction 
between exposure and income level 

and gender. 
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Krall et al., 2013 ST All-cause 
mortality 

72 Urban U.S. 
Communities 

Time-series study 
(NCHS) 

Monitored daily 
community-level 

pollutant exposure as 
the arithmetic mean of 

daily monitor 
observations within the 
community. Used lag 1 

PM2.5 in model. 

Log-linear Poisson Regression 
Model 

 
Model adjusted for temperature and 
previous day’s temperature, long-

term and seasonal trends, age, and 
day-of-the-week. Also included 

interaction term for pollutant 
concentration and seasons. 

Lee et al., 2015a ST All-cause, 
Cardiovascular, 

respiratory 
mortality 

3 U.S. Southeast 
States 

Case-crossover 
design (Dept. of 
Pub Health data) 

AOD data and predicted 
data at 1 km2 resolution 
aggregated into the zip 

code level and assigned 
to resident zip code. 
Mean exposure was 
calculated using lag0 

and lag1 value. 
 

Monitored PM2.5 

concentrations from the 
nearest EPA and 

IMPROVE monitors 
from resident zip code 

identified. 24-hr PM 
measurement for lag0 
and lag1 were used. 

Conditional logistic regression  
 

Model adjusted for temperature and 
day of the week 

 
Also ran stratified analysis by age, 
sex, race, education and primary 

cause of death. 
 

Analysis also restricted for zip codes 
where annual average of PM2.5 <12 

or daily average <35 separately. 
 

Sensitivity analysis: potential non-
linear relationship between temp 

and mortality modelled using natural 
spline to the temperature term. 
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Lepeule et al., 
2012 

LT All-cause, 
Cardiovascular, 

lung cancer 
mortality 

HARVARD 6 cities Prospective 
Cohort/Longitudinal 

follow-up study 
(HARVARD 6 cities 

data) 

PM2.5 data from 
monitors in the 

participant’s city. PM2.5 
data 1979-1986/1988 
from monitors, end of 

monitoring to 1998 
estimated from PM10 

using US EPA monitors, 
1999-2009 direct PM2.5 
measurement from US 

EPA monitors. 1-yr or 1-
3yr or 1-5 yr. moving 
PM2.5 averages were 

assigned to participants 
based on city of 

residence. 

Cox proportional hazard models, 
Poisson survival analysis 

 
Stratified analysis by sex, age and 

time in the study (1-yr interval). 
Confounders included: Baseline 
information on smoking status, 
smoking pack-years, education, 

linear and quadratic term for BMI. 
Also explored effect modification of 

PM2.5 on mortality by smoking 
status at enrollment, as well as time 

period in study.  



 B-57  

 

 

Citation 
Long-term 
(LT)/Short-
term (ST) 

Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Malig et al., 
2013 

ST Respiratory 
morbidity 

(Asthma and 
COPD ED and 

HA) 

35 CA counties 
(9 counties included 
for PM2.5 analysis) 

Case-crossover 
design (CA Office 

of Statewide Health 
Planning and 

Development Data) 

PM2.5 data obtained 
from California Air 
Resources Board. 
Same day lag and 
various days lags 

average were 
calculated for PM2.5. 

Participants were 
assigned exposure from 
the closest monitor from 

the residential 
population-weighted zip 

code centroid. 

County-level conditional logistic 
regression analysis. Overall 

estimate was then calculated by 
combining county-level estimates 

using a random-effects meta-
analysis 

 
Time-invariant confounders and 

seasonal trends were controlled for 
given the study design. 

 
Other confounders included in the 

models were: other gaseous 
pollutants including ozone, linear 

and squared term for daily average 
temperature. 

 
Stratified analysis also by distance 
to monitor: within 10 km vs. 10-20 

km 

McConnell et al., 
2010 

LT Asthma 
Incidence 

13 CA communities Cohort Study 
(CHS) 

PM2.5 measured in 
central site monitors in 
each community and 

assigned to study 
participants. 

Multi-level Cox proportional hazard 
model accounting for residual 

variation in time to asthma onset 
and clustering of children around 

schools and communities 
 

Models adjusted for: secondhand 
smoke, pets in home, race/ethnicity, 
age at study entry, sex, and random 
effects for community and school. 
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Ostro et al., 
2016 

ST Asthma and 
COPD ED 

8 metropolitan 
areas/counties in CA 

Case-crossover 
design (CA Office 

of Statewide Health 
Planning and 

Development Data) 

PM2.5 chemical 
speciation data from 

U.S. EPA provided by 
California Air 

Resources Board. 
Participants were 

assigned exposure from 
the closest monitor from 

the residential 
population-weighted zip 

code centroid. Only 
participants living in zip 
codes within 20 km of 

PM2.5 constituents 
monitors were included. 

County-level conditional logistic 
regression analysis. Overall 

estimate was then calculated by 
combining county-level estimates 

using a random-effects meta-
analysis 

 
Time-invariant confounders and 

seasonal trends were controlled for 
given the study design. 

 
Other confounders included in the 
models were: linear and squared 

term for lag0 temperature, day of the 
week. 
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Peng et al., 
2009 

ST CVD HA Age 
65+ 

119 U.S. Urban 
counties>150,000 

populations 

Time-series 
analysis 

(MEDICARE 
enrollees) 

PM2.5 data obtained 
from US EPA’s AQS 

and STN. 

Log-linear Poisson Regression 
analysis 

 
Adjusted for potential confounders 

like: weather, day of the week, 
unobserved seasonal factors. In 

county-specific regression model, 
following indicators were included: 

indicator for the day of the weeks, a 
smooth function of time per calendar 

year to control for seasonality and 
long-term trends, a smooth function 

of current-day temperature, a 
smooth function of the 3-day running 

mean temperature, a smooth 
function of current-day dew-point 

temperature, and a smooth function 
of the 3-day running mean dew-

point temperature. To model smooth 
functions we used a natural spline 

basis. 
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Pinault et al., 
2016 

LT All-cause, CVD 
and lung cancer 

mortality 

Multicity Canada Prospective Cohort 
Study (subset of 

participants of the 
Canadian 

Community Health 
Survey) 

PM2.5 concentration 
derived from MODIS. 

Geographically 
weighted regression 
including monitoring 

and land use data was 
applied to the estimates 
from MODIS to produce 

average PM2.5 
concentration at 1 km2 

resolution. These model 
estimates extended to 
1998-2003 using inter-

annual variation of Boys 
et al. 

 
Participants were 

assigned exposure 
based on their postal 

code of residence. 

Cox proportional hazards models 
 

Models were stratified by age (5-yr 
interval) and sex. Models adjusted 

for individual socioeconomic 
covariates and behavioral (BMI, 

smoking and alcohol consumption, 
fruit and vegetable consumption) 
covariates, ecological variables 

including neighborhood 
socioeconomic status (both social 

and material deprivation). 
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Pope et al., 
2015a 

LT All-cause, IHD 
mortality (30+) 

U.S. Nationwide  Cohort study (ACS 
Cancer Prevention 

Study II) 

Exposure to PM2.5 was 
estimated by linking 

geocoded home 
addresses 

of the study participants 
to ambient PM2.5 

concentrations derived 
using 

a national-level hybrid 
land use regression 
(LUR) and Bayesian 
Maximum Entropy 
(BME) interpolation 

model (LUR-BME) that 
incorporated data from 
ground-based monitors 

Cox proportional hazards models 
 

The individual-level covariates 
incorporated in the models included 

13 
variables that characterized current 

and former smoking habits 
(including 

smoking status of never, former, or 
current smoker, linear and 

squared terms for years smoked 
and cigarettes smoked per day, 

indicator 
for starting smoking at aged <18 
years, and pipe/cigar smoker); 

1 continuous variable that assessed 
exposure to second-hand cigarette 

smoke (hours/d exposed); 7 
variables that reflected workplace 

PM2.5 

exposure in each subject’s main 
lifetime occupation; a variable that 
indicated self-reported exposure to 
dust and fumes in the workplace; 
variables that represented marital 

status (separated/divorced/widowed 
or single versus married); variables 

that characterized the level 
of education (high school, more than 

high school versus less than 
high school); 2 body mass index 

variables (linear and squared terms 
for body mass index); variables that 

characterized the consumption 
of alcohol (beer, missing beer, wine, 

missing wine, liquor, and missing 
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liquor); and variables that indicated 
quartile ranges of dietary fat 

index and quartile ranges of a 
dietary vegetable/fruit/fiber index. 

Ecological covariates included 
median household income; 

percentage 
of people with <125% of poverty-

level income; percentage of 
unemployed individual aged ≥16 
years; percentage of adults with 

<12th grade education; and 
percentage of the population who 

were 
black or Hispanic. These ecological 

covariates were included in the 
models using both zip code level 
data and zip code deviations from 

the county means. 
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Shi et al., 2016 ST and LT Total mortality 
(65+) 

New England Area 
with 6 U.S. States 

Open Cohort study 
(MEDICARE 

enrollees) 

Daily PM2.5 was 
predicted at 1-km2 

spatial resolution from 
novel 3-stage statistical 
models. Similar 3-stage 
approach was used to 

estimate daily 
temperature. 

Participants were 
assigned 365-day 

moving average (for 
long-term exposure) 

and average lag0-1 (for 
short-term exposure) 

based on the ZIP codes 
of residence. 

Chronic effects of air pollution 
assessed using Cox proportional 

hazard models. Acute effects of air 
pollution assessed using Poisson 

log-linear models. 
Both acute and chronic effects were 

assessed using Poisson survival 
analysis. Analysis performed in full-

cohort as well as low exposure 
cohorts. 

 
Poisson survival models were 

adjusted for smooth function of time, 
temporal covariates such as 

temperatures and day of the week, 
spatial covariates such as zip code-

level socio-economic variables. 

Stieb et al., 
2009 

ST Cardiac and 
Respiratory ED 

visits 

Seven Canadian 
Cities 

Time series study 
(Hospital cases) 

PM Data from National 
Air Pollution 

Surveillance (NAPS) 
system. City averages 
of the exposure were 

calculated by averaging 
stations within the city.  

Calculated average 
concentration for lag0-

2. 

Generalized Linear Models with 
natural spline functions of time to 
adjust for seasonal cycles in air 

pollution and health 
 

Confounders included: Mean daily 
temperature and relative humidity at 
lag 0,1, and 2 days, day of the week 

and holidays. 
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Szyszkowicz, 
2009 

ST Angina ED Seven Canadian 
Cities 

Time series study 
(Hospital cases) 

PM Data from National 
Air Pollution 

Surveillance (NAPS) 
system. City averages 
of the exposure were 

calculated by averaging 
stations within the city.  

Calculated average 
concentration for lag0-

2. 

Generalized Linear Mixed models 
 

Models adjusted for meteorological 
variables such as relative humidity, 

temperature and atmospheric 
pressure (a daily 24-hr average 

measurements were calculated). 
Temperature and relative humidity in 
models were represented by natural 

splines. Stratified analysis by 
season as well as combined for the 

whole period. 
 

Thurston et al., 
2016a 

LT All-cause, CVD 
and respiratory 

mortality 

6 U.S. States and 2 
MSAs 

Cohort study 
(NIH_AARP cohort) 

PM Data from US EPA 
AQS. Census-tract 

estimates generated 
using hybrid LUR and 
BME models that were 
combined to generate 
monthly estimates of 

PM2.5. 
 

Participants exposure 
was estimated at 
census-tract of 

residence and included 
annual mean 

concentration in the 
year of mortality, and 1-

year lag average. 
 
 

Cox proportional hazard models 
 

Stratified analysis by age, sex, 
regions (6 states and 2 MSAs). 
Confounders adjusted included: 

race, education, marital status, BMI, 
alcohol consumption, smoking 

history, contextual variables such as 
median household income and % 

pop with less than high school 
education. Several interactions 

between PM2.5 and socio-
demographics were also tested.  
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Turner et al., 
2016 

LT Lung cancer 
mortality (30+) 

U.S. Nationwide Cohort study (ACS 
Cancer Prevention 

Study II) 

Estimated PM2.5 
concentrations were 

obtained using a 
national-level hybrid 
land use regression 
(LUR) and Bayesian 
maximum entropy 

(BME) interpolation 
model. Monthly PM2.5 

monitoring data were 
collected from 1,464 

sites from 1999 through 
2008, with 10% 

reserved for cross-
validation. The base 

LUR model that 
predicted PM2.5 
concentrations 

included traffic within 1 
km and green space 

within 100 m3. Residual 
spatiotemporal variation 
in PM2.5 concentrations 
was interpolated with 

a BME interpolation 
model. The two 

estimates were then 
combined. The cross 

validation 
R2 was approximately 

0.79. Mean PM2.5 
(1999–2004) 

concentrations 
were used here. 

Cox proportional hazards model 
 

Models were adjusted for education; 
marital status; BMI and BMI 

squared; cigarette smoking status; 
cigarettes per day and 

cigarettes per day squared; years 
smoked and years smoked squared; 
started smoking at younger than 18 

years of age; passive smoking 
(hours); vegetable, fruit, fiber, and 
fat intake; beer, wine, and liquor 

consumption; occupational 
exposures; an occupational 

dirtiness index; and six 
sociodemographic 

ecological covariates at both the 
postal code and postal code minus 
county-level mean derived from the 

1990 U.S. Census (median 
household income and percentage 

of African American residents, 
Hispanic residents, adults with 

postsecondary education, 
unemployment, and poverty). 

 
Potential confounding examined by 

elevation, MSA size, annual average 
daily maximum air temperature, 

mean county-level residential radon 
concentrations, and 1980 

percentage of air conditioning.   

Urman et al., 
2014 

LT Lung-function 
decline 

8 Southern CA 
communities/counties 

Cohort study (CHS) Central monitors in 
each community 

Linear Regression model 
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provided data on air 
pollutants. Each child 

was assigned exposure 
based on the child’s 
resident community. 

Models were adjusted for 
demographic, socio-economic and 

anthropometric variables (BMI, 
height), study community. 

Wang et al., 
2017 

LT Total mortality 
(65+) 

7 U.S. Southeast 
States 

Open Cohort study 
(MEDICARE 

enrollees data) 

Three stage Hybrid 
model to predict daily 

PM2.5 concentration at 
1 km2 resolution. Air 

temperature also 
estimated at similar 
scale using satellite 
remote sensing and 
land use variables. 

 
Participants were 
assigned annual 

averages of PM2.5 by 
averaging estimated for 
all grid cells within the 

zip code tabulation area 
(ZCTA) of residence. 

Cox Proportional hazard models 
 

Models were stratified by age 
groups, sex, race. Adjusted for 
variables: year of enrollment, 

previous admission due to CHF, 
COPD, MI and diabetes, numbers of 
days spent in ICU and CCU, state, 

ZCTA level socio-demographic 
variables such as % pop below 

poverty, urbanicity, lower education, 
median income and median home 

value, and behavioral variables such 
as % smokers and obesity at county 
level. Further model also included 

yearly mean summer temperature at 
ZCTA level. 
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Weichenthal et 
al., 2016c 

ST Asthma and 
COPD ED 

15 cities in Ontario Case-crossover 
Design (cases 
extracted from 

NACRS database) 

Daily average 
concentration of PM2.5 
collected from fixed-
monitoring stations in 

Ontario, part of 
Canada’s National Air 

Pollution Data. 
Participants were 

assigned data based on 
the city of residence. 

Various lags assessed 
including lag0, lag1, 

lag2 and lag0-2. 

Conditional logistic regression 
models 

 
Models adjusted for 3-day mean 

temperature and relative humidity 
using cubic splines. 

Weichenthal et 
al., 2016b 

ST MI ED 16 cities in Ontario Case-crossover 
Design (cases 
extracted from 

NACRS database) 

PM data obtained from 
20 provincial monitoring 

sites located in 16 
cities. Exposure at 

various lags: lag0 lag1, 
lag 2 and mean lag0-2 

were assigned to 
participants based on 
the city of residence. 

Conditional logistic regression 
models 

 
Models adjusted for 3-day mean 

temperature and relative humidity 
using cubic splines. 
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Yap et al., 2013 ST Asthma HA 12 CA counties Time Series study 
(Hospital 

admissions) 

PM2.5 data was 
obtained from California 

Air Resources Board 
that maintains 

information from the 
National Air Monitoring 
Stations. 24-hr average 

mass concentration 
calculated for each 

county by averaging 
monitors within the 

county. 
Participants were 

assigned exposure 
based on their county of 

residence. PM at 
various lags lag0-lag6 

were assessed. 

Generalized Additive Poisson 
Regression analysis were run at 

county-level 
 

Models adjusted for: long-term time 
trends and seasonality, day of the 
week and smoothing splines within 
different lags for temperature. Effect 
modification by single or composite 

area-based SES assessed. 

Zanobetti et al., 
2009 

ST Heart Failure 
and MI HA 65+ 

26 US communities Time Series study 
(MEDICARE 

enrollees data) 

PM2.5 data obtained 
from US EPA AQS. 
Daily PM2.5 data 

available for various 
monitors were averaged 

over the county. 
Generated 2-day 

moving average PM2.5 
conc.. 

Poisson regression analysis 
 

Models stratified by season. 
Controlled for long-term trend with 

natural cubic spline for each season 
and year, day of the week, three-day 
average temperature and dew point 

temperature. 
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Zanobetti and 
Schwartz, 2009 

ST All-cause, CVD 
and respiratory 

mortality 

112 US cities Time Series study 
(NCHS data) 

PM2.5 data obtained 
from US EPA AQS. 
Daily PM2.5 data 

available for various 
monitors were averaged 

over the county. 
Generated 2-day 

moving average (lag 0 
and 1) PM2.5 conc. 

Poisson regression analysis 
 

First city- and season-specific 
Poisson regression was run, and 
then city-specific estimates were 
combined using random effects 
approach in total by season and 

region. 
 

Controlled for long-term trend with 
natural cubic spline for each season 

and year, day of the week, same 
day and previous day temperature. 
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Zanobetti et al., 
2014 

ST All-cause 
mortality 65+ 

121 US 
communities/cities 

Case-Crossover 
Design 

(MEDICARE 
enrollees) 

PM2.5 data obtained 
from US EPA AQS. 
Daily PM2.5 data 

available for various 
monitors were averaged 
over the communities. 

Participants were 
assigned 2-day moving 
average (lag 0 and 1) 

based on community of 
residence. 

Conditional logistic regression 
models at community level. In a 
second stage of analysis, the 

community specific results were 
combined using the multivariate 

meta-analysis techniques 
 

Conditional logistic regression 
controlled for confounders such as 

average temp for the same and 
previous day. Temperature was 

modelled using spline to account for 
nonlinear relationship. Effect 

modification tested for cause of prior 
admission due to neurological 

disorders or diabetes, primary or 
secondary hospitalization for other 

disease conditions. Stratified 
analysis by sex, age or race. 
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Health 
Endpoint 

Geographic Area Study Design Exposure Metric 
Statistical Analysis Including 

Confounding Variables 
Addressed 

Zeger et al., 
2008 

LT All-cause 
mortality 65+ 

668 U.S Urban 
counties 

Retrospective 
Cohort Study of 

MEDICARE 
enrollees (MCAPS) 

PM2.5 data available 
from US EPA monitors. 

Spatially smoothed 
levels of 6-year average 

PM2.5
. 

Participants living within 
6 miles of the zip code 

centroid to EPA 
monitors were assigned 
exposure based on the 
ZIP code of residence. 

Log-linear Regression model ran for 
specific US regions separately 

 
Models adjusted for individual socio-

demographic variables and ZIP 
code level SES variables 

(education, income, poverty etc.). 
Also included standardized mortality 

ratio for COPD as a surrogate 
indicator of long-term smoking 

pattern of its residents. 
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 This appendix provides supplemental information related to the risk assessment described 

in section 3.3 of final particulate matter (PM) policy assessment (PA), including: 

• Additional technical detail on the risk assessment approach, including sources and 

derivation of key inputs to the risk modeling process (section C.1). 

• Supplemental risk results (section C.2) intended to provide additional context for the 

summary risk estimates presented in the PA section 3.3.2, including: 

• The modeled risk estimates that underly summary tables presented in PA section 

3.3.2 aggregated to the CBSA-level (i.e., the urban study area) (section C.2.1). 

• Additional graphics including line plots, maps and scatter plots illustrating the 

distribution of the grid-level risk estimates (section C.2.2). 

• Characterization of variability and uncertainty related to the risk assessment (section C.3).   

 

C.1 ADDITIONAL TECHNICAL DETAIL ON THE RISK ASSESSMENT 

APPROACH 

As discussed in section 3.3 of the PM PA, our general approach to estimating PM2.5-

associated human health risks in this review utilizes concentration-response (CR) functions 

obtained from epidemiology studies to link ambient PM2.5 exposure to risk in the form of 

incidence (counts) of specific health effects. The derivation and use of this type of CR function 

in modeling PM2.5-attributable risk is well documented both in previous PM NAAQS-related risk 

assessments (section 3.1.2 of U.S. EPA, 2010) and in Section C.1.1 of this appendix. Inputs 

required to model risk using these CR functions are identified below (Figure C-1) and include (a) 

the concentration-response (CR) functions themselves, which are obtained from epidemiologic 

studies (section C.1.1), (b) baseline health incidence data and information on population 

demographics (section C.1.2), and (c) modeled ambient PM2.5 concentrations corresponding to 

air quality scenarios of interest (section C.1.5).  
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 Key inputs to the risk assessment  

 

C.1.1 Selection of Key Health Endpoints and Specification of Concentration-Response 

Functions from Epidemiologic Studies  

In selecting specific CR functions for the risk assessment, we focus on health outcomes 

for which the PM ISA determines the evidence supports either a “causal” or a “likely to be 

causal” relationship with short- or long-term PM2.5 exposures (U.S. EPA, 2019). As discussed in 

Chapter 3 of this final PA (Table 3-1), these outcomes include the following:  

• mortality (resulting from long- and short-term exposure),  

• cardiovascular effects (resulting from long- and short-term exposure),  

• respiratory effects (resulting from long- and short-term exposure), 

• cancer (resulting from long-term exposure), and  

• nervous system effects (resulting from long-term exposure).  

We have focused the analysis on short- and long-term PM exposure-related mortality, 

reflecting its clear public health importance, the large number of epidemiologic studies available 

for consideration, and the broad availability of baseline incidence data. The specific set of health 

effect endpoints included in the risk assessment are: 

• Long-term PM exposure-related mortality: all-cause, ischemic heart disease (IHD) 

related, lung-cancer related  
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• Short-term PM exposure-related mortality: all-cause/non-accidental  

 To identify specific epidemiologic studies for potential inclusion in the risk assessment, 

we focus on U.S. multicity studies assessed in the ISA. These studies are identified in section 

3.2.3.2.1 of this PA (Figures 3-3 to 3-6). Of these, we used the following criteria to identify the 

specific set of studies for inclusion in the risk assessment: 

• National-scale coverage: We focus on epidemiology studies reporting national-level 

effect estimates. Epidemiology studies that focus on individual cities or regions were 

excluded. Focusing on national-level epidemiological studies has the benefit of 

characterizing PM2.5-associted risks broadly across the U.S. and in relatively large 

populations (compared with single-city or regional studies), which tends to improve 

precision in the effect estimated generated.  

• Evaluation of relatively lower ambient PM concentrations: In selecting epidemiology 

studies, to the extent possible, we favored those studies which characterized the ambient 

PM2.5-mortality relationship at levels at or near the current NAAQS, given that the risk 

assessment would be focusing on evaluating risk associated with the current NAAQS.  

• Populations with available baseline incidence data: For some populations (e.g., diesel 

truck drivers), it can be challenging to model risk at the national-level given uncertainties 

associated with specifying key inputs for risk modeling (i.e., baseline incidence rates for 

mortality endpoints and detailed national-level demographics). For that reason, we 

favored those epidemiology studies providing effect estimates for populations readily 

generalizable to the broader U.S. population (e.g., specific age groups not differentiated 

by additional socio-economic, or employment attributes).  

• Estimates of long-term PM2.5 exposures based on hybrid modeling approaches: For long-

term PM2.5 exposures, we focus on epidemiologic studies that estimate exposures with 

hybrid modeling approaches. The primary rationale for this decision is the agreement 

between the design of these epidemiology studies (i.e., their use of hybrid-based 

modeling approaches in characterizing ambient PM) and the hybrid air quality surfaces 

we are using in this risk assessment. This general agreement between the air modeling 

surfaces used in long-term mortality epidemiology studies and our air quality modeling 

reduces uncertainty in the risk assessment.  

• Estimates of short-term PM2.5 exposures based on composite monitor data: Short-term 

mortality epidemiology studies utilizing hybrid modeling approaches, which are fewer in 

number compared with long-term mortality studies, tend to be regional in scope and 

consequently, did not meet the criterion of providing national-scale effect estimates. For 

that reason, in modeling short-term mortality, epidemiology studies utilizing composite-

monitor based exposure surrogates were used as the basis for deriving CR functions. We 

recognize the uncertainty introduced into the modeling of short-term mortality due to the 

use of effect estimated obtained from studies utilizing composite monitors. However, we 
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felt these use of national-scale epidemiology studies was a more important criterion for 

selection.1     

• Evaluation of potential confounders and effect modifiers:  Preference was given, to the 

extent possible, to those studies which more fully address potential confounders and 

effect modifiers and to those studies which utilize individual- rather than ecological 

measures in representing those confounders/effect modifiers. Recognizing that both 

single- and multi-pollutant models have advantages and disadvantages in characterizing 

the ambient PM-mortality relationship, to the extent possible, we include epidemiology 

studies (and associated effect estimates) based on both single- and multi-pollutant 

models.  

• Exploration of multiple approaches for estimating exposures: For studies that estimate 

PM2.5 exposures using hybrid modeling approaches, preference was given to studies that 

also explore additional methods for estimating exposures (i.e., multiple hybrid methods 

or hybrid methods plus monitor-based methods) and compare health effect associations 

across approaches.  

Application of the criteria listed above resulted in the selection of the epidemiology 

studies presented in Table C-1 for inclusion in the risk assessment as sources of effect estimates. 

Table C-1 includes summary information on study design, details on the selection of effect 

estimates, the derivation of beta values, and specification of CR functional form based on those 

effect estimates for use in the risk assessment. The procedure used to derive CR functions 

(including specification of the beta values and mathematical forms for those functions) is 

described below.  

The remainder of this section describes the method used in specifying the concentration-

response (CR) functions used in the PM NAAQS REA (information presented in this section is 

drawn from BenMAP Manual, Appendix C with additional detail specific to the epidemiology 

studies selected for use in this risk assessment).2 These CR functions translate changes in 

ambient PM2.5 into changes in baseline incidence rates for specific disease endpoints utilizing 

beta (β) values obtained from epidemiology studies studying the association between ambient 

PM2.5 exposure and specific health endpoints.  These beta values (and associated standard errors) 

are based on effect estimates obtained from the underlying epidemiology studies (equation 

below).  In addition, the mathematical forms for the health impact functions specified for use in 

                                                           
1After identifying studies for inclusion in the draft risk assessment and initiating analyses, we became aware that Di 

et al., 2017a uses  a hybrid model-based approach to estimate PM2.5 exposures. The primary effect estimate reported 

for this study (which reflects copollutant modeling including ozone) is larger than effect estimates selected for this 

risk assessment. Specifically, the copollutant model for Di et al., 2017a reports an increased daily mortality risk of 

1.05% (95th CI: 0.95-1.15%) with this effect estimate being two to three times larger than similar effect estimates 

used in this risk assessment and has a substantially tighter confidence interval (Table C-1). Given the approximate 

linearity of the CR functions used, we anticipate that this difference in effect estimate would translate into a similar 

magnitude of difference in modeled mortality incidence (i.e., 2-3 times higher had the Di et al., 2017a effect 

estimate been used in the risk assessment). 
2 https://www.epa.gov/benmap/benmap-ce-manual-and-appendices  

https://www.epa.gov/benmap/benmap-ce-manual-and-appendices
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this risk assessment reflect the models used in the epidemiology studies providing those effect 

estimates. Consequently, derivation of the beta values based on effect estimates from underlying 

epidemiology studies (and specification of the form of the health impact functions) represents a 

key step in the design of the REA. 

The majority of the epidemiology studies providing effect estimates for this PM REA 

utilized either Poisson or Cox proportional hazard models which result in exponential (or log-

linear) forms for the CR functions, where the natural logarithm of mortality incidence is a linear 

function of PM2.5.
3 If we let x0 denote the baseline (starting) PM2.5 level, and x1 denote the 

control (ending ) PM2.5 level,  y0 denote the baseline incidences rate of the health effect, and Pop 

the underlying population count for the applicable demographic group in the spatial unit of 

analysis4 we can derive the following CR function specifying the relationship between the 

change in x, Δx= (x0- x1) and the corresponding change in y, Δy (mortality incidence): 

 

∆𝑦 = 𝑦0[1 − 𝑒−𝛽∆𝑥] * Pop 
 

Given that the epidemiology studies providing effect estimates for long-term exposure-

related mortality and short-term exposure-related mortality in the context of the current PM REA 

(Table C-1) use different categories of models (Cox proportional hazard and Poisson/Logistic, 

respectively) we describe the process of deriving the betas and specifying CR functional forms 

separately for each of these endpoint categories. As noted earlier, the logit model utilized in 

Zanobetti et al., 2014, is discussed at the end of the section covering short-term PM2.5-related 

mortality. 

 

Derivation of betas for long-term PM2.5 exposure-related mortality  

Cox proportional hazard models used to evaluate mortality associated with long-term 

PM2.5 exposure are designed to model effects on population survival. This class of epidemiology 

model is based on a hazard function, defined as the probability that an individual die at time t, 

conditional on that individual having survived up to time t. As such, the hazard function 

represents a time-specific snapshot of the rate of mortality (events per unit time) within a study 

population.  While the risk can vary over time, in the case of the Cox proportional hazard model, 

it is assumed that the hazard ratio is constant. The proportional hazard model takes the form: 

                                                           
3 One study. Zanobetti et al., 2014, supporting the modeling of short-term PM2.5 exposure-related mortality provided 

a logistic-based model form, which is discussed at the end of this section. 
4 Spatial unit of analysis refers to the geographic scale at which the CR function is applied in generating a risk 

(incidence) estimate (e.g., zip code, county, 12km grid cell). Typically, the spatial unit of analysis used in a REA is 

based on the spatial scale reflected in the epidemiology study(s) supplying the effect estimates. For this REA, the 

spatial unit of analysis is the 12km grid cell. 
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ℎ(𝑋, 𝑡) = ℎ0(𝑡)𝑒
𝑋•𝛽 , 

Where X is a vector of explanatory variables, β is a vector of associated coefficients and 

ho(t) is the baseline hazard (the risk when all covariates (X) are set to zero).  

Epidemiology studies utilizing the Cox proportional hazard model in characterizing 

ambient PM2.5-health effects typically report hazard ratios (HRs) as the effect estimate.  HRs 

represent the ratio of hazard functions for the baseline and control scenarios reflecting a specific 

difference in ambient PM2.5 exposure (typically a 10 ug/m3 increment). The HR simplifies as 

shown (with the baseline hazard ratio dropping out), allowing us to readily derive the Beta value 

from this effect estimate:  

 

𝐻𝑅 =
ℎ(𝑋0,𝑡)

ℎ(𝑋𝑐,𝑡)
=

ℎ0(𝑡)𝑒
𝑋0•𝛽

ℎ0(𝑡)𝑒𝑋𝑐•𝛽
= 𝑒𝛥𝑃𝑀•𝛽  

It is then possible to calculate the beta as follows: 

 

𝛽 =
𝐼𝑛(𝐻𝑅)

𝛥𝑃𝑀
  

As noted in Sutradhar and Austin, 2018, the HR associated with a Cox-proportional 

hazard model may approximate the RR when the effect estimate (and consequently the beta) is 

relatively small. This is the case with the effect on mortality modeled for long-term exposure to 

ambient PM2.5 (i.e., the size of the effect estimate supports an assumed equivalency between HR 

and RR). The near equivalency between the HR and RR, allows us to utilize the beta derived 

above in a CR-function based on a log-linear functional form of the type presented earlier, to 

model changes in mortality related to changes in ambient PM.     

 

Derivation of betas for short-term PM2.5 exposure-related mortality 

The epidemiology studies selected for use in modeling short-term PM2.5 exposure-related 

mortality utilize both the Poisson (log-linear) model form (Baxter et al., 2017) and the logit 

model form (Zanobetti et al., 2014).5 In both cases, the epidemiology studies provide effects in 

terms of percent increase in mortality.  

The log-linear (Poisson) model is used to evaluate effects associated with continuous 

(count) events. With the log-linear (Poisson) model, the relative risk is simply the ratio of the 

two risks:  

                                                           
5 Note that the Ito et al., 2013 study also utilizes a Poisson model. However, that study provides beta values 

(including standard errors) and for that reason the results of this study are directly applicable in modeling changes in 

mortality without any of the derivations presented here for the other studies.  
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 𝑅𝑅 =
𝑦0

𝑦𝑐
= 𝑒𝛽•𝛥𝑃𝑀  

The derivation of the beta with a Poisson model specified RR is as follows. Taking the 

natural log of both sides, the beta coefficient in the CR function underlying the relative risk can 

be derived as:  

𝛽 =
𝐼𝑛(𝑅𝑅)

𝛥𝑃𝑀
  

The beta derived in this fashion can then be used with a log-linear functional form (as 

presented earlier) to model changes in mortality related to changes in ambient PM.   

The logistic model form is used to model dichotomous events. With the logistic model 

form, when we are provided with a RR value, as is the case here, we can make a similar 

assumption to that used above with the Cox proportional hazard function (i.e., that the OR and 

RR approach equivalency under conditions of relatively small effect levels). That observation in 

turn allows us to assume that  

 

𝑅𝑅 =
𝑦0

𝑦𝑐
= (1 − 𝑦0) × 𝑒−𝛥𝑃𝑀•𝛽 + 𝑦0  

Then, assuming (based on the relatively small size of the baseline incidence) that: 

  

 𝑒−𝛥𝑃𝑀•𝛽 ≅ (1 − 𝑦0) × 𝑒−𝛥𝑃𝑀•𝛽 + 𝑦0  

⇒ 𝑅𝑅 ≅ 𝑒−𝛥𝑃𝑀•𝛽  

It is then possible to calculate the underlying beta coefficient as follows:  

 

𝐼𝑛(𝑅𝑅)

−𝛥𝑃𝑀
≅ 𝛽  

Since the derivation of the beta is based on the assumption of a log linear functional 

form, we can apply the beta in a log-liner CR function of the form described earlier:  

 

∆𝑦 = 𝑦0[1 − 𝑒−𝛽∆𝑥] * Pop 
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Table C-1. Details regarding selection of epidemiology studies and specification of concentration-response functions for the 

risk assessment. 

Reference and 
study title Study description 

Exposure Estimation 
Approach  

CR function 
model 

Location of 
study effect 

estimate(s) in 
journal article 

Additional 
notes 

regarding 
effect estimate 

selection 

Epi-
demio-
logic 

statistic 
Mortality 
endpoint 

Selected 
effect 

estimate 
Selected 

beta 

Selected 
beta 

standard 
error (SE) 

Long-term exposure-related mortality studies  

Di et al., 2017b 
 
Air Pollution and 
Mortality in the 
Medicare 
Population  
 
  

Exploring relationship 
between air pollution (ozone, 
PM2.5) and mortality 
Key details: 
- Medicare population (65+) 
- ecological control for 
confounders  
- all-cause mortality only 
- provides CR function 
slopes for areas above and 
below the current PM 
NAAQS level (but model for 
areas below current 
standard only done for low 
ozone cells) 

Exposures estimated at 
zip code of residence 
based on a neural network 
model that incorporates 
satellite data, chemical 
transport modeling, land-
use terms, meteorology 
data, monitoring data, and 
other data  
 

Cox proportional-
hazards model 
with a 
generalized 
estimating 
equation to 
account for the 
correlation 
between ZIP 
codes 

Table 2 
Risk of death 
associated with 
an increase of 
10 µg/m3 PM2.5 
or an increase of 
10 ppb in ozone 
concentration. 
Uses single 
pollutant model 
for full analysis. 

Using single 
pollutant, full 
PM range 
model (model 
for <12 µg/m3 
applicable to 
only low-ozone 
days)6 

Hazard 
ratio (95 
percent CI) 

All-
cause 

1.084 
(1.081-
1.086) 

8.07E-
03 

1.18E-04 

Jerrett et al., 2016 
 
Comparing the 
Health Effects of 
Ambient 
Particulate Matter 
Estimated Using 
Ground-Based 
Versus Remote 
Sensing Exposure 
Estimates 

Compares mortality effect 
estimates for PM2.5 modeled 
from remote sensing to 
those for PM2.5 modeled 
using ground-level 
information. 
- ACS cohort (Ages 30+) 
- IHD and diseases of 
circulatory system 
- individual-level confounder 
control  

Multiple exposure 
estimation approaches 
evaluated – risk 
assessment uses results 
based on an ensemble 
approach that incorporates 
chemical transport 
modeling, land use data, 
satellite data, and data 
from ground-based 
monitors  

Cox proportional 
hazard model 

Table 4 IHD, 
fully adjusted 
(1990 ecological 
confounders) 
ensemble 
estimate 

Used the 
ensemble 
estimate (pools 
effect estimates 
generated 
using different 
exposure 
estimates) 

Hazard 
ratio (95 
percent CI) 

IHD 1.15 (1.11-
1.19) 

1.40E-
02 

1.78E-03 

                                                           
6 We note that Di et al., 2017b does include a copollutant model-based effect estimate (HR 1.073, 95th%CI 1.071-1.075). Had this effect estimate been used in 

risk modeling (which would translate into a beta value of 7.05E-3), we would anticipate the risk estimates for all-cause mortality to be slightly less (`13% lower 

based on comparison of calculated betas) than those estimated based on the single-pollutant model used in this risk assessment.  
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Reference and 
study title Study description 

Exposure Estimation 
Approach  

CR function 
model 

Location of 
study effect 

estimate(s) in 
journal article 

Additional 
notes 

regarding 
effect estimate 

selection 

Epi-
demio-
logic 

statistic 
Mortality 
endpoint 

Selected 
effect 

estimate 
Selected 

beta 

Selected 
beta 

standard 
error (SE) 

Pope et al., 2015 
 
Relationships 
Between Fine 
Particulate Air 
Pollution, 
Cardiometabolic 
Disorders, and 
Cardiovascular 
Mortality 

Evaluates the relationship 
between long-term exposure 
to ambient PM2.5 and CVD 
and cardiometabolic 
disease, including effect 
modification of the 
relationships by pre-existing 
cardiometabolic risk factors  
- ACS (30+) (oversampled 
affluent individuals) 
- individual-level covariates  

Exposures estimated at 
home addresses based on 
a land use regression and 
Bayesian maximum 
entropy (LUR-BME) 
interpolation model that 
incorporated data from 
ground-based monitors   

Cox proportional 
hazard model 

Table 1. Cox 
model with 
individual-level 
plus ecological 
covariates; 
exposure based 
on LUR-BME 

NA 

Hazard 
ratio (95 
percent CI) 

All-
cause 

1.07 (1.06-
1.09) 

6.77E-
03 

7.12E-04 

 

NA 

Hazard 
ratio (95 
percent CI) 

IHD 1.14 (1.1-
1.18) 

1.31E-
02 

1.79E-03 

Thurston et al., 
2016 
 
Ambient 
Particulate Matter 
Air Pollution 
Exposure and 
Mortality in the 
NIH-AARP Diet 
and Health Cohort 

Reevaluates the relationship 
between long-term exposure 
to ambient PM2.5 and 
mortality given recent 
decline in U.S. ambient PM 
concentrations. 
Differentiation of risk for 
fossil fuel PM2.5 versus total 
PM2.5 
- NIH-AARP Cohort (only 
select states - CA, FL, LA, 
NJ, NC, PA, GA MI) (55-
85yrs) 
- CVD, all-cause 
- residential locations 
matched to census tract-
level PM2.5 estimates 

Exposures estimated at 
census tract centroids 
based on land use data 
and ground-based 
monitors 

Cox proportional 
hazard model 

Table 2. NIH-
AARP cohort 
time 
independent Cox 
model PM2.5 
mortality hazard 
ratios (and 95th 
percentile CI) 
per 10 μg/m3, by 
cause and 
cohort subgroup. 
Cohort: ALL 

NA 

Hazard 
ratio (95 
percent CI) 

All-
cause 

1.03 (1-
1.05) 

2.96E-
03 

1.24E-03 
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Reference and 
study title Study description 

Exposure Estimation 
Approach  

CR function 
model 

Location of 
study effect 

estimate(s) in 
journal article 

Additional 
notes 

regarding 
effect estimate 

selection 

Epi-
demio-
logic 

statistic 
Mortality 
endpoint 

Selected 
effect 

estimate 
Selected 

beta 

Selected 
beta 

standard 
error (SE) 

Turner et al., 2016 
 
Long-Term Ozone 
Exposure and 
Mortality in a Large 
Prospective Study 

Evaluates the relationship 
between long-term exposure 
to ambient PM2.5 and all-
cause and cause-specific 
mortality. Also, estimated 
the association between 
PM2.5, regional PM2.5, and 
near-source PM2.5 and 
mortality in single-pollutant, 
copollutant and 
multipollutant models.  
- ACS (30+) 
- Includes lung cancer 
(otherwise similar results to 
Pope et al., 2015) 
- county-level assessment 

Exposures estimated at 
residential locations based 
on land use data and 
ground-based monitors 

Cox proportional 
hazard model 

Table E4. 
Adjusted HRs 
(95th percentile 
CI) for all-cause 
and cause-
specific mortality 
in relation to 
each 10 unit 
increase in PM2.5 
LUR-BME 
concentrations, 
follow-up 1982-
2004, CPS-II 
cohort, United 
States (n = 
669,046). 

Note that the 
non-cancer 
mortality 
endpoints 
provided in 
table E4 appear 
to mirror those 
provided in 
Table 1 of Pope 
et al., 2015 -so 
will use long-
cancer effect 
estimate from 
this study only. 

Hazard 
ratio (95 
percent CI) 

Lung 
cancer 

1.09 (1.03-
1.16) 

8.62E-
03 

3.03E-03 

Short-term exposure-related mortality studies  

Baxter et al., 2017 
 
Influence of 
exposure 
differences in city-
to-city 
heterogeneity in 
PM2.5-mortality 
associations in 
U.S. cities 

Uses cluster-based 
approach to evaluate the 
impact of residential 
infiltration factors on inter-
city heterogeneity in short-
term PM-mortality 
associations.  
- Mortality data from NCHS - 
77 U.S. CBSAs (all ages) 
- non-accidental mortality 
- CBSA-level assessment 

Exposure estimates based 
on data from ground-
based monitors 

Poisson (log-
linear) at city-
level then 
aggregated 

Obtained from 
results section in 
the text. After 
pooling the city-
specific effect 
estimates into an 
overall effect 
estimate, short-
term PM2.5 
exposure was 
found to 
increase 24-hr 
non-accidental 
mortality by 
0.33% (95% CI: 
0.13, 0.53). 
Based on lag 2 
(day 0-1) 

NA 

Percent 
increase in 
24-hr 
mortality 
(95 percent 
CI) 

24-hr 
non-
accident
al 
mortality 

0.33 (0.13-
0.53) 

3.29E-
04 

1.02E-04 
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Reference and 
study title Study description 

Exposure Estimation 
Approach  

CR function 
model 

Location of 
study effect 

estimate(s) in 
journal article 

Additional 
notes 

regarding 
effect estimate 

selection 

Epi-
demio-
logic 

statistic 
Mortality 
endpoint 

Selected 
effect 

estimate 
Selected 

beta 

Selected 
beta 

standard 
error (SE) 

Ito et al., 2013 
 
NPACT study 3. 
Time-series 
analysis of 
mortality, 
hospitalizations, 
and ambient PM2.5 
and its 
components 

Use factor analysis to 
characterize pollution 
sources, assess the 
association between PM2.5 
and PM2.5 components with 
morbidity and mortality 
outcomes. Also evaluates 
pollution levels, land-use, 
and other variables as 
modifiers that may explain 
inter-city variation in PM-
mortality effect estimates. 
- Mortality data from NCHS - 
150 and 64 U.S. cities (two 
analyses) (all ages) 
- MSA-level assessment 

Exposure estimates based 
on data from ground-
based monitors 

Poisson GLM Appendix G, 
Table G.6 for 
Figure 4 - use 
all-year lag 1 
Beta: 
Regression 
coefficients 
(beta) and their 
SE for air 
pollutants at lag 
0 through 3 days 
used to compute 
percent excess 
risks in figures 
shown in the 
main text and in 
Appendices B 
and G 
(corresponding 
figures are 
noted).  

Utilized lag-1 
(all year) beta 
because that 
had the 
strongest effect 
for CVD 
mortality and 
wanted our all-
cause to reflect 
that stronger 
lag-association 
for the CVD 
effect (even 
though focusing 
on all-cause) 

Betas with 
SE (no 
conversion 
required) 

24-hr all-
cause 
mortality 

Study 
provided 
beta and 
SE 

1.45E-
04 

7.47E-05 

Zanobetti et al., 
2014 
 
A national case-
crossover analysis 
of the short-term 
effect of PM2.5 on 
hospitalizations 
and mortality in 
subjects with 
diabetes and 
neurological 
disorders 

Estimates the effect of short-
term exposure to PM2.5 on 
all-cause mortality. 
Additionally, assesses the 
potential for pre-existing 
diseases to modify the 
association between PM2.5 
and mortality (neurological 
disorders and diabetes)  
- Medicare cohort - 121 U.S. 
communities (65+) 
- Community-level 
assessment (community 
defined as the county or 
contiguous counties 
encompassing a city's 
population) 

Exposure estimates based 
on data from ground-
based monitors 

Logistic 
regression 

Table 2. Percent 
increase for 10 
μg/m3 increase 
in the two days 
average PM2.5: 
Combined 
across the 121 
communities 

NA 

Percent 
increase 
(95 percent 
CI) 

All 
deaths 

0.64 (0.42-
0.85) 

6.38E-
04 

1.09E-04 
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C.1.2 Specification of Demographic and Baseline Incidence Data Inputs 

This risk analysis requires both demographic and baseline-incidence data for the mortality 

endpoint categories evaluated. For our analyses, these data are projected to the year 2015 since 

the hybrid surfaces included in the analyses are based on a 2015 model year7. The BenMAP-CE 

model8 is used in this risk assessment and the relevant demographic and baseline incidence data 

for the contiguous U.S., from the sources described below, is readily available within the current 

version of BenMAP-CE: 

• Demographic data: BenMAP-CE includes 2010 U.S. Census block-level age, race, 

ethnicity and gender-differentiated data which the program can aggregate to various grid-

level definitions selected by the user, including the 12 km grid coverage used for risk 

modeling in this analysis. In addition, BenMAP-CE has the ability to project future 

demographics using county-level projections provided by Woods & Poole (2015). See 

BenMAP-CE manual Appendix J for additional detail.9 

• Baseline incidence data for mortality endpoints: County-level mortality and population 

data from 2012-2014 for seven causes of death in the contiguous U.S. was obtained from 

the Centers for Disease Control (CDC) WONDER database. To estimate values for 2015, 

we applied annual adjustment factors, based on a series of Census Bureau projected 

national mortality rates for all-cause mortality. See BenMAP-CE manual Appendix D for 

additional detail.9  

C.1.3 Study Area Selection 

In selecting U.S. study areas for inclusion in the risk assessment, we focus on the 

following characteristics:   

• Available ambient monitors: We focus on areas with relatively dense ambient monitoring 

networks, where we have greater confidence in adjustments to modeled air quality 

concentrations in order to simulate “just meeting” the current and alternative primary 

PM2.5 standards (air quality adjustments are described below in section C.1.4). 

• Geographical Diversity: We focus on areas that represent a variety of regions across the 

U.S. and that include a substantial portion of the U.S. population.  

• PM2.5 air quality concentrations: We balance the value of including a broad array of 

study areas from across the U.S. against the larger uncertainty associated with air quality 

adjustments in certain areas. For example, many areas have recent air quality that meets 

the current primary PM2.5 standards. Inclusion of such areas in the risk assessment 

necessitates an upward adjustment to PM2.5 air quality concentrations in order to simulate 

                                                           
7 The 2015 model year was the most recent CMAQ modeling platform available at the time of the design of the risk 

assessment and represents the central year of the 2014-2016 design value (DV) period. A single modeling year 

was used in the risk assessment, rather than modeling risk for the full three-year design value period, because 

model inputs for the 2016 period were not available at the time of the study (section C.1.4.3). 

8 https://www.epa.gov/benmap  

9 https://www.epa.gov/benmap/benmap-ce-manual-and-appendices  

https://www.epa.gov/benmap
https://www.epa.gov/benmap/benmap-ce-manual-and-appendices
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just meeting the current standards. Given uncertainty in how such increases could 

potentially occur, we select areas requiring either a downward adjustment to air quality or 

a relatively modest upward adjustment (i.e., no more than 2.0 g/m3 for the annual 

standard and 5 g/m3 for the 24-hour standard). In addition, as discussed further in 

section C.1.4.2, we excluded several areas that appeared to be strongly influenced by 

exceptional events. 

Applying these criteria resulted in the inclusion of 47 core-based statistical areas 

(CBSAs) as study areas. These 47 study areas are identified in Figure C-2, with colors indicating 

whether they meet either or both the design value cutoffs. Green indicates areas that only exceed 

a 24-hr design value of 30 µg/m3, blue indicates areas that only exceed an annual design value of 

10 µg/m3, and red indicates areas that exceed both cutoffs. 

 

 

 Map of the areas modeled in the risk assessment, colored by 2014-2016 PM2.5 

design values (DV). 

 

These 47 urban study areas include many highly populated CBSAs (Figure C-3 and 

Figure C-4). The population at or above the age of 30 in these areas includes roughly 58.4 

million people, or approximately one-quarter of the total U.S. population above that age. 

Additional age-specific population information can be found in Table C-2. 
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 Map of the 2018 U.S. population by CBSA, with the selected urban study areas 

outlined. 
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 Population counts for ages 30 and above from each of the 47 CBSAs included 

in the risk assessment. 
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Table C-2. Population of the 47 urban study areas stratified by age. 

 

As noted in section 3.3 of this final PA and illustrated in Figure C-5, the 47 urban study 

areas include 30 study areas where just meeting the simulated standards is controlled by the 

current annual standard (12 µg/m3), 11 study areas where just meeting the simulated standards is 

controlled by the current 24-hr standard (35 µg/m3), and 6 study areas where just meeting the 

simulated standards is controlled by either the annual or 24-hr standard, depending on the air 

quality scenario and adjustment strategy (discussed more fully in section C.1.4).  

 

Population Age Range 
(Years) 

Study Area Groupings (Millions) 

47  30 (Annual-Controlled) 11 (24-hr-Controlled) 

0-99 98.5 82.5 7.2 

30-99 58.4 49.5 3.9 

65-99 13.2 11.1 0.8 

55-85 23.5 19.9 1.5 
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 Map of 47 Urban Study Areas Reflected in Risk Modeling Identifying Subsets 

Reflected in Risk Modeling (population estimates in millions of people).  

 

C.1.4 Generation of Air Quality Inputs to the Risk Assessment 

As described in detail below, air quality modeling was used to develop gridded PM2.5 

concentration fields for the risk assessment. A PM2.5 concentration field for 2015 was developed 

using a Bayesian statistical model that calibrates chemical transport model (CTM) predictions of 

PM2.5 to surface measurements (Chapter 2, section 2.3.3). The 2015 PM2.5 concentration field 

was then adjusted to correspond to just meeting the existing and potential alternative standards 

using response factors developed from CTM modeling with emission changes relative to 2015. 

The modeling approach applies realistic spatial response patterns from CTM modeling to a 

concentration field, similar to those used in a number of recent epidemiologic studies, to 

characterize PM2.5 fields at 12 km resolution for study areas.   
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The adjustments to simulate just meeting the current standards and alternative standards 

are approximations of these air quality scenarios. In reality, changes in PM2.5 in an area will 

depend on what emissions changes occur and the concentration gradients of PM2.5 will vary 

across an area accordingly. For our analyses, two different adjustment approaches were applied 

to provide two outcomes that could represent potential bounding scenarios of PM2.5 

concentrations changes across the study area. The two adjustment approaches used to guide the 

generation of these modeled surfaces were:  

• Primary PM-based modeling approach (Pri-PM): This modeling approach simulates air 

quality scenarios of interest by preferentially adjusting direct (i.e., primary, directly-

emitted) PM emissions. As such, the changes in PM2.5 tend to be more localized near the 

direct emissions sources of PM. In locations for which air quality scenarios cannot be 

simulated by adjusting modeled primary emissions alone, SO2 and NOX precursor 

emissions are additionally adjusted to simulate changes in secondarily formed PM2.5.  

• Secondary PM-based modeling approach (Sec-PM): This modeling approach simulates 

air quality scenarios of interest by preferentially adjusting SO2 and NOX precursor 

emissions to simulate changes in secondarily formed PM2.5. In this case, the reductions in 

PM2.5 tend to be more evenly spread across a study area. In locations for which air quality 

scenarios cannot be simulated by adjusting precursor emissions alone, a proportional 

adjustment of air quality is subsequently applied.  

The air quality surfaces generated using these two approaches are not additive. Rather, they 

should be viewed as reflecting two different broad strategies for adjusting ambient PM2.5 levels.  

In addition, we also employed linear interpolation and extrapolation to simulate air 

quality under two additional alternative annual standard levels, 11.0 and 9.0 µg/m3, respectively 

(section 3.3.1 of the PA, Figure 3-11). Interpolation and extrapolation were only performed for 

grid cells in the subset of 30 urban study areas where the annual standard was controlling in both 

Pri-PM and Sec-PM simulated air quality scenarios of both 12/35 and 10/30 standard 

combinations. The interpolation and extrapolation were completed at the grid-cell level based on 

values simulated using hybrid air quality modeling to just meet the current annual standard of 

12.0 ug/m3 and alternative annual standard of 10.0 ug/m3 (section 3.3.1 of the PA, Figure 3-11). 

A similar linear extrapolation/interpolation was not conducted for additional 24-hr standards due 

to the weaker relationship between the 98th percentile of 24-hr PM2.5 concentrations, which are 

most relevant for simulating air quality that just meets the 24-hour standard, and the 

concentrations comprising the middle portion of the PM2.5 air quality distribution, which are 

most relevant for estimating risks based on information from epidemiologic studies (i.e., 

discussed further in sections 3.1.2 and 3.2.3.2 in the PA).  

The sections below provide more detailed information on the air quality modeling 

approach used to adjust air quality to simulate just meeting the current or alternative primary 
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PM2.5 standards. Tables containing PM2.5 DVs for the air quality projections can be found in 

section C.4. 

 

C.1.4.1  Overview of the Air Quality Modeling Approach 

To inform risk calculations, recent PM2.5 measurements were analyzed to characterize the 

magnitude and spatial distribution of PM2.5 concentrations. These data were then coupled with 

air quality modeling data to project ambient air quality levels corresponding to just meeting the 

existing and alternative PM2.5 NAAQS10 in specific areas. An overview of the approach is 

provided in Figure C-6. The process starts by acquiring PM2.5 monitoring data from EPA’s Air 

Quality System (AQS)11 and simulating PM2.5 concentrations with the Community Multiscale 

Air Quality (CMAQ)12 model for base case and emission-sensitivity scenarios (Figure C-6, Box 

1). The monitored and modeled data are then fused using the Downscaler model and the 

Software for Model Attainment Test-Community Edition (SMAT-CE)13 to develop a baseline 

spatial field of PM2.5 concentrations and relative response factors (RRFs) for projecting PM2.5 

concentrations, respectively (Figure C-6, Box 2). PM2.5 concentrations are projected in two main 

steps using output from Downscaler and SMAT-CE (Figure C-6, Box 3). First, the PM2.5 

concentrations measured at monitoring sites in an area are iteratively projected using the RRFs to 

identify the percent change in anthropogenic emissions required for the highest monitored DV in 

the area to just meet the controlling standard. Second, gridded spatial fields of PM2.5 

concentrations are projected using the area-specific percent emission change14 that corresponds 

to just meeting the standard at the controlling ambient data site. Additional details on the method 

are provided in (Kelly et al., 2019a; application of the method to the PM NAAQS risk 

assessment is described in the remainder of this appendix.  

 
 

                                                           
10 The phrase, “just meeting the PM2.5 NAAQS” is defined as the conditions where the highest design value (DV) for 

the controlling standard in the area equals the existing or alternative NAAQS level under consideration. DVs are 

statistics used in judging attainment of the NAAQS (www.epa.gov/air-trends/air-quality-design-values). 

11 www.epa.gov/aqs  

12 www.epa.gov/cmaq  

13 www.epa.gov/scram/photochemical-modeling-tools  

14 Scenarios based on a statistical projection approach were also developed for certain cases as discussed below.  

http://www.epa.gov/air-trends/air-quality-design-values
http://www.epa.gov/aqs
http://www.epa.gov/cmaq
http://www.epa.gov/scram/photochemical-modeling-tools
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 Overview of the system for projecting PM2.5 concentrations to correspond to 

just meeting NAAQS. See section C.1.4.6 and Kelly et al., 2019a for more details. 

 

C.1.4.2  PM2.5 Monitoring Data and Area Selection 

The 2014-2016 DV period was the most recent period having a complete set of total and 

speciated PM2.5 observations available at the time of the study. PM2.5 concentrations from the 

2014-2016 DV period were used in selecting study areas and as the starting point for air quality 

projections (Figure C-6, Box 1, “AQS”). Total and speciated PM2.5 concentrations for the 2014-

2016 DV period were acquired from AQS. For sites in Los Angeles and Chicago, DVs were 

invalid during the 2014-2016 period. Los Angeles and Chicago have large populations, recent 

valid DVs for sites in Los Angeles are above existing standards, and Chicago is part of a CBSA 

that includes sites with valid 2014-2016 DVs in Indiana. For these reasons, invalid data for sites 

in these areas were replaced with valid data from other recent periods to enable DVs to be 

approximated for inclusion in the assessment. Specifically, for sites in Los Angeles and Orange 

Counties in California, observations from April – October 2014 were replaced with observations 

from the same months in 2013. For sites in Cook, DuPage, Kane, McHenry, and Will Counties in 

Illinois, observations from January to mid-July 2014 were replaced with observations from the 

same months in 2015. 

Of the 56 areas initially identified as above the 10/30 selection threshold15, DVs for seven 

areas16 appeared to meet the threshold due to the influence of wildfires. The influence of 

                                                           
15 “10/30” indicates an annual standard level of 10 µg/ m3 and a 24-hr standard level of 3 µg m-3 

16 Butte-Silver Bow, MT; Helena, MT; Kalispell, MT; Knoxville, TN; Medford, OR; Missoula, MT; and Yakima, 

WA 
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wildfires on DVs for these areas was estimated in part by recalculating 2014-2016 DVs with 

days removed that were clearly associated with summertime wildfires in the northwest. Since 

wildfire influence is often excluded when judging NAAQS attainment, these seven areas were 

excluded from further consideration. Additionally, the Eugene, OR CBSA was excluded. One 

monitor in the Eugene CBSA has a 24-hr 2014-2016 DV slightly above the 10/30 selection 

threshold17, but the monitor is in a small valley in Oakridge with very local high concentrations 

of PM2.5 in winter that are distinct from conditions in the broader CBSA. Finally, the Phoenix-

Mesa-Scottsdale, AZ CBSA was excluded. This CBSA had one monitor slightly above the 10/30 

DV threshold18, but projecting concentrations for the CBSA was judged to be relatively uncertain 

because the annual DV is invalid at the only site that exceeded the threshold and the 24-hr DV is 

just above the threshold. 

The remaining 47 CBSAs were selected for the risk assessment. These areas are shown in 

Figure C-7. The maximum 2014-2016 DVs and associated sites for each CBSA are provided in 

Table C-3, and the counties associated with the CBSAs are listed in Table C-4. DVs were 

calculated to an extra digit of precision for the air quality projections compared with official 

DVs. This approach is consistent with DV calculations in previous air quality projections (e.g., 

USEPA, 201219) and provides a precise target for the iterative projection calculations.  

 

 

 

  

                                                           
17 The 410392013 monitor in Oakridge has a 24-hr 2014-2016 DV of 31 µg m-3 

18 The 040213015 monitor in the Phoenix-Mesa-Scottsdale, AZ CBSA has 24-hr 2014-2016 DV of 31 µg m-3 

19 USEPA (2012) Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality 

Standards for Particulate Matter. Office of Air Quality Planning and Standards, Health and Environmental 

Impacts Division, Research Triangle Park, NC 27711. EPA-452/R-12-005 Available: 

https://www3.epa.gov/ttn/ecas/regdata/RIAs/finalria.pdf  

https://www3.epa.gov/ttn/ecas/regdata/RIAs/finalria.pdf
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 CBSAs selected for the risk assessment. Colors indicate whether the maximum 

2014-2016 DVs in the CBSA are above the annual (10 µg/m3) and/or 24-hr (30 µg/m3) 

selection criteria. 
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Table C-3. Maximum annual and 24-hr PM2.5 DVs for 2014-2016 and associated sites for 

selected CBSAs. 

CBSA Name 
# of 

Sites 
Annual 

Max Site 

Annual 
Max 14-16 

DV 

24-hr Max 
Site 

24-hr Max 
14-16 DV 

Akron, OH 2 391530017 10.99 391530017 23.7 

Altoona, PA 1 420130801 10.11 420130801 23.8 

Atlanta-Sandy Springs-Roswell, GA 6 131210039 10.38 131210039 19.7 

Bakersfield, CA 5 060290016 18.45 060290010 70.0 

Birmingham-Hoover, AL 4 010732059 11.25 010730023 22.8 

Canton-Massillon, OH 2 391510017 10.81 391510017 23.7 

Chicago-Naperville-Elgin, IL-IN-WI a 22 170313103 11.10 170310057 26.8 

Cincinnati, OH-KY-IN 9 390610014 10.70 390170020 24.2 

Cleveland-Elyria, OH 8 390350065 12.17 390350038 25.0 

Detroit-Warren-Dearborn, MI 11 261630033 11.30 261630033 26.8 

El Centro, CA 3 060250005 12.63 060250005 33.5 

Elkhart-Goshen, IN 1 180390008 10.24 180390008 28.6 

Evansville, IN-KY 4 181630023 10.11 181630016 22.0 

Fresno, CA 4 060195001 14.08 060190011 53.8 

Hanford-Corcoran, CA 2 060310004 21.98 060310004 72.0 

Houston-The Woodlands-Sugar Land, TX 4 482011035 11.19 482011035 22.4 

Indianapolis-Carmel-Anderson, IN 7 180970087 11.44 180970043 26.0 

Johnstown, PA 1 420210011 10.68 420210011 25.8 

Lancaster, PA 2 420710012 12.83 420710012 32.7 

Las Vegas-Henderson-Paradise, NV 4 320030561 10.28 320030561 24.5 

Lebanon, PA 1 420750100 11.20 420750100 31.4 

Little Rock-North Little Rock-Conway, AR 2 051191008 10.27 051191008 21.7 

Logan, UT-ID 1 490050007 6.95 490050007 34.0 

Los Angeles-Long Beach-Anaheim, CA a 9 060371103 12.38 060371103 32.8 

Louisville/Jefferson County, KY-IN 7 180190006 10.64 180190006 23.9 

Macon, GA 2 130210007 10.13 130210007 21.2 

Madera, CA 1 060392010 13.30 060392010 45.1 

McAllen-Edinburg-Mission, TX 1 482150043 10.09 482150043 25.0 

Merced, CA 2 060470003 11.81 060472510 39.8 

Modesto, CA 2 060990006 13.02 060990006 45.7 

Napa, CA 1 060550003 10.36 060550003 25.1 

New York-Newark-Jersey City, NY-NJ-PA 17 360610128 10.20 340030003 24.5 

Ogden-Clearfield, UT 3 490570002 8.99 490110004 32.6 

Philadelphia-Camden-Wilmington, PA-NJ-DE-
MD 

10 420450002 11.46 421010055 27.5 

Pittsburgh, PA 10 420030064 12.82 420030064 35.8 

Prineville, OR 1 410130100 8.60 410130100 37.6 

Provo-Orem, UT 3 490494001 7.74 490494001 30.9 

Riverside-San Bernardino-Ontario, CA 2 060658005 14.48 060658005 43.2 

Sacramento--Roseville--Arden-Arcade, CA 6 060670006 9.31 060670006 31.4 

Salt Lake City, UT 3 490353006 7.62 490353010 41.5 

San Luis Obispo-Paso Robles-Arroyo Grande, 
CA 

3 060792007 10.70 060792007 25.9 
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CBSA Name 
# of 

Sites 
Annual 

Max Site 

Annual 
Max 14-16 

DV 

24-hr Max 
Site 

24-hr Max 
14-16 DV 

South Bend-Mishawaka, IN-MI 1 181410015 10.45 181410015 32.5 

St. Louis, MO-IL 6 290990019 10.12 295100007 23.7 

Stockton-Lodi, CA 2 060771002 12.23 060771002 38.7 

Visalia-Porterville, CA 1 061072002 16.23 061072002 54.0 

Weirton-Steubenville, WV-OH 4 390810017 11.75 390810017 27.2 

Wheeling, WV-OH 2 540511002 10.24 540511002 22.5 
a DVs for Chicago-Naperville-Elgin, IL-IN-WI and Los Angeles-Long Beach-Anaheim, CA were approximated as 
described in section C.1.4.2. 

 

Table C-4. Counties associated with selected CBSAs 

CBSA Name Associated Counties 

Akron, OH Portage, Summit 

Altoona, PA Blair 

Atlanta-Sandy Springs-Roswell, GA Barrow, Bartow, Butts, Carroll, Cherokee, Clayton, Cobb, Coweta, 
Dawson, DeKalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, 
Haralson, Heard, Henry, Jasper, Lamar, Meriwether, Morgan, 
Newton, Paulding, Pickens, Pike, Rockdale, Spalding, and Walton 

Bakersfield, CA Kern 

Birmingham-Hoover, AL Bibb, Blount, Chilton, Jefferson, St. Clair, Shelby, and Walker 

Canton-Massillon, OH Carroll, Stark 

Chicago-Naperville-Elgin, IL-IN-WI Cook, DeKalb, DuPage, Grundy, Kane, Kendall, Lake, McHenry, 
Will, Jasper, Lake, Newton, Porter, and Kenosha 

Cincinnati, OH-KY-IN Dearborn, Ohio, Union, Boone, Bracken, Campbell, Gallatin, 
Grant, Kenton, Pendleton, Brown, Butler, Clermont, Hamilton, and 
Warren 

Cleveland-Elyria, OH Cuyahoga, Geauga, Lake, Lorain, and Medina 

Detroit-Warren-Dearborn, MI Lapeer, Livingston, Macomb, Oakland, St. Clair, and Wayne 

El Centro, CA Imperial 

Elkhart-Goshen, IN Elkhart 

Evansville, IN-KY Posey, Vanderburgh, Warrick, and Henderson 

Fresno, CA Fresno 

Hanford-Corcoran, CA Kings 

Houston-The Woodlands-Sugar Land, TX Austin, Brazoria, Chambers, Fort Bend, Galveston, Harris, 
Liberty, Montgomery, and Waller 

Indianapolis-Carmel-Anderson, IN Boone, Brown, Hamilton, Hancock, Hendricks, Johnson, Madison, 
Marion, Morgan, Putnam, and Shelby 

Johnstown, PA Cambria 

Lancaster, PA Lancaster 

Las Vegas-Henderson-Paradise, NV Clark 

Lebanon, PA Lebanon 

Little Rock-North Little Rock-Conway, AR Faulkner, Grant, Lonoke, Perry, Pulaski, and Saline 
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CBSA Name Associated Counties 

Logan, UT-ID Franklin, Cache 

Los Angeles-Long Beach-Anaheim, CA Los Angeles and Orange 

Louisville/Jefferson County, KY-IN Clark, Floyd, Harrison, Scott, Washington, Bullitt, Henry, 
Jefferson, Oldham, Shelby, Spencer, and Trimble 

Macon, GA Bibb, Crawford, Jones, Monroe, and Twiggs 

Madera, CA Madera 

McAllen-Edinburg-Mission, TX Hidalgo 

Merced, CA Merced 

Modesto, CA Stanislaus 

Napa, CA Napa 

New York-Newark-Jersey City, NY-NJ-PA Bergen, Essex, Hudson, Hunterdon, Middlesex, Monmouth, 
Morris, Ocean, Passaic, Somerset, Sussex, Union, Bronx, 
Dutchess, Kings, Nassau, New York, Orange, Putnam, Queens, 
Richmond, Rockland, Suffolk, Westchester, and Pike 

Ogden-Clearfield, UT Box Elder, Davis, Morgan, and Weber 

Philadelphia-Camden-Wilmington, PA-NJ-
DE-MD 

New Castle, Cecil, Burlington, Camden, Gloucester, Salem, 
Bucks, Chester, Delaware, Montgomery, and Philadelphia 

Pittsburgh, PA Allegheny, Armstrong, Beaver, Butler, Fayette, Washington, and 
Westmoreland 

Prineville, OR Crook 

Provo-Orem, UT Juab and Utah 

Riverside-San Bernardino-Ontario, CA Riverside and San Bernardino 

Sacramento--Roseville--Arden-Arcade, CA El Dorado, Placer, Sacramento, and Yolo 

Salt Lake City, UT Salt Lake, and Tooele 

San Luis Obispo-Paso Robles-Arroyo 
Grande, CA 

San Luis Obispo 

South Bend-Mishawaka, IN-MI St. Joseph and Cass 

St. Louis, MO-IL Bond, Calhoun, Clinton, Jersey, Macoupin, Madison, Monroe, St. 
Clair, Franklin, Jefferson, Lincoln, St. Charles, St. Louis, Warren, 
and St. Louis city 

Stockton-Lodi, CA San Joaquin 

Visalia-Porterville, CA Tulare 

Weirton-Steubenville, WV-OH Jefferson, Brooke, and Hancock 

Wheeling, WV-OH Belmont, Marshall, and Ohio 

 

C.1.4.3  Air Quality Modeling 

Air quality modeling was conducted using version 5.2.1 of the CMAQ modeling system 

(Appel, 2018, Pye et al., 2018) to develop a continuous national field of PM2.5 concentrations 

and estimates of how concentrations would respond to changes in PM2.5 and PM2.5 precursor 

emissions (Figure C-6, “CMAQ”). The CMAQ modeling domain (Figure C-9) covered the 

contiguous U.S. with 12 km horizontal resolution and 35 vertical layers. Since 2015 was the 
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most recent modeling platform available at the time of the study and represents the central year 

of the 2014-2016 DV period, 2015 was selected as the baseline modeling year for the PM2.5 

projections. A single modeling year was used due to the time and resources needed to conduct 

photochemical grid modeling, and because model inputs for the 2016 period were not available 

at the time of the study.  

Information on the CMAQ model configuration for the 2015 modeling is provided in 

Table C-5. The 2015 model simulation and its evaluation against network measurements of 

speciated and total PM2.5 has been described in detail previously (Kelly et al., 2019b). Model 

performance statistics for PM2.5 organic carbon, sulfate, and nitrate were generally similar to or 

improved compared to the performance for other recent national 12 km model simulations. One 

exception to the generally good model performance was identified for the Northwest region (OR, 

WA, and ID). Model performance statistics for this region were generally not as good as in our 

recent modeling due to issues related to unusually high fire influences in 2015, atmospheric 

mixing over sites near the Puget Sound, and other factors. However, model performance issues 

in the Northwest have minimal influence on the risk assessment, because only two of the 47 

CBSAs are in the Northwest region (i.e., Prineville, OR and part of the Logan, UT-ID, CBSA). 

Also, the analysis uses ratios of model predictions rather than absolute modeled concentrations, 

and systematic biases associated with mixing height and fire impact estimates may largely cancel 

in the ratios. Moreover, fusion of monitor data with model predictions in developing PM2.5 RRFs 

and the baseline concentration field helps mitigate the influence of biases in model predictions 

(as discussed below). Overall, the model performance evaluation (Kelly et al., 2019b) indicates 

that the 2015 CMAQ simulation provides concentration estimates that are generally as good or 

better than in other recent applications and are reliable for use in projecting PM2.5 in the risk 

assessment. Model performance statistics for PM2.5 by U.S. climate region and season are 

provided in Table C-6 and statistic definitions can be found in Table C-7. 
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 CMAQ modeling domain. 

 

Table C-5. CMAQ model configuration. 

Category Description 

Grid resolution 12 km horizontal; 35 vertical layers 

Gas-phase chemistry Carbon Bond 2006 (CB6r3) 

Organic aerosol Non-volatile treatment for primary organic aerosol; secondary organic 
aerosol from anthropogenic and biogenic sources 

Inorganic aerosol ISORROPIA II 

NH3 surface exchange Bi-directional NH3 surface exchange 

Windblown dust emissions Simulated online 

Sea-spray emissions Simulated online 

Meteorology Version 3.8 of Weather Research & Forecasting (WRF) Skamarock et 
al., 2005 model 

 

Table C-6. Model performance statistics20,21 for PM2.5 at AQS sites for the 2015 base case.  

Region21 Season N 
Avg. 
Obs. 

(µg m-3) 

Avg. 
Mod. 

(µg m-3) 

MB20 
(µg m-3) 

NMB20 
(%) 

RMSE20 
(µg m-3) 

NME20 
(%) 

r20 

Northeast 

Winter 13001 10.04 12.74 2.71 27.0 7.33 48.0 0.68 

Spring 13538 7.97 8.83 0.86 10.8 5.19 44.0 0.59 

Summer 13660 8.38 8.02 -0.36 -4.3 4.06 35.2 0.67 

Fall 13270 7.18 9.08 1.90 26.5 5.40 50.0 0.73 

Annual 53469 8.38 9.64 1.26 15.0 5.60 44.2 0.67 

Southeast 

Winter 11190 8.07 10.28 2.21 27.4 5.65 47.4 0.58 

Spring 11961 8.06 8.25 0.18  2.3 4.08 33.6 0.55 

Summer 11641 9.78 8.45 -1.33 -13.6 4.86 35.3 0.47 

Fall 11365 6.93 8.13 1.20 17.3 4.32 41.7 0.70 

                                                           
20 See Table C-7 for definition of statistics. 

21 See Figure C-10 for definition of regions. 
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Region21 Season N 
Avg. 
Obs. 

(µg m-3) 

Avg. 
Mod. 

(µg m-3) 

MB20 
(µg m-3) 

NMB20 
(%) 

RMSE20 
(µg m-3) 

NME20 
(%) 

r20 

Annual 46157 8.22 8.76 0.54  6.6 4.75 39.1 0.55 

Ohio Valley 

Winter 10323 9.49 11.60 2.10 22.1 5.75 43.2 0.63 

Spring 10867 8.90 9.85 0.95 10.6 4.60 36.3 0.65 

Summer 10714 10.95 10.56 -0.39 -3.6 5.55 34.3 0.55 

Fall 10568 8.41 10.96 2.54 30.2 6.23 47.1 0.65 

Annual 42472 9.44 10.73 1.29 13.6 5.56 39.8 0.59 

Upper Midwest 

Winter 6478 8.79 9.72 0.92 10.5 4.75 38.2 0.70 

Spring 6643 7.32 8.27 0.96 13.1 4.30 41.9 0.67 

Summer 6718 7.88 7.85 -0.03 -0.4 5.26 40.8 0.56 

Fall 6664 6.81 9.14 2.33 34.2 4.92 49.3 0.75 

Annual 26503 7.69 8.74 1.04 13.6 4.82 42.2 0.64 

South 

Winter 8041 7.53 10.13 2.60 34.5 11.81 56.6 0.36 

Spring 8369 8.08 7.12 -0.96 -11.9 4.24 36.3 0.51 

Summer 8440 10.80 8.31 -2.49 -23.0 6.04 40.3 0.34 

Fall 8340 7.55 7.99 0.44  5.9 3.76 35.5 0.63 

Annual 33190 8.50 8.37 -0.13 -1.6 7.15 41.8 0.34 

 
Southwest 

Winter 4911 7.46 7.90 0.45  6.0 6.50 55.9 0.52 

Spring 4998 4.88 5.88 1.00 20.6 3.60 48.4 0.44 

Summer 5069 6.12 4.85 -1.27 -20.8 4.15 43.1 0.59 

Fall 5091 5.31 5.90 0.59 11.1 4.35 52.2 0.49 

Annual 20069 5.93 6.12 0.19  3.2 4.77 50.2 0.52 

N. Rockies &  
Plains 

Winter 4987 5.57 3.60 -1.98 -35.5 6.80 63.4 0.23 

Spring 5380 4.57 5.00 0.44  9.6 29.58 61.6 0.20 

Summer 5260 9.98 7.68 -2.30 -23.1 17.61 57.4 0.57 

Fall 5010 5.57 5.42 -0.15 -2.7 5.65 56.4 0.44 

Annual 20637 6.43 5.45 -0.99 -15.3 18.06 59.2 0.34 

Northwest 

Winter 8994 7.90 7.82 -0.08 -1.0 10.20 80.9 0.25 

Spring 9306 5.02 6.84 1.82 36.2 6.65 71.5 0.48 

Summer 9993 9.17 11.12 1.95 21.2 32.40 67.7 0.46 

Fall 9868 7.03 9.39 2.37 33.7 15.33 78.3 0.31 

Annual 38161 7.31 8.85 1.55 21.2 19.26 74.3 0.43 

West 

Winter 10462 11.67 9.58 -2.08 -17.8 8.09 43.3 0.68 

Spring 10989 7.52 6.95 -0.57 -7.6 4.17 38.3 0.55 

Summer 11065 8.95 8.53 -0.43 -4.8 6.36 43.5 0.51 

Fall 10587 8.61 9.11 0.50  5.8 16.85 46.9 0.37 

Annual 43103 9.16 8.52 -0.64 -7.0 10.02 43.1 0.44 
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Table C-7. Definition of statistics used in the CMAQ model performance evaluation. 

Statistic Description 

MB ( g m-3) = 
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)
𝑛
𝑖=1   Mean bias (MB) is defined as the average difference between 

predicted (P) and observed (O) concentrations for the total number 
of samples (n) 

RMSE ( g m-3) = √∑ (𝑃𝑖 − 𝑂𝑖)
2/𝑛𝑛

𝑖=1

  

Root mean-squared error (RMSE) 

NMB (%) = 
∑ (𝑃𝑖−𝑂𝑖)
𝑛
𝑖

∑ 𝑂𝑖
𝑛
𝑖

× 100  The normalized mean bias (NMB) is defined as the sum of the 
difference between predictions and observations divided by the 
sum of observed values 

NME (%) = 
∑ |𝑃𝑖−𝑂𝑖|
𝑛
𝑖

∑ 𝑂𝑖
𝑛
𝑖

× 100  Normalized mean error (NME) is defined as the sum of the 
absolute value of the difference between predictions and 
observations divided by the sum of observed values 

r = 
∑ (𝑃𝑖−𝑃)̅̅ ̅(𝑂𝑖−𝑂)̅̅̅̅
𝑛
𝑖=1

√∑ (𝑃𝑖−𝑃̅)
2𝑛

𝑖=1 √∑ (𝑂𝑖−𝑂̅)
2𝑛

𝑖=1

 Pearson correlation coefficient 

 

 

 U.S. climate regions22 used in the CMAQ model performance evaluation. 

In addition to the national model performance evaluation just described, CMAQ 

predictions of PM2.5 concentrations were evaluated specifically for the CBSAs considered in the 

risk assessment.  In Table C-8, model performance statistics are provided for predictions at 

monitors in the 47 CBSAs in 2015.  Predictions generally agree well with observations over the 

full set of areas, with NMBs less than 10% in all seasons except Fall (NMB: 23.6%) and 

correlation coefficients greater than 0.60 in all seasons except Summer (r: 0.56).  Model 

predictions are compared with observations by CBSA in Figure C-11, and NMBs at individual 

sites in the CBSAs are shown in Figure C-12.  Predictions generally agree well with observations 

in the individual CBSAs, although underpredictions occurred in the Chicago-Naperville-Elgin 

                                                           
22 https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php  

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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CBSA when observed PM2.5 concentrations were > 40 g m-3.  The high observed values in 

Chicago were associated with the 4th of July holiday, and the underpredictions on July 4th and 5th 

have small influence on the annual PM2.5 projections in the risk assessment.  The NMB is highest 

for model predictions in the Birmingham-Hoover CBSA (NMB: 66%).  As mentioned above, the 

effects of model bias are mitigated in part by use of relative response factors (i.e., the ratio model 

predictions from a base and emission control simulation is used in projecting PM2.5 

concentrations, and some model bias likely cancels in the ratio).  For the risk assessment 

projections, the key aspect of the CMAQ modeling is the spatial of pattern of PM2.5 response to 

changes in emissions.  The spatial response pattern was examined in the 47 CBSAs and found to 

be reasonable even in areas with relatively high bias, such as Birmingham.  In Figure C-13, the 

spatial response pattern associated with the 10/30 projection case for the Birmingham-Hoover 

CBSA is compared for the proportional projection method and the primary PM projection case 

based on CMAQ modeling.  Relatively high PM2.5 responsiveness occurred in the urban part of 

Birmingham and along arterial roads in the CMAQ-based approach.  This spatial pattern is 

consistent with the location of PM2.5 emission sources in Birmingham and provides a realistic 

spatial response pattern despite the relatively high bias in the concentration predictions.  Overall, 

both the national model performance evaluation and the evaluation for the 47 CBSAs of the risk 

assessment support use of the CMAQ modeling in this application. 

To inform PM2.5 projections, annual CMAQ modeling was conducted using the same 

configuration and inputs as the 2015 base case simulation but with anthropogenic emissions of 

primary PM2.5 or NOx and SO2 scaled by fixed percentages. Specifically, seven simulations were 

conducted with changes in anthropogenic NOx and SO2 emissions (i.e., combined NOx and SO2, 

not separate NOx and SO2 simulations) of -100%, -75%, -50%, -25%, +25%, +50%, and +75. 

Two simulations were conducted with changes in anthropogenic PM2.5 emissions of -50% and 

+50%. The sensitivity simulations were based on emission changes applied to all anthropogenic 

sources throughout the year. These “across-the-board” emission changes facilitate projecting the 

baseline concentrations to just meet a relatively wide range of standards in areas throughout the 

U.S. using a feasible number of national sensitivity simulations.   
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Table C-8. Performance statistics for CMAQ predictions at monitoring sites in the 47 

CBSAs considered in the risk assessment. 

Season Average 
Observed 
(µg m-3) 

Average 
Modeled 
(µg m-3) 

MB 
(µg m-3) 

NMB 
(%) 

RMSE 
(µg m-3) 

NME (%) r 

Winter 12.40 13.45 1.05  8.5 8.03 42.4 0.61 

Spring 9.17 9.94 0.77  8.4 5.15 38.6 0.62 

Summer 10.35 10.08 -0.27 -2.6 5.51 34.6 0.56 

Fall 9.00 11.11 2.12 23.6 6.26 45.6 0.67 
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 Comparison of CMAQ predictions and observations at monitoring sites in the 

47 CBSAs considered in the risk assessment. 
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 NMB for CMAQ PM2.5 predictions at monitoring sites in the 47 CBSAs by 

season in 2015. 

 

 

 Percent change in 2015 annual average PM2.5 over the Birmingham CBSA 

associated with projecting 2014–2016 DVs at monitors to just meet an alternative 

NAAQS of 10/30 using the proportional projection method and the primary PM2.5, 

CMAQ-based projection method. 

 



 C-34  

The two emission sensitivity scenarios (primary PM2.5 and NOx and SO2) were selected 

to span a wide range of possible PM2.5 spatial response patterns. NOx and SO2 emission changes 

influence concentrations of ammonium nitrate and ammonium sulfate, which are secondary 

pollutants that often have broad spatial distributions. Primary PM2.5 emission changes have the 

greatest influence on PM2.5 concentrations close to emission sources. The two distinctly different 

PM2.5 response patterns for primary PM2.5 and NOx and SO2 emission changes enable PM2.5 to 

be projected for a wide range of conditions. Projecting PM2.5 for a wide range of conditions is 

desirable in this study because many PM2.5 spatial response patterns can cause PM2.5 

concentrations to just meet NAAQS.  

C.1.4.4  Relative Response Factors for PM2.5 Projection 

The 2015 base case and sensitivity modeling results were used to develop RRFs for 

projecting PM2.5 concentrations to correspond to just meeting NAAQS (Figure C-6, Box 2, 

“SMAT-CE”). Baseline PM2.5 concentrations are projected by multiplication with RRFs. The 

RRF for a PM2.5 species is calculated as the ratio of the concentration in the sensitivity 

simulation to that in the base case: 

𝑅𝑅𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =
𝐶𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝐶𝑏𝑎𝑠𝑒,𝑠𝑝𝑒𝑐𝑖𝑒𝑠
    (1) 

where Csensitivity,species is the concentration of the PM2.5 species in the sensitivity 

simulation, and Cbase,species is the concentration of the PM2.5 species in the base case simulation. 

RRFs were calculated for each monitor, grid cell, calendar quarter, standard (annual or 24-hr), 

species, and sensitivity simulation using SMAT-CE version 1.2.1. RRFs are used in projecting 

air quality to help mitigate the influence of systematic biases in model predictions (National 

Resources Council,  U.S. EPA, 2018a). More details on the RRF projection method are provided 

in EPA’s modeling guidance document (U.S. EPA, 2018a) and the user’s guide for the 

predecessor to the SMAT-CE software (Abt Associates, 2014). 

To apply the RRF approach for the risk assessment projections, RRFs for total PM2.5 

were calculated from RRFs for the individual PM2.5 species using observation-based estimates of 

PM2.5 species concentrations in SMAT-CE output. Specifically, total PM2.5 RRFs (RRFTot,PM2.5) 

were calculated as the weighted average of the speciated RRFs using the observation-based 

species concentrations (Cspecies) as weights:  

𝑅𝑅𝐹𝑇𝑜𝑡, 𝑃𝑀2.5 =
∑𝑅𝑅𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝐶𝑠𝑝𝑒𝑐𝑖𝑒𝑠

∑𝐶𝑠𝑝𝑒𝑐𝑖𝑒𝑠
   (2) 

Total PM2.5 RRFs were used to project base-case PM2.5 concentrations as follows: 

 𝑃𝑀2.5, 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 = 𝑅𝑅𝐹𝑇𝑜𝑡,𝑃𝑀2.5𝑃𝑀2.5, 𝑏𝑎𝑠𝑒  (3) 

The species concentrations used in calculating the total PM2.5 RRFs were generally based 

on application of the Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous material 

balance approacH (SANDWICH) (Frank, 2006) to measurements of PM2.5 species 
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concentrations from the Chemical Speciation Network (CSN)23 and the Interagency Monitoring 

of Protected Visual Environments (IMPROVE)24 network. The SANDWICH method corrects for 

different artifacts in the measurements for PM2.5 species and total PM2.5. An alternative approach 

to calculating total PM2.5 RRFs was applied for monitors and grid cells in California due to 

factors including missing data at the Bakersfield speciation monitor25 throughout 2014 and part 

of 2015. For projections in California, RRFs were calculated directly from the ratio of CMAQ 

PM2.5 concentration predictions in the sensitivity simulation to the base simulation.  

By default, PM2.5 RRFs for the annual standard are calculated using average 

concentrations over all modeled days in the quarter, and RRFs for the 24-hr standard are 

calculated using average concentrations over days with the top 10% of modeled PM2.5 

concentration in the quarter. The default approach was generally followed here, with exceptions 

for counties in the San Joaquin Valley (SJV) of California and Utah. In these counties26, the 

average concentration over all days in the quarter was used to calculate RRFs for both the 24-hr 

and annual standards for sites with valid 24-hr and annual DVs. This approach was used to 

provide stability in projections of annual fields due the variability in the 24-hr and annual 

RRFs27. Also, RRFs were set to one28 in the third quarter (July-September) for select counties in 

the San Joaquin Valley and Utah29 to better reflect the seasonal nature of PM2.5 in these areas 

(i.e., PM2.5 concentrations are relatively high in winter).   

RRFs were calculated for each combination of emission sensitivity simulation and the 

2015 base case.  RRFs corresponding to the percent change in emissions for each sensitivity 

simulation were then interpolated across the range of emission changes from -100 to +100% to 

facilitate iterative projections of PM2.5 concentrations to the nearest percent emission change. 

PM2.5 RRFs are shown in Figure C-14 and Figure C-15 as a function of changes in anthropogenic 

primary PM2.5 and NOx and SO2 emissions for monitors in the U.S. during the first and third 

                                                           
23 www.epa.gov/amtic/chemical-speciation-network-csn   

24 http://vista.cira.colostate.edu/Improve/   

25 Site identification number: 060290014 

26 SJV counties: Fresno, Stanislaus, Kern, Merced, Madera, Tulare, San Joaquin, and Kings; Utah counties: Cache, 

Box Elder, Davis, Morgan, Weber, Juab, Utah, Salt Lake, and Tooele. 

27 This variability is less of an issue in regional modeling applications where emission changes can be targeted to 

time periods of elevated PM2.5 concentrations in the area. 

28 When the RRF is 1, the projected concentration equals the base concentration (Equation 3). 

29 SJV counties: Fresno, Stanislaus, Kern, Merced, and Madera; Utah counties: Cache, Box Elder, Davis, Morgan, 

Weber, Juab, Utah, Salt Lake, and Tooele. This approach was not applied for Kings, Tulare, and San Joaquin 

counties in SJV because the percent exceedance of the annual standard was within 10% of the exceedance of the 

24-hr standard suggesting that relatively uniform PM2.5 concentrations occur throughout the year compared with 

the other SJV counties.  

http://www.epa.gov/amtic/chemical-speciation-network-csn
http://vista.cira.colostate.edu/Improve/
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calendar quarters. Spatial fields of PM2.5 RRFs for 50% reductions in anthropogenic primary 

PM2.5 and NOx and SO2 emissions are shown in Figure C-16. 

 

 

 Annual standard PM2.5 RRFs for quarters 1 and 3 as a function of the percent 

change in anthropogenic primary PM2.5 emissions for monitoring sites in the contiguous 

U.S. 

 

 

 Annual standard PM2.5 RRFs for quarters 1 and 3 as a function of the percent 

change in anthropogenic NOx and SO2 emissions for monitoring sites in the contiguous 

U.S. 
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 Annual average PM2.5 RRFs at CMAQ grid-cell centers for 50% reductions in 

anthropogenic (a) NOx and SO2 and (b) primary PM2.5 emissions.  

 

C.1.4.5  2015 PM2.5 Concentration Fields 

To develop a baseline gridded PM2.5 concentration field for projection with PM2.5 RRFs, 

a Bayesian statistical model (i.e., Downscaler) was applied (Figure C-6, Box 2, “Downscaler”) 

(Berrocal et al., 2012). Downscaler makes predictions of PM2.5 concentrations to a spatial field 

of receptor points using PM2.5 monitoring data and CMAQ model predictions as inputs. 

Downscaler takes advantage of the accuracy of the monitoring data and the spatial coverage of 

the CMAQ predictions to develop new predictions of PM2.5 concentration over the U.S. 

The Downscaler model is routinely applied by U.S. EPA to predict 24-hr average PM2.5 

concentrations at the centroids of census tracts in the contiguous U.S. (U.S. EPA, 2018b). The 

model configuration used here is generally consistent with the previous applications, but here 

predictions were made to the centers of the CMAQ model grid cells rather than to census-tract 

centroids. Also, PM2.5 measurements from the IMPROVE monitoring network were used in 

addition to measurements included in the AQS database. 24-hr average PM2.5 concentrations 

were predicted for the 2015 period, and the 24-hr PM2.5 fields were averaged to the quarterly 

periods of the PM2.5 RRFs for use in projection. 

Annual average PM2.5 concentrations from the monitoring network and CMAQ 

simulation that were used in model fitting are shown in Figure C-17 along with the resulting 

Downscaler predictions. Cross-validation statistics are provided in Table C-9 based on 

comparisons of Downscaler predictions against the 10% of the observations that were randomly 

withheld from model fitting. 
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 Annual average of the 2015 PM2.5 observations and CMAQ predictions used 

in the Downscaler model, and the annual average of the Downscaler PM2.5 predictions. 

 

Table C-9. Cross-validation statistics associated with the 2015 Downscaler predictions. 

Number of Monitors Mean Biasa 
(µg m-3) 

Root Mean Squared Errorb 
(µg m-3) 

Mean Coveragec 

1101 0.37 3.17 0.95 
aThe mean of all biases across the CV cases, where the bias of each prediction is the downscaler 
prediction minus the observed value.  

bThe bias is squared for each CV prediction, then the square root of the mean of all squared 
biases across all CV predictions is obtained. 

cA value of 1 is assigned if the measured value lies in the 95th percentile CI of the Downscaler 
prediction (the Downscaler prediction ± the Downscaler standard error), and 0 otherwise. This 
column is the mean of all those 0’s and 1’s. 

 

C.1.4.6  Projecting PM2.5 to Just Meet the Standards 

PM2.5 was projected from baseline concentrations to levels corresponding to just meeting 

NAAQS using the monitoring data (section C.1.4.2), RRFs (section C.1.4.4), and baseline 

concentration fields (section C.1.4.5) described above. The projection was done in two steps as 

shown in Box 3 of Figure C-6. Projections were performed for the existing (12/35)30 and 

alternative (10/30)31 standards. 

First, monitors in the CBSA of interest were identified, and concentrations from these 

monitors were subset from the national monitoring dataset. The measured concentrations were 

then projected using the corresponding PM2.5 RRF. PM2.5 DVs were calculated using the 

projected concentrations, and the difference between the maximum projected DV and target 

standard was determined. DV projections over the complete range of percent emission changes (-

100 to 100%) were performed using bisection iteration until the difference between the 

                                                           
30 Annual standard level of 12 µg m-3 and 24-hr standard level of 35 µg m-3 

31 Annual standard level of 10 µg m-3 and 24-hr standard level of 30 µg m-3 
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maximum projected DV in the CBSA and the standard level was zero or within the difference 

associated with a 1% emission change. Iterative projections of annual and 24-hr DVs were 

performed separately, and the controlling standard was determined as the standard requiring the 

greater percent emission change32. In cases where the emission change needed to just meet the 

target annual or 24-hr standard was outside of the ± 100% range, the standard could not be met 

using the modeled air quality scenarios. If neither the annual nor 24-hr standard could be just met 

with emission changes within ± 100%, then an alternative projection approach was used 

(discussed below). 

Second, 2015 PM2.5 concentration fields developed with Downscaler were projected 

according to the percent emission change required for the maximum projected DV to just meet 

the controlling standard. The projection was done by multiplying the gridded spatial fields of 

quarterly average PM2.5 concentrations based on Downscaler modeling with the gridded spatial 

fields of quarterly PM2.5 RRFs corresponding to the percent emission change required to just 

meet the controlling standard. The projected fields of quarterly average PM2.5 concentrations 

were then averaged to produce the annual average projected field. 

Since PM2.5 concentrations can be projected in multiple ways to just meet a standard, 

projections were done for two scenarios that provide results for a range of PM2.5 conditions. The 

first scenario is referred to as “Primary PM” or Pri-PM because projections were largely based 

on RRFs developed using CMAQ sensitivity simulations with primary PM2.5 emission changes. 

For three CBSAs33, standards could not be met using primary PM2.5 emission reductions alone. 

PM2.5 concentrations were projected for these areas using a combination of primary PM2.5 and 

NOx and SO2 emission reductions in the Primary PM scenario34 (Figure C-18).  

                                                           
32 Note that calculations are performed in terms of percent emission reduction. Therefore, in cases where DVs are 

projected to just meet standards greater than the baseline DVs, the required percent emission reduction is negative 

(i.e., an emission increase is required), and the smaller absolute percent emission change is selected as the 

controlling case. For example, the annual standard would be selected as controlling in a case where a 10% 

emission increase is needed to meet the annual standard and a 50% emission increase is needed to meet the 24-hr 

standard (because -10 is greater than -50). 

33 Bakersfield, Hanford-Corcoran, and Visalia-Porterville (all in California) 

34 This approach was applied by using RRFs from the NOx and SO2 emission sensitivity simulations to eliminate a 

fraction of the difference between the maximum base DV and the standard level and then using RRFs from the 

primary PM2.5 emission sensitivity simulations to eliminate the remainder of the difference. The fraction of the 

difference eliminated with NOx and SO2 emission reductions was as follows: 0.4 for Bakersfield, 0.5 for Visalia-

Porterville, and 0.6 for Hanford-Corcoran 
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 Projection method used for each CBSA in the “Primary PM” projection case. 

See text for details. 

 

The second scenario is referred to as “Secondary PM” or Sec-PM because projections 

were largely based on RRFs developed using CMAQ modeling with NOx and SO2 emission 

changes, which affect concentrations of secondary PM components such as ammonium nitrate 

and ammonium sulfate. For 22 CBSAs35, standards could not be just met using NOx and SO2 

emission changes alone. These areas were projected using the proportional scaling method36 

(Figure C-19). The proportional method was selected to gap-fill the Secondary PM case because 

                                                           
35 Altoona, PA; Atlanta-Sandy Springs-Roswell, GA; Bakersfield, CA; Chicago-Naperville-Elgin, IL-IN-WI; El 

Centro, CA; Elkhart-Goshen, IN; Fresno, CA; Hanford-Corcoran, CA; Las Vegas-Henderson-Paradise, NV; Los 

Angeles-Long Beach-Anaheim, CA; Macon, GA; Madera, CA; McAllen-Edinburg-Mission, TX; Modesto, CA; 

Napa, CA; New York-Newark-Jersey City, NY-NJ-PA; Prineville, OR; Riverside-San Bernardino-Ontario, CA; 

St. Louis, MO-IL; San Luis Obispo-Paso Robles-Arroyo Grande, CA; Visalia-Porterville, CA; Wheeling, WV-

OH 

36 In the proportional method, the spatial field is uniformly scaled by a fixed percentage that corresponds to the 

percent difference between the controlling standard level and maximum PM2.5 DV for the controlling standard. 

The controlling standard (annual or 24-hr) is identified as the one with the greater percent difference between the 

maximum DV and the standard level.  
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it is based on a spatially uniform percent change in PM2.5 over the area that is like the 

conceptually broad spatial response pattern of PM2.5 to changes in secondary PM2.5 components. 

The proportional method has been used previously in the Risk and Exposure Assessment for the 

2012 PM NAAQS review (U.S. EPA, 2010).  

 

 

 Projection method used for each CBSA in the “Secondary PM” projection 

case. 

 

The baseline 2015 concentration in the 47 CBSAs is shown in Figure C-20. These 

concentrations are the same as those in Figure C-17 but are shown only for the CBSAs included 

in the projections. In Figure C-21, the difference in annual concentration projected for the 12/35 

case and the 2015 baseline concentration is shown. The positive and negative differences reflect 

areas where concentrations were projected to higher and lower levels to just meet the standard, 

respectively. In Figure C-22, the difference between the annual concentration projected for the 

10/30 case and the and 2015 baseline concentration. Negative values indicate that concentrations 
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were projected to lower levels in all cases for the areas. The difference in projected 

concentrations for the 10/30 and 12/35 fields is shown in Figure C-23. Baseline and projected 

PM2.5 DVs for monitors in the 47 CBSAs are provided in Table C-33, Table C-34, Table C-35, 

and Table C-36 in section C.4.37    

 

 

 Annual average 2015 PM2.5 concentrations in the 47 CBSAs based on 

Downscaler modeling. 

 

                                                           
37 The tables report the percent emission reduction associated with just meeting standards in the current modeling. 

These values should not be interpreted as the percent emission reductions that would be required to meet the 

standards in other application (e.g., attainment demonstrations for state implementation plans). The modeling 

done here was designed to quickly project PM2.5 fields throughout the U.S. with a broad range of model response 

patterns, rather than to apply model configurations and emission scenarios specific to just meeting standards most 

efficiently in particular regions.   
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 Difference between the annual average projected PM2.5 concentrations and 

the 2015 baseline concentrations for the 12/35 projection cases (i.e., 12/35 – baseline). 
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 Difference between the annual average projected PM2.5 concentrations and 

the 2015 baseline concentrations for the 10/30 projection cases (i.e., 10/30 – baseline). 
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 Difference between the annual average projected PM2.5 concentrations in the 

10/30 and 12/35 cases (i.e., 10/30 – 12/35) for the Primary PM and Secondary PM 

projection cases. 

 

C.1.4.7  Limitations 

There are several limitations associated with the air quality projections. First, the baseline 

and projected concentrations rely on model predictions. Although state-of-the-science modeling 

methods were applied, and model performance was generally good, there is uncertainty 

associated with the model predictions. Second, due to the national scale of the assessment, the 
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modeling scenarios are based on “across-the-board” emission changes in which emissions of 

primary PM2.5 or NOx and SO2 from all anthropogenic sources throughout the U.S. are scaled by 

fixed percentages. Although this approach tends to target the key sources in each area, it does not 

tailor emission changes to specific periods or sources. More refined emission scenarios could be 

beneficial for projections in areas with relatively large seasonal and/or spatial variability in 

PM2.5. Similarly, fine scale simulations (e.g., 4 km or less), which are not possible due to the 

national scale of the assessment, would be beneficial in areas with complex terrain and relatively 

large spatial gradients in PM2.5. A third limitation arises because many emission cases could be 

applied to project PM2.5 concentrations to just meet standards. We applied two projection cases 

that span a wide range of possible conditions, but these cases are necessarily a subset of the full 

set of possible projection cases.  

C.1.5 Risk Modeling Approach 

Risk modeling for this assessment was completed using the EPA’s Environmental 

Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE) version 

1.4.14.1.38  BenMAP-CE was used to estimate risk at the 12 km grid cell level for grid cells 

intersected by the 47 urban study area CBSAs included in risk modeling. BenMAP-CE is an 

open-source computer program that calculates the number and economic value of air pollution-

related deaths and illnesses. The software incorporates a database that includes many of the 

concentration-response relationships, population files, and health and economic data needed to 

quantify these impacts. BenMAP-CE also allows the user to import customized datasets for any 

of the inputs used in modeling risk. For this analysis, CR functions developed specifically for 

this assessment were imported into BenMAP-CE (section C.1.1). The BenMAP-CE tool 

estimates the number of health impacts resulting from changes in air quality—specifically, 

ground-level ozone and fine particles. BenMAP-CE can also translate these incidence estimates 

into monetized benefits, although that functionality was not employed for this risk assessment. 

Inputs to BenMAP-CE used for this risk assessment are identified above in Figure C-1 and 

described in detail in sections C.1.1, C.1.2, C.1.3, and C.1.4.  

 An overall flow diagram of the risk assessment approach is provided in Figure C-24. 

Application of this approach resulted in separate sets of risk estimates being generated for three 

groupings of urban study areas including: (a) the full set of 47, (b) the 30 areas controlled by the 

annual standard, and (c) the 11 areas controlled by the 24-hr standard. Risk estimates are 

presented and discussed for each of these groupings in PA section 3.3.2, with greater emphasis 

being placed on results generated for the full set of 47 urban study areas and 30 annual-

                                                           
38 BenMAP-CE is a free program which can be downloaded from: https://www.epa.gov/benmap. 

https://www.epa.gov/benmap
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controlled study areas given interest in national representation and on those study areas where we 

could also consider the alternative annual standards of 9 and 11 µg/m3.  

 

Selection of standards modeled in the risk assessment 
 

     

 
Identified 47 urban study areas with annual and daily 

design values ≥10 and 30 ug/m3, respectively, that include 

~60 million people aged 30+ 

Modeled/simulated air quality surfaces of the 47 urban study areas for: 

1. 2015 current conditions (CC) 

2. Current standard combination of annual-12 ug/m3 and daily-35 ug/m3 (12/35) 

3. Alternate standard combination of annual-10 ug/m3 and daily-30 ug/m3 (10/30) 

Interpolated/extrapolated 

additional alternate annual 

standards of 11 and 9 ug/m3 

Estimated risk in all 

47 study areas for CC, 

12/35, and 10/30 ug/m3 

Estimated risk in 30 annual-

controlled study areas 

(~50M people 30+) for CC, 

12, 11, 10, and 9 ug/m3 

Estimated risk in 11 

daily-controlled study 

areas (~4M people 30+) 

for CC, 35, and 30 ug/m3
 

 

 

 Flow diagram of risk assessment technical approach. 

 

C.2 SUPPLEMENTAL RISK RESULTS 

As noted earlier, this appendix presents more granular risk information that supplements 

the aggregated risk estimates presented and discussed in section 3.3.2 of the PA. This 

supplemental information is intended to provide additional context for the interpretation of 

summary risk estimates presented in section 3.3.2 above, and includes:  

• Modeled risk estimates that underly summary tables presented in PA section 3.3.2 

aggregated to the CBSA-level (i.e., the urban study area) (section C.2.1). Here we begin 

by presenting the summary table for the full set of 47 study areas followed by the CBSA-

level data underlying each summary table. We then present the summary table for the 30-

annual-controlled study areas, followed by the CBSA-level data underlying those 

summary tables.  
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• Additional graphics including line plots, maps and scatter plots illustrating the 

distribution of the grid-level risk estimates (section C.2.2). These graphics allow the 

reader to consider different aspects of the grid-level data underlying the summary tables 

presented in the PA (e.g., spatial distribution of risk across the cities included in the risk 

assessment, how the distribution of grid-cell level risk estimates shifts as lower 

alternative standards are considered).   

 

Note that at the end of section C.2 we present key observations from consideration both 

of the CBSA-level risk estimates presented in section C.2.1 and the graphics illustrating the 

distribution of grid-level risk estimates in section C.2.2. 

 

C.2.1 Risk Summary Tables and Underlying CBSA-Level Risk Estimates 

This section presents the full results of the risk assessment conducted in support of this 

review of the PM NAAQS.  This includes aggregate results for all 47 urban study areas across 

each of the endpoints modeled, as well as the underlying results for individual cities for each 

endpoint. The aggregate results are consistent with those reported above in the summary tables in 

Chapter 3 (section 3.3.2). The more refined results for each urban study area presented below 

reflect the detailed 12 km grid-level risk estimates aggregated to the CBSA-level (i.e., the urban 

study area).   

The results are organized as follows: the summary tables for the full set of 47 urban study 

areas, followed by tables of the associated CBSA-level risk estimates, are presented in section 

C.2.1.1. Then, in section C.2.1.2, we break out the 30 annual-controlled study areas (both in 

summary form and by the associated CBSA-level risk estimates) to show the results of 

simulating alternative annual standard levels of 11.0 µg/m3 and 9.0 µg/m3. We do not report the 

results for the 11 daily-controlled areas separately, as readers can find the CBSA-level results for 

these areas within the tables presented for the full set of 47 study areas.39 In reviewing the 

CBSA-level risk estimates, it is important to consider several details related to these tables 

including:  

• In addition to the information on current and alternative standards presented in PA 

section 3.3.2, the tables below include information on 2015 current conditions. 

• The CBSA tables are organized by health endpoint (i.e., each table presenting risk 

estimates for a specific endpoint). Then within a given CBSA table, the columns 

                                                           
39 The set of 11 daily-controlled study areas is shown in Figure C-5 and includes the following study areas: Fresno, 

CA,  Logan, UT-ID, Madera, CA, Merced, CA, Modesto, CA, Ogden-Clearfield, UT, Prineville, OR, Provo-Orem, 

UT, Sacramento-Roseville-Arden-Arcade, CA, Salt Lake City, UT, Visalia-Porterville, CA. 
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present risk estimates for specific air quality scenarios (e.g., current conditions, 

current standard and so on) with the rows presenting risks for individual CBSAs. To 

aid cross-walk comparison between the summary tables and the CBSAs, the order of 

the standards presented in the CBSA tables matches the order of standards presented 

in the summary tables.  

• Each CBSA table includes a “total” as the last row in the table, which provides the 

sum for that air quality scenario/health endpoint combination across all study areas.  

This total value can be used as a cross-check with the matching value presented in the 

summary table for a particular air quality scenario/health endpoint combination.   

• Given the national-scale of the effect estimates used in modeling mortality risks, 

greater confidence is associated with aggregated (cross-city) risk estimates (as 

presented in PA section 3.3) than with individual CBSA-level results.   

 

C.2.1.1  CBSA-Level Results for the 47 Urban Study Areas 

Here we begin by presenting the summary tables of absolute risk and risk reduction for 

the full set of 47 study areas (Table C-10 and Table C-11). Then we provide tables of individual 

endpoint- and study- specific CBSA-level risk estimates (Table C-12, Table C-13, Table C-14, 

Table C-15, Table C-16, Table C-17, Table C-18, Table C-19, and Table C-20). 
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Table C-10. Absolute risk summary table of the 47 urban study areas, including current 

conditions (2015). 

 

 

Current 

Conditions 

Simulation 

Method*

Current Annual 

Standard (12 µg/m3)

Alternative Annual 

Standard (10 µg/m
3
) 

Alternative 24-hr 

Standard (30 µg/m
3
)

Long-term exposure related mortality

IHD Jerrett 2016 Pri-PM 16,500 (12,600-20,300) 14,400 (11,000-17,700) 16,400 (12,500-20,000)

Sec-PM 16,800 (12,800-20,500) 14,200 (10,900-17,500) 16,500 (12,600-20,200)

Pope 2015 Pri-PM 15,600 (11,600-19,400) 13,600 (10,100-17,000) 15,400 (11,500-19,200)

Sec-PM 15,800 (11,800-19,600) 13,400 (9,970-16,700) 15,600 (11,600-19,400)

Di 2017 Pri-PM 46,200 (45,000-47,500) 40,300 (39,200-41,400) 45,700 (44,500-47,000)

Sec-PM 46,900 (45,600-48,200) 39,700 (38,600-40,800) 46,200 (44,900-47,500)

Pope 2015 Pri-PM 51,300 (41,000-61,400) 44,700 (35,700-53,500) 50,700 (40,500-60,700)

Sec-PM 52,100 (41,600-62,300) 44,000 (35,100-52,700) 51,300 (41,000-61,400)

Thurston 2015 Pri-PM 13,500 (2,360-24,200) 11,700 (2,050-21,100) 13,300 (2,330-24,000)

Sec-PM 13,700 (2,400-24,600) 11,500 (2,010-20,700) 13,500 (2,360-24,200)

Turner 2016 Pri-PM 3,890 (1,240-6,360) 3,390 (1,080-5,560) 3,850 (1,230-6,300)

Sec-PM 3,950 (1,260-6,460) 3,330 (1,060-5,470) 3,890 (1,240-6,370)

Short-term exposure related mortality

Baxter 2017 Pri-PM 2,490 (983-4,000) 2,160 (850-3,460) 2,460 (970-3,950)

Sec-PM 2,530 (998-4,060) 2,120 (837-3,400) 2,490 (982-3,990)

Ito 2013 Pri-PM 1,180 (-16-2,370) 1,020 (-14-2,050) 1,160 (-16-2,340)

Sec-PM 1,200 (-16-2,400) 1,000 (-14-2,020) 1,180 (-16-2,370)

Zanobetti 2014 Pri-PM 3,810 (2,530-5,080) 3,300 (2,190-4,400) 3,760 (2,500-5,020)

Sec-PM 3,870 (2,570-5,160) 3,250 (2,160-4,330) 3,810 (2,530-5,070)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

Absolute Risk

All-cause

Lung 

cancer

All cause

15,800 

(12,100-19,400)

14,900 

(11,100-18,500)

44,100 

(42,900-45,300)

49,000 

(39,200-58,700)

12,900 

(2,250-23,100)

Endpoint Study

3,700 

(1,180-6,060)

2,380 

(936-3,810)

1,120 

(-15-2,260)

3,630 

(2,410-4,840)
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Table C-11. Summary of risk reduction in the 47 urban study areas when simulating a 

change in air quality from the current standards to an alternative suite of standards. 

 

 

Alternative Annual 

Standard

(12-10 µg/m³)

Alternative 24-hr 

Standard

(35-30 µg/m³)

Alternative Annual 

Standard

(12-10 µg/m³)

Alternative 24-hr 

Standard

(35-30 µg/m³)

Long-term exposure related mortality

IHD Jerrett 2016 Pri-PM 2,390 (1,800-2,970) 200 (150-249) 12.6 1.1

Sec-PM 2,870 (2,160-3,570) 266 (200-331) 15.0 1.4

Pope 2015 Pri-PM 2,240 (1,640-2,830) 187 (137-237) 12.7 1.1

Sec-PM 2,690 (1,970-3,400) 250 (183-315) 15.1 1.4

Di 2017 Pri-PM 6,440 (6,260-6,630) 573 (557-589) 12.9 1.2

Sec-PM 7,800 (7,580-8,020) 772 (750-793) 15.4 1.5

Pope 2015 Pri-PM 7,100 (5,640-8,550) 644 (511-776) 13.0 1.2

Sec-PM 8,630 (6,860-10,400) 828 (658-997) 15.6 1.5

Thurston 2015 Pri-PM 1,830 (316-3,320) 168 (29-305) 13.2 1.2

Sec-PM 2,230 (387-4,060) 209 (36-381) 15.9 1.5

Turner 2016 Pri-PM 548 (170-921) 42 (13-70) 13.0 1.0

Sec-PM 670 (208-1,120) 61 (19-102) 15.6 1.4

Short-term exposure related mortality

Baxter 2017 Pri-PM 335 (132-537) 30 (12-48) 13.5 1.3

Sec-PM 408 (160-654) 39 (15-62) 16.1 1.6

Ito 2013 Pri-PM 158 (-2-317) 14 (0-29) 13.4 1.2

Sec-PM 192 (-3-386) 18 (0-37) 16.1 1.5

Zanobetti 2014 Pri-PM 513 (341-684) 46 (30-61) 13.4 1.2

Sec-PM 622 (413-830) 62 (41-82) 16.0 1.6

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

All-cause

Lung 

cancer

All cause

Endpoint Study
Simulation 

Method*

Risk Reduction (Relative to Current 

Standard)

% Risk Reduction (Relative to 

Current Standard)
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Table C-12. CBSA level results for the 47 urban study areas using the Jerrett et al., 2016 long-term IHD mortality CR 

function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 161 173 177 150 147 173 177 27 35 0 0

Altoona, PA 31 36 36 31 31 36 36 6 6 0 0

Atlanta-Sandy Springs-Roswell, GA 414 462 475 403 401 462 475 68 84 0 0

Bakersfield, CA 137 83 89 69 89 83 78 15 0 0 13

Birmingham-Hoover, AL 163 171 177 150 142 171 177 24 41 0 0

Canton-Massillon, OH 90 99 101 85 84 99 101 17 19 0 0

Chicago-Naperville-Elgin, IL-IN-WI 1,330 1,420 1,430 1,220 1,210 1,420 1,430 226 255 0 0

Cincinnati, OH-KY-IN 332 365 373 315 312 365 373 57 71 0 0

Cleveland-Elyria, OH 436 433 431 379 347 433 431 62 95 0 0

Detroit-Warren-Dearborn, MI 1,030 1,090 1,110 926 892 1,090 1,110 183 242 0 0

El Centro, CA 21 20 20 17 17 20 20 4 4 0 0

Elkhart-Goshen, IN 42 49 49 41 41 49 49 9 9 0 0

Evansville, IN-KY 61 70 72 60 60 70 72 12 13 0 0

Fresno, CA 182 141 139 141 139 123 127 0 0 21 14

Hanford-Corcoran, CA 22 12 11 10 11 12 10 3 0 0 2

Houston-The Woodlands-Sugar Land, TX 682 723 746 624 600 723 746 114 167 0 0

Indianapolis-Carmel-Anderson, IN 282 293 296 254 248 293 296 45 54 0 0

Johnstown, PA 39 43 44 37 37 43 44 7 9 0 0

Lancaster, PA 109 103 101 87 83 103 101 18 22 0 0

Las Vegas-Henderson-Paradise, NV 163 186 189 159 159 186 189 30 33 0 0

Lebanon, PA 25 27 27 23 23 27 27 5 5 0 0

Little Rock-North Little Rock-Conway, AR 100 116 117 98 98 116 117 21 22 0 0

Logan, UT-ID 6 6 6 6 6 6 6 0 0 1 1

Los Angeles-Long Beach-Anaheim, CA 2,250 2,190 2,190 1,870 1,850 2,190 2,190 365 388 0 0

Louisville/Jefferson County, KY-IN 184 204 208 176 174 204 208 32 40 0 0

Macon, GA 41 48 48 41 41 48 48 8 9 0 0

Madera, CA 36 31 31 31 31 28 28 0 0 3 3

McAllen-Edinburg-Mission, TX 94 110 110 93 93 110 110 19 20 0 0

Merced, CA 44 41 41 41 41 37 37 0 0 5 4

Modesto, CA 117 99 99 99 99 90 90 0 0 11 10

Napa, CA 23 27 27 23 23 27 27 4 5 0 0

New York-Newark-Jersey City, NY-NJ-PA 3,540 4,020 4,130 3,480 3,480 4,020 4,130 616 730 0 0

Ogden-Clearfield, UT 44 47 46 47 46 42 43 0 0 6 4

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1,000 1,040 1,070 898 846 1,040 1,070 167 251 0 0

Pittsburgh, PA 622 587 584 502 584 587 449 96 0 0 151

Prineville, OR 3 3 3 3 3 3 2 0 0 0 0

Provo-Orem, UT 20 22 21 22 21 20 20 0 0 3 2

Riverside-San Bernardino-Ontario, CA 586 498 486 498 415 443 486 0 78 61 0

Sacramento-Roseville-Arden-Arcade, CA 327 359 352 359 352 319 321 0 0 46 35

Salt Lake City, UT 65 55 59 55 59 45 55 0 0 10 4

San Luis Obispo-Paso Robles-Arroyo Grande, CA 29 33 33 28 28 33 33 6 6 0 0

South Bend-Mishawaka, IN-MI 59 64 68 64 68 56 55 0 0 10 14

St. Louis, MO-IL 569 656 668 564 565 656 668 106 119 0 0

Stockton-Lodi, CA 118 111 110 111 96 99 110 0 16 14 0

Visalia-Porterville, CA 96 66 65 66 65 57 57 0 0 10 10

Weirton-Steubenville, WV-OH 44 44 45 38 37 44 45 7 9 0 0

Wheeling, WV-OH 48 56 56 47 47 56 56 10 10 0 0

Totals 15,800 16,500 16,800 14,400 14,200 16,400 16,500 2,390 2,870 200 266
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)



 C-53  

Table C-13. CBSA level results for the 47 urban study areas using the Pope et al., 2015 long-term IHD mortality CR function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 152 163 167 141 138 163 167 25 33 0 0

Altoona, PA 29 34 34 29 29 34 34 6 6 0 0

Atlanta-Sandy Springs-Roswell, GA 390 435 447 379 378 435 447 64 79 0 0

Bakersfield, CA 129 78 84 65 84 78 73 14 0 0 12

Birmingham-Hoover, AL 154 162 167 142 133 162 167 23 38 0 0

Canton-Massillon, OH 85 93 95 80 79 93 95 16 18 0 0

Chicago-Naperville-Elgin, IL-IN-WI 1,250 1,340 1,350 1,150 1,140 1,340 1,350 213 239 0 0

Cincinnati, OH-KY-IN 313 344 352 297 293 344 352 54 67 0 0

Cleveland-Elyria, OH 411 408 406 357 327 408 406 58 89 0 0

Detroit-Warren-Dearborn, MI 967 1,020 1,040 871 839 1,020 1,040 172 227 0 0

El Centro, CA 20 19 19 16 16 19 19 3 3 0 0

Elkhart-Goshen, IN 40 46 46 39 39 46 46 8 8 0 0

Evansville, IN-KY 57 66 67 57 57 66 67 11 13 0 0

Fresno, CA 171 133 131 133 131 116 119 0 0 19 13

Hanford-Corcoran, CA 21 12 11 9 11 12 9 2 0 0 2

Houston-The Woodlands-Sugar Land, TX 642 682 703 588 564 682 703 107 157 0 0

Indianapolis-Carmel-Anderson, IN 266 276 279 239 234 276 279 42 51 0 0

Johnstown, PA 37 40 42 35 34 40 42 6 8 0 0

Lancaster, PA 103 97 96 82 78 97 96 16 20 0 0

Las Vegas-Henderson-Paradise, NV 153 175 178 149 150 175 178 28 31 0 0

Lebanon, PA 24 26 26 22 22 26 26 4 5 0 0

Little Rock-North Little Rock-Conway, AR 94 109 110 92 92 109 110 19 20 0 0

Logan, UT-ID 6 6 6 6 6 5 5 0 0 1 0

Los Angeles-Long Beach-Anaheim, CA 2,120 2,070 2,060 1,760 1,740 2,070 2,060 342 364 0 0

Louisville/Jefferson County, KY-IN 174 192 196 165 163 192 196 30 37 0 0

Macon, GA 39 45 46 39 39 45 46 7 8 0 0

Madera, CA 34 29 29 29 29 27 26 0 0 3 3

McAllen-Edinburg-Mission, TX 88 103 104 88 88 103 104 18 18 0 0

Merced, CA 42 39 39 39 39 35 35 0 0 5 4

Modesto, CA 110 93 93 93 93 84 84 0 0 10 10

Napa, CA 22 25 25 21 21 25 25 4 4 0 0

New York-Newark-Jersey City, NY-NJ-PA 3,330 3,790 3,890 3,280 3,280 3,790 3,890 578 685 0 0

Ogden-Clearfield, UT 42 45 43 45 43 39 40 0 0 6 3

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 944 984 1,010 845 796 984 1,010 156 236 0 0

Pittsburgh, PA 586 553 550 473 550 553 423 90 0 0 141

Prineville, OR 3 3 3 3 3 2 2 0 0 0 0

Provo-Orem, UT 19 21 20 21 20 19 19 0 0 2 1

Riverside-San Bernardino-Ontario, CA 551 468 457 468 390 416 457 0 74 57 0

Sacramento-Roseville-Arden-Arcade, CA 308 338 331 338 331 301 302 0 0 43 33

Salt Lake City, UT 61 51 55 51 55 42 52 0 0 10 3

San Luis Obispo-Paso Robles-Arroyo Grande, CA 28 31 31 26 26 31 31 5 5 0 0

South Bend-Mishawaka, IN-MI 56 60 64 60 64 52 52 0 0 9 14

St. Louis, MO-IL 536 618 629 531 532 618 629 99 112 0 0

Stockton-Lodi, CA 111 104 104 104 91 93 104 0 15 13 0

Visalia-Porterville, CA 91 62 62 62 62 54 53 0 0 9 9

Weirton-Steubenville, WV-OH 41 42 42 36 35 42 42 7 8 0 0

Wheeling, WV-OH 45 52 53 44 44 52 53 9 9 0 0

Totals 14,900 15,600 15,800 13,600 13,400 15,400 15,600 2,240 2,690 187 250
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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Table C-14. CBSA level results for the 47 urban study areas using the Di et al., 2017b long-term all-cause mortality CR 

function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 547 589 602 507 496 589 602 90 117 0 0

Altoona, PA 104 123 123 103 104 123 123 21 21 0 0

Atlanta-Sandy Springs-Roswell, GA 1,940 2,180 2,240 1,890 1,880 2,180 2,240 314 387 0 0

Bakersfield, CA 333 199 214 166 214 199 186 35 0 0 30

Birmingham-Hoover, AL 709 745 770 649 613 745 770 104 170 0 0

Canton-Massillon, OH 300 329 335 281 278 329 335 53 63 0 0

Chicago-Naperville-Elgin, IL-IN-WI 4,220 4,520 4,570 3,870 3,840 4,520 4,570 698 789 0 0

Cincinnati, OH-KY-IN 1,160 1,280 1,300 1,100 1,080 1,280 1,300 196 240 0 0

Cleveland-Elyria, OH 1,290 1,280 1,280 1,120 1,020 1,280 1,280 178 274 0 0

Detroit-Warren-Dearborn, MI 2,430 2,570 2,620 2,180 2,100 2,570 2,620 421 562 0 0

El Centro, CA 51 48 48 40 41 48 48 8 8 0 0

Elkhart-Goshen, IN 114 133 133 112 112 133 133 23 23 0 0

Evansville, IN-KY 207 242 247 206 206 242 247 39 45 0 0

Fresno, CA 506 389 383 389 383 338 348 0 0 56 37

Hanford-Corcoran, CA 64 35 33 28 33 35 28 7 0 0 5

Houston-The Woodlands-Sugar Land, TX 2,130 2,260 2,340 1,940 1,870 2,260 2,340 347 510 0 0

Indianapolis-Carmel-Anderson, IN 950 989 997 852 832 989 997 148 178 0 0

Johnstown, PA 120 133 136 114 112 133 136 21 26 0 0

Lancaster, PA 397 374 370 317 299 374 370 62 76 0 0

Las Vegas-Henderson-Paradise, NV 543 622 633 529 531 622 633 98 108 0 0

Lebanon, PA 95 102 102 86 86 102 102 17 18 0 0

Little Rock-North Little Rock-Conway, AR 354 411 415 345 346 411 415 71 75 0 0

Logan, UT-ID 26 27 27 27 27 25 25 0 0 3 2

Los Angeles-Long Beach-Anaheim, CA 5,280 5,150 5,140 4,380 4,320 5,150 5,140 832 887 0 0

Louisville/Jefferson County, KY-IN 731 813 829 695 688 813 829 127 152 0 0

Macon, GA 129 149 152 128 128 149 152 23 26 0 0

Madera, CA 88 76 75 76 75 69 68 0 0 7 8

McAllen-Edinburg-Mission, TX 213 251 252 212 212 251 252 42 44 0 0

Merced, CA 115 106 107 106 107 95 97 0 0 13 11

Modesto, CA 268 226 225 226 225 204 204 0 0 24 23

Napa, CA 87 99 100 84 84 99 100 16 17 0 0

New York-Newark-Jersey City, NY-NJ-PA 7,690 8,770 9,020 7,570 7,580 8,770 9,020 1,290 1,560 0 0

Ogden-Clearfield, UT 178 191 186 191 186 168 173 0 0 24 14

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3,260 3,400 3,480 2,910 2,740 3,400 3,480 530 798 0 0

Pittsburgh, PA 1,870 1,760 1,750 1,500 1,750 1,760 1,340 281 0 0 441

Prineville, OR 12 11 11 11 11 10 10 0 0 1 2

Provo-Orem, UT 97 107 103 107 103 96 96 0 0 12 7

Riverside-San Bernardino-Ontario, CA 1,510 1,280 1,250 1,280 1,060 1,140 1,250 0 198 153 0

Sacramento-Roseville-Arden-Arcade, CA 990 1,090 1,070 1,090 1,070 965 972 0 0 136 103

Salt Lake City, UT 304 256 276 256 276 210 260 0 0 48 17

San Luis Obispo-Paso Robles-Arroyo Grande, CA 108 120 121 101 101 120 121 20 21 0 0

South Bend-Mishawaka, IN-MI 197 213 226 213 226 184 183 0 0 31 47

St. Louis, MO-IL 1,590 1,840 1,870 1,570 1,580 1,840 1,870 287 325 0 0

Stockton-Lodi, CA 357 333 331 333 289 296 331 0 46 40 0

Visalia-Porterville, CA 247 166 166 166 166 144 143 0 0 24 24

Weirton-Steubenville, WV-OH 102 104 104 89 86 104 104 16 20 0 0

Wheeling, WV-OH 124 144 145 122 122 144 145 24 25 0 0

Totals 44,100 46,200 46,900 40,300 39,700 45,700 46,200 6,440 7,800 573 772
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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Table C-15. CBSA level results for the 47 urban study areas using the Pope et al., 2015 long-term all-cause mortality CR 

function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 595 641 656 551 539 641 656 97 126 0 0

Altoona, PA 107 126 126 106 106 126 126 22 22 0 0

Atlanta-Sandy Springs-Roswell, GA 2,310 2,590 2,660 2,240 2,230 2,590 2,660 371 457 0 0

Bakersfield, CA 404 240 258 200 258 240 224 42 0 0 36

Birmingham-Hoover, AL 831 874 903 761 717 874 903 121 198 0 0

Canton-Massillon, OH 318 349 355 297 294 349 355 56 66 0 0

Chicago-Naperville-Elgin, IL-IN-WI 4,660 4,990 5,040 4,270 4,230 4,990 5,040 767 866 0 0

Cincinnati, OH-KY-IN 1,310 1,440 1,480 1,240 1,220 1,440 1,480 220 270 0 0

Cleveland-Elyria, OH 1,390 1,380 1,370 1,200 1,100 1,380 1,370 191 293 0 0

Detroit-Warren-Dearborn, MI 2,720 2,880 2,940 2,440 2,350 2,880 2,940 469 625 0 0

El Centro, CA 59 56 56 47 47 56 56 10 10 0 0

Elkhart-Goshen, IN 125 146 146 123 123 146 146 25 25 0 0

Evansville, IN-KY 229 268 273 228 228 268 273 43 49 0 0

Fresno, CA 573 441 432 441 432 382 393 0 0 62 42

Hanford-Corcoran, CA 78 43 39 35 39 43 34 9 0 0 6

Houston-The Woodlands-Sugar Land, TX 2,590 2,760 2,850 2,360 2,270 2,760 2,850 421 617 0 0

Indianapolis-Carmel-Anderson, IN 1,080 1,130 1,130 968 946 1,130 1,130 168 201 0 0

Johnstown, PA 126 139 143 119 118 139 143 21 27 0 0

Lancaster, PA 402 378 373 320 301 378 373 62 77 0 0

Las Vegas-Henderson-Paradise, NV 631 723 737 615 617 723 737 113 125 0 0

Lebanon, PA 97 104 105 88 87 104 105 17 19 0 0

Little Rock-North Little Rock-Conway, AR 414 481 486 404 405 481 486 83 87 0 0

Logan, UT-ID 27 28 28 28 28 25 26 0 0 3 2

Los Angeles-Long Beach-Anaheim, CA 5,800 5,660 5,650 4,810 4,740 5,660 5,650 909 969 0 0

Louisville/Jefferson County, KY-IN 841 935 954 799 791 935 954 145 174 0 0

Macon, GA 153 177 180 151 151 177 180 27 31 0 0

Madera, CA 104 88 88 88 88 81 79 0 0 8 9

McAllen-Edinburg-Mission, TX 243 286 288 241 241 286 288 47 49 0 0

Merced, CA 135 124 125 124 125 110 113 0 0 15 13

Modesto, CA 307 258 257 258 257 233 233 0 0 27 26

Napa, CA 89 102 103 87 86 102 103 17 18 0 0

New York-Newark-Jersey City, NY-NJ-PA 8,230 9,400 9,670 8,100 8,110 9,400 9,670 1,380 1,660 0 0

Ogden-Clearfield, UT 195 209 203 209 203 184 189 0 0 27 16

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3,570 3,730 3,820 3,190 3,000 3,730 3,820 578 872 0 0

Pittsburgh, PA 1,950 1,830 1,820 1,560 1,820 1,830 1,390 291 0 0 457

Prineville, OR 12 12 11 12 11 11 10 0 0 1 2

Provo-Orem, UT 105 116 112 116 112 104 104 0 0 13 8

Riverside-San Bernardino-Ontario, CA 1,740 1,470 1,430 1,470 1,220 1,300 1,430 0 226 177 0

Sacramento-Roseville-Arden-Arcade, CA 1,090 1,210 1,180 1,210 1,180 1,070 1,070 0 0 149 114

Salt Lake City, UT 350 294 317 294 317 241 298 0 0 55 19

San Luis Obispo-Paso Robles-Arroyo Grande, CA 112 125 125 105 105 125 125 21 21 0 0

South Bend-Mishawaka, IN-MI 214 231 246 231 246 200 198 0 0 34 50

St. Louis, MO-IL 1,750 2,030 2,070 1,740 1,740 2,030 2,070 314 356 0 0

Stockton-Lodi, CA 413 385 382 385 333 342 382 0 52 46 0

Visalia-Porterville, CA 289 193 193 193 193 167 166 0 0 28 28

Weirton-Steubenville, WV-OH 112 114 115 98 94 114 115 17 22 0 0

Wheeling, WV-OH 129 150 151 127 127 150 151 25 26 0 0

Totals 49,000 51,300 52,100 44,700 44,000 50,700 51,300 7,100 8,630 644 828
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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Table C-16. CBSA level results for the 47 urban study areas using the Thurston et al., 2016 long-term all-cause mortality CR 

function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 157 169 173 145 142 169 173 25 33 0 0

Altoona, PA 27 32 33 27 27 32 33 5 5 0 0

Atlanta-Sandy Springs-Roswell, GA 644 725 746 626 624 725 746 102 126 0 0

Bakersfield, CA 114 67 72 56 72 67 63 11 0 0 10

Birmingham-Hoover, AL 231 243 252 211 199 243 252 33 55 0 0

Canton-Massillon, OH 84 92 94 78 77 92 94 14 17 0 0

Chicago-Naperville-Elgin, IL-IN-WI 1,220 1,310 1,320 1,120 1,110 1,310 1,320 197 223 0 0

Cincinnati, OH-KY-IN 353 390 400 334 330 390 400 58 72 0 0

Cleveland-Elyria, OH 359 357 355 310 282 357 355 48 75 0 0

Detroit-Warren-Dearborn, MI 717 761 776 643 618 761 776 121 162 0 0

El Centro, CA 16 16 16 13 13 16 16 3 3 0 0

Elkhart-Goshen, IN 33 39 39 33 33 39 39 6 7 0 0

Evansville, IN-KY 62 72 74 61 61 72 74 11 13 0 0

Fresno, CA 150 114 112 114 112 99 102 0 0 16 11

Hanford-Corcoran, CA 22 12 11 9 11 12 9 2 0 0 2

Houston-The Woodlands-Sugar Land, TX 729 776 803 664 636 776 803 116 171 0 0

Indianapolis-Carmel-Anderson, IN 293 305 308 262 256 305 308 45 54 0 0

Johnstown, PA 31 34 35 29 29 34 35 5 7 0 0

Lancaster, PA 97 91 90 77 72 91 90 15 18 0 0

Las Vegas-Henderson-Paradise, NV 186 214 218 181 182 214 218 33 37 0 0

Lebanon, PA 25 26 26 22 22 26 26 4 5 0 0

Little Rock-North Little Rock-Conway, AR 116 135 137 113 113 135 137 23 24 0 0

Logan, UT-ID 7 7 7 7 7 6 6 0 0 1 1

Los Angeles-Long Beach-Anaheim, CA 1,470 1,430 1,430 1,210 1,190 1,430 1,430 225 240 0 0

Louisville/Jefferson County, KY-IN 231 258 263 220 217 258 263 39 47 0 0

Macon, GA 43 51 52 43 43 51 52 8 9 0 0

Madera, CA 28 24 24 24 24 22 22 0 0 2 2

McAllen-Edinburg-Mission, TX 66 78 79 66 66 78 79 13 13 0 0

Merced, CA 36 33 33 33 33 29 30 0 0 4 3

Modesto, CA 84 70 70 70 70 63 63 0 0 7 7

Napa, CA 22 25 26 21 21 25 26 4 4 0 0

New York-Newark-Jersey City, NY-NJ-PA 2,070 2,370 2,440 2,030 2,040 2,370 2,440 343 410 0 0

Ogden-Clearfield, UT 50 54 52 54 52 47 48 0 0 7 4

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 912 953 977 812 763 953 977 145 219 0 0

Pittsburgh, PA 490 461 458 391 458 461 348 72 0 0 113

Prineville, OR 4 3 3 3 3 3 3 0 0 0 0

Provo-Orem, UT 26 29 28 29 28 26 26 0 0 3 2

Riverside-San Bernardino-Ontario, CA 480 404 395 404 335 357 395 0 61 48 0

Sacramento-Roseville-Arden-Arcade, CA 288 318 311 318 311 281 282 0 0 38 30

Salt Lake City, UT 89 75 80 75 80 61 76 0 0 14 5

San Luis Obispo-Paso Robles-Arroyo Grande, CA 27 30 30 25 25 30 30 5 5 0 0

South Bend-Mishawaka, IN-MI 55 60 64 60 64 52 51 0 0 9 13

St. Louis, MO-IL 463 539 550 460 460 539 550 82 93 0 0

Stockton-Lodi, CA 111 103 102 103 89 91 102 0 14 12 0

Visalia-Porterville, CA 77 51 51 51 51 44 44 0 0 7 7

Weirton-Steubenville, WV-OH 31 32 32 27 26 32 32 5 6 0 0

Wheeling, WV-OH 34 40 40 34 34 40 40 7 7 0 0

Totals 12,900 13,500 13,700 11,700 11,500 13,300 13,500 1,830 2,230 168 209
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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Table C-17. CBSA level results for the 47 urban study areas using the Turner et al., 2016 long-term lung cancer mortality CR 

function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 48 51 52 44 43 51 52 8 10 0 0

Altoona, PA 6 7 7 6 6 7 7 1 1 0 0

Atlanta-Sandy Springs-Roswell, GA 183 204 210 178 177 204 210 29 36 0 0

Bakersfield, CA 27 16 17 13 17 16 15 3 0 0 2

Birmingham-Hoover, AL 63 66 69 58 55 66 69 9 15 0 0

Canton-Massillon, OH 25 28 28 24 24 28 28 5 5 0 0

Chicago-Naperville-Elgin, IL-IN-WI 379 406 410 348 345 406 410 63 71 0 0

Cincinnati, OH-KY-IN 122 134 137 115 114 134 137 20 26 0 0

Cleveland-Elyria, OH 111 111 110 96 88 111 110 15 24 0 0

Detroit-Warren-Dearborn, MI 220 233 237 198 190 233 237 38 51 0 0

El Centro, CA 4 4 4 3 3 4 4 1 1 0 0

Elkhart-Goshen, IN 10 11 11 9 9 11 11 2 2 0 0

Evansville, IN-KY 19 22 23 19 19 22 23 4 4 0 0

Fresno, CA 35 27 26 27 26 23 24 0 0 4 3

Hanford-Corcoran, CA 5 3 2 2 2 3 2 1 0 0 0

Houston-The Woodlands-Sugar Land, TX 194 206 213 177 170 206 213 31 47 0 0

Indianapolis-Carmel-Anderson, IN 102 106 107 91 89 106 107 16 19 0 0

Johnstown, PA 8 9 9 8 8 9 9 1 2 0 0

Lancaster, PA 28 26 26 22 21 26 26 4 5 0 0

Las Vegas-Henderson-Paradise, NV 55 63 64 53 53 63 64 10 11 0 0

Lebanon, PA 9 9 9 8 8 9 9 2 2 0 0

Little Rock-North Little Rock-Conway, AR 37 43 43 36 36 43 43 7 8 0 0

Logan, UT-ID 1 1 1 1 1 1 1 0 0 0 0

Los Angeles-Long Beach-Anaheim, CA 360 351 351 299 295 351 351 57 61 0 0

Louisville/Jefferson County, KY-IN 82 91 93 78 78 91 93 14 17 0 0

Macon, GA 13 15 15 13 13 15 15 2 3 0 0

Madera, CA 7 6 6 6 6 5 5 0 0 1 1

McAllen-Edinburg-Mission, TX 11 13 13 11 11 13 13 2 2 0 0

Merced, CA 9 9 9 9 9 8 8 0 0 1 1

Modesto, CA 21 18 17 18 17 16 16 0 0 2 2

Napa, CA 7 8 8 6 6 8 8 1 1 0 0

New York-Newark-Jersey City, NY-NJ-PA 590 672 691 580 581 672 691 99 119 0 0

Ogden-Clearfield, UT 8 8 8 8 8 7 7 0 0 1 1

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 284 296 303 253 238 296 303 46 70 0 0

Pittsburgh, PA 153 145 144 123 144 145 110 23 0 0 36

Prineville, OR 1 1 1 1 1 1 1 0 0 0 0

Provo-Orem, UT 3 3 3 3 3 3 3 0 0 0 0

Riverside-San Bernardino-Ontario, CA 120 102 99 102 85 90 99 0 16 12 0

Sacramento-Roseville-Arden-Arcade, CA 79 87 86 87 86 77 78 0 0 11 8

Salt Lake City, UT 14 12 13 12 13 10 12 0 0 2 1

San Luis Obispo-Paso Robles-Arroyo Grande, CA 8 9 9 7 7 9 9 1 2 0 0

South Bend-Mishawaka, IN-MI 17 18 20 18 20 16 16 0 0 3 4

St. Louis, MO-IL 158 182 186 156 157 182 186 28 32 0 0

Stockton-Lodi, CA 29 27 27 27 23 24 27 0 4 3 0

Visalia-Porterville, CA 18 12 12 12 12 11 10 0 0 2 2

Weirton-Steubenville, WV-OH 9 10 10 8 8 10 10 1 2 0 0

Wheeling, WV-OH 11 12 12 10 10 12 12 2 2 0 0

Totals 3,700 3,890 3,950 3,390 3,330 3,850 3,890 548 670 42 61
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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Table C-18. CBSA level results for the 47 urban study areas using the Baxter et al., 2017 all-cause short-term mortality CR 

function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 29 31 32 27 26 31 32 5 6 0 0

Altoona, PA 5 6 6 5 5 6 6 1 1 0 0

Atlanta-Sandy Springs-Roswell, GA 111 126 129 108 108 126 129 18 22 0 0

Bakersfield, CA 20 11 12 9 12 11 11 2 0 0 2

Birmingham-Hoover, AL 40 42 44 37 35 42 44 6 9 0 0

Canton-Massillon, OH 15 17 17 14 14 17 17 3 3 0 0

Chicago-Naperville-Elgin, IL-IN-WI 228 245 248 208 206 245 248 37 41 0 0

Cincinnati, OH-KY-IN 63 70 71 59 59 70 71 10 13 0 0

Cleveland-Elyria, OH 68 67 67 58 53 67 67 9 14 0 0

Detroit-Warren-Dearborn, MI 132 140 143 118 113 140 143 22 30 0 0

El Centro, CA 3 3 3 2 2 3 3 0 0 0 0

Elkhart-Goshen, IN 6 7 7 6 6 7 7 1 1 0 0

Evansville, IN-KY 11 13 13 11 11 13 13 2 2 0 0

Fresno, CA 28 22 21 22 21 19 19 0 0 3 2

Hanford-Corcoran, CA 4 2 2 2 2 2 2 0 0 0 0

Houston-The Woodlands-Sugar Land, TX 126 134 139 114 109 134 139 20 29 0 0

Indianapolis-Carmel-Anderson, IN 52 54 55 47 46 54 55 8 9 0 0

Johnstown, PA 6 7 7 6 6 7 7 1 1 0 0

Lancaster, PA 20 18 18 16 15 18 18 3 4 0 0

Las Vegas-Henderson-Paradise, NV 30 34 35 29 29 34 35 5 6 0 0

Lebanon, PA 5 5 5 4 4 5 5 1 1 0 0

Little Rock-North Little Rock-Conway, AR 20 23 24 20 20 23 24 4 4 0 0

Logan, UT-ID 1 1 1 1 1 1 1 0 0 0 0

Los Angeles-Long Beach-Anaheim, CA 284 277 277 234 231 277 277 43 46 0 0

Louisville/Jefferson County, KY-IN 41 45 46 38 38 45 46 7 8 0 0

Macon, GA 7 9 9 7 7 9 9 1 1 0 0

Madera, CA 5 4 4 4 4 4 4 0 0 0 0

McAllen-Edinburg-Mission, TX 12 14 14 12 12 14 14 2 2 0 0

Merced, CA 6 6 6 6 6 5 5 0 0 1 1

Modesto, CA 15 13 13 13 13 11 11 0 0 1 1

Napa, CA 4 5 5 4 4 5 5 1 1 0 0

New York-Newark-Jersey City, NY-NJ-PA 401 459 473 394 394 459 473 66 79 0 0

Ogden-Clearfield, UT 9 10 10 10 10 9 9 0 0 1 1

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 172 180 184 153 144 180 184 27 41 0 0

Pittsburgh, PA 94 88 88 74 88 88 66 14 0 0 21

Prineville, OR 1 1 1 1 1 0 0 0 0 0 0

Provo-Orem, UT 5 6 5 6 5 5 5 0 0 1 0

Riverside-San Bernardino-Ontario, CA 85 71 69 71 59 63 69 0 11 8 0

Sacramento-Roseville-Arden-Arcade, CA 52 58 57 58 57 51 51 0 0 7 5

Salt Lake City, UT 16 14 15 14 15 11 14 0 0 3 1

San Luis Obispo-Paso Robles-Arroyo Grande, CA 5 6 6 5 5 6 6 1 1 0 0

South Bend-Mishawaka, IN-MI 10 11 12 11 12 10 10 0 0 2 2

St. Louis, MO-IL 84 98 100 83 83 98 100 15 17 0 0

Stockton-Lodi, CA 20 19 19 19 16 17 19 0 2 2 0

Visalia-Porterville, CA 14 9 9 9 9 8 8 0 0 1 1

Weirton-Steubenville, WV-OH 5 5 6 5 4 5 6 1 1 0 0

Wheeling, WV-OH 6 7 7 6 6 7 7 1 1 0 0

Totals 2,380 2,490 2,530 2,160 2,120 2,460 2,490 335 408 30 39
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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Table C-19. CBSA level results for the 47 urban study areas using the Ito et al., 2013 all-cause short-term mortality CR 

function. 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 14 15 15 13 12 15 15 2 3 0 0

Altoona, PA 2 3 3 2 2 3 3 0 0 0 0

Atlanta-Sandy Springs-Roswell, GA 53 60 62 52 52 60 62 8 10 0 0

Bakersfield, CA 10 6 6 5 6 6 5 1 0 0 1

Birmingham-Hoover, AL 19 20 21 18 17 20 21 3 4 0 0

Canton-Massillon, OH 7 8 8 7 7 8 8 1 1 0 0

Chicago-Naperville-Elgin, IL-IN-WI 107 115 116 98 97 115 116 17 19 0 0

Cincinnati, OH-KY-IN 30 33 34 28 28 33 34 5 6 0 0

Cleveland-Elyria, OH 32 31 31 27 25 31 31 4 7 0 0

Detroit-Warren-Dearborn, MI 62 66 68 56 54 66 68 10 14 0 0

El Centro, CA 1 1 1 1 1 1 1 0 0 0 0

Elkhart-Goshen, IN 3 3 3 3 3 3 3 1 1 0 0

Evansville, IN-KY 5 6 6 5 5 6 6 1 1 0 0

Fresno, CA 14 10 10 10 10 9 9 0 0 1 1

Hanford-Corcoran, CA 2 1 1 1 1 1 1 0 0 0 0

Houston-The Woodlands-Sugar Land, TX 61 65 67 55 53 65 67 10 14 0 0

Indianapolis-Carmel-Anderson, IN 25 26 26 22 22 26 26 4 5 0 0

Johnstown, PA 3 3 3 3 3 3 3 0 1 0 0

Lancaster, PA 9 9 9 7 7 9 9 1 2 0 0

Las Vegas-Henderson-Paradise, NV 14 16 17 14 14 16 17 3 3 0 0

Lebanon, PA 2 2 2 2 2 2 2 0 0 0 0

Little Rock-North Little Rock-Conway, AR 10 11 11 9 9 11 11 2 2 0 0

Logan, UT-ID 1 1 1 1 1 1 1 0 0 0 0

Los Angeles-Long Beach-Anaheim, CA 133 130 129 109 108 130 129 20 22 0 0

Louisville/Jefferson County, KY-IN 19 22 22 18 18 22 22 3 4 0 0

Macon, GA 4 4 4 3 3 4 4 1 1 0 0

Madera, CA 2 2 2 2 2 2 2 0 0 0 0

McAllen-Edinburg-Mission, TX 6 7 7 6 6 7 7 1 1 0 0

Merced, CA 3 3 3 3 3 3 3 0 0 0 0

Modesto, CA 7 6 6 6 6 5 5 0 0 1 1

Napa, CA 2 2 2 2 2 2 2 0 0 0 0

New York-Newark-Jersey City, NY-NJ-PA 187 214 220 184 184 214 220 31 37 0 0

Ogden-Clearfield, UT 5 5 5 5 5 4 4 0 0 1 0

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 82 86 88 73 68 86 88 13 19 0 0

Pittsburgh, PA 44 42 41 35 41 42 31 6 0 0 10

Prineville, OR 0 0 0 0 0 0 0 0 0 0 0

Provo-Orem, UT 2 3 3 3 3 2 2 0 0 0 0

Riverside-San Bernardino-Ontario, CA 40 34 33 34 28 30 33 0 5 4 0

Sacramento-Roseville-Arden-Arcade, CA 25 28 27 28 27 24 25 0 0 3 3

Salt Lake City, UT 8 7 7 7 7 6 7 0 0 1 0

San Luis Obispo-Paso Robles-Arroyo Grande, CA 3 3 3 2 2 3 3 0 0 0 0

South Bend-Mishawaka, IN-MI 5 5 6 5 6 5 5 0 0 1 1

St. Louis, MO-IL 40 47 48 40 40 47 48 7 8 0 0

Stockton-Lodi, CA 10 9 9 9 8 8 9 0 1 1 0

Visalia-Porterville, CA 7 4 4 4 4 4 4 0 0 1 1

Weirton-Steubenville, WV-OH 3 3 3 2 2 3 3 0 0 0 0

Wheeling, WV-OH 3 3 3 3 3 3 3 1 1 0 0

Totals 1,120 1,180 1,200 1,020 1,000 1,160 1,180 158 192 14 18
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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Table C-20. CBSA level results for the 47 urban study areas using the Zanobetti et al., 2014 all-cause short-term mortality CR 

function. 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 45 49 50 42 41 49 50 7 9 0 0

Altoona, PA 9 10 10 9 9 10 10 2 2 0 0

Atlanta-Sandy Springs-Roswell, GA 159 180 185 155 154 180 185 25 31 0 0

Bakersfield, CA 28 16 17 13 17 16 15 3 0 0 2

Birmingham-Hoover, AL 58 62 64 53 50 62 64 8 14 0 0

Canton-Massillon, OH 25 27 28 23 23 27 28 4 5 0 0

Chicago-Naperville-Elgin, IL-IN-WI 348 373 377 318 315 373 377 56 63 0 0

Cincinnati, OH-KY-IN 95 105 108 90 89 105 108 16 19 0 0

Cleveland-Elyria, OH 106 106 105 92 83 106 105 14 22 0 0

Detroit-Warren-Dearborn, MI 200 212 216 179 172 212 216 34 45 0 0

El Centro, CA 4 4 4 3 3 4 4 1 1 0 0

Elkhart-Goshen, IN 9 11 11 9 9 11 11 2 2 0 0

Evansville, IN-KY 17 20 21 17 17 20 21 3 4 0 0

Fresno, CA 42 32 32 32 32 28 29 0 0 4 3

Hanford-Corcoran, CA 5 3 3 2 3 3 2 1 0 0 0

Houston-The Woodlands-Sugar Land, TX 175 187 193 160 153 187 193 28 41 0 0

Indianapolis-Carmel-Anderson, IN 78 82 82 70 68 82 82 12 14 0 0

Johnstown, PA 10 11 11 9 9 11 11 2 2 0 0

Lancaster, PA 33 31 31 26 24 31 31 5 6 0 0

Las Vegas-Henderson-Paradise, NV 44 51 52 43 43 51 52 8 9 0 0

Lebanon, PA 8 8 8 7 7 8 8 1 1 0 0

Little Rock-North Little Rock-Conway, AR 29 34 34 28 28 34 34 6 6 0 0

Logan, UT-ID 2 2 2 2 2 2 2 0 0 0 0

Los Angeles-Long Beach-Anaheim, CA 435 425 424 359 354 425 424 66 71 0 0

Louisville/Jefferson County, KY-IN 60 67 69 57 57 67 69 10 12 0 0

Macon, GA 11 12 13 11 11 12 13 2 2 0 0

Madera, CA 7 6 6 6 6 6 6 0 0 1 1

McAllen-Edinburg-Mission, TX 17 21 21 17 17 21 21 3 3 0 0

Merced, CA 10 9 9 9 9 8 8 0 0 1 1

Modesto, CA 22 19 19 19 19 17 17 0 0 2 2

Napa, CA 7 8 8 7 7 8 8 1 1 0 0

New York-Newark-Jersey City, NY-NJ-PA 630 722 743 619 620 722 743 103 124 0 0

Ogden-Clearfield, UT 15 16 15 16 15 14 14 0 0 2 1

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 268 280 287 238 224 280 287 42 64 0 0

Pittsburgh, PA 154 145 144 123 144 145 109 22 0 0 35

Prineville, OR 1 1 1 1 1 1 1 0 0 0 0

Provo-Orem, UT 8 9 8 9 8 8 8 0 0 1 1

Riverside-San Bernardino-Ontario, CA 124 104 102 104 86 92 102 0 16 12 0

Sacramento-Roseville-Arden-Arcade, CA 81 90 88 90 88 79 80 0 0 11 8

Salt Lake City, UT 25 21 22 21 22 17 21 0 0 4 1

San Luis Obispo-Paso Robles-Arroyo Grande, CA 9 10 10 8 8 10 10 2 2 0 0

South Bend-Mishawaka, IN-MI 16 18 19 18 19 15 15 0 0 2 4

St. Louis, MO-IL 131 152 155 129 130 152 155 23 26 0 0

Stockton-Lodi, CA 30 28 27 28 24 24 27 0 4 3 0

Visalia-Porterville, CA 21 14 14 14 14 12 12 0 0 2 2

Weirton-Steubenville, WV-OH 8 9 9 7 7 9 9 1 2 0 0

Wheeling, WV-OH 10 12 12 10 10 12 12 2 2 0 0

Totals 3,630 3,810 3,870 3,300 3,250 3,760 3,810 513 622 46 62
* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Annual  Standard (12 

µg/m³)

Alternative Annual Standard 

(10 µg/m³)
Alternative 24-hr (30 µg/m³)

Alternative Annual Standard 

(12-10 µg/m³)

Alternative 24-hr Standard 

(35-30 µg/m³)
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C.2.1.2  CBSA-Level Results for the 30 Annual-Controlled Urban Study Areas 

Here we begin by presenting the summary tables of absolute risk and risk reduction for 

the 30 annual-controlled study areas (Table C-21 and Table C-22) where the annual standard was 

controlling. Then we provide tables of individual endpoint- and study- specific CBSA-level risk 

estimates (Table C-23, Table C-24, Table C-25, Table C-26, Table C-27, Table C-28, Table C-

29, Table C-30, and Table C-31). 

 

Table C-21. Absolute risk summary table of the 30 urban study areas, including current 

conditions (2015). 

 

 

Current 

Conditions (2015)

Simulation 

Method*

Current Annual 

Standard (12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

IHD Jerrett 2016 Pri-PM 14,300 (10,900-17,500) 13,300 (10,200-16,300) 12,300 (9,400-15,100) 11,300 (8,610-13,900)

Sec-PM 14,600 (11,100-17,800) 13,300 (10,200-16,400) 12,100 (9,240-14,900) 10,900 (8,280-13,400)

Pope 2015 Pri-PM 13,500 (10,100-16,800) 12,500 (9,340-15,600) 11,600 (8,620-14,500) 10,600 (7,900-13,300)

Sec-PM 13,700 (10,200-17,000) 12,600 (9,360-15,600) 11,400 (8,480-14,200) 10,200 (7,590-12,800)

Di 2017 Pri-PM 39,800 (38,700-40,900) 36,900 (35,900-38,000) 34,100 (33,200-35,000) 31,200 (30,400-32,100)

Sec-PM 40,500 (39,400-41,600) 37,000 (36,000-38,000) 33,500 (32,600-34,400) 29,900 (29,100-30,800)

Pope 2015 Pri-PM 44,200 (35,300-52,800) 41,000 (32,800-49,100) 37,800 (30,200-45,300) 34,600 (27,600-41,500)

Sec-PM 45,000 (35,900-53,800) 41,000 (32,800-49,100) 37,100 (29,600-44,500) 33,200 (26,500-39,700)

Thurston 2015 Pri-PM 11,600 (2,030-20,800) 10,700 (1,880-19,300) 9,900 (1,730-17,800) 9,050 (1,580-16,300)

Sec-PM 11,800 (2,070-21,200) 10,800 (1,880-19,400) 9,710 (1,700-17,500) 8,650 (1,510-15,600)

Turner 2016 Pri-PM 3,400 (1,080-5,550) 3,160 (1,010-5,170) 2,920 (927-4,790) 2,670 (847-4,400)

Sec-PM 3,460 (1,110-5,650) 3,160 (1,010-5,180) 2,860 (908-4,700) 2,560 (809-4,210)

Baxter 2017 Pri-PM 2,150 (846-3,440) 1,990 (784-3,190) 1,830 (721-2,930) 1,670 (658-2,680)

Sec-PM 2,190 (862-3,510) 1,990 (785-3,190) 1,790 (707-2,880) 1,600 (630-2,560)

Ito 2013 Pri-PM 1,010 (-14-2,040) 939 (-13-1,880) 864 (-12-1,730) 789 (-11-1,580)

Sec-PM 1,030 (-14-2,070) 940 (-13-1,890) 847 (-11-1,700) 754 (-10-1,510)

Zanobetti 2014 Pri-PM 3,280 (2,180-4,370) 3,040 (2,020-4,050) 2,790 (1,860-3,730) 2,550 (1,700-3,400)

Sec-PM 3,340 (2,220-4,450) 3,040 (2,020-4,050) 2,740 (1,820-3,650) 2,440 (1,620-3,260)

Absolute Risk

3,150 

(1,000-5,160)

Short-term exposure related mortality

1,990 

(784-3,190)

940 

(-13-1,890)

Endpoint Study

3,040 

(2,020-4,050)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

Lung 

cancer

All-

cause

Long-term exposure related mortality

13,300 

(10,200-16,300)

12,500 

(9,340-15,600)

37,000 

(36,000-38,000)

41,000 

(32,800-49,100)

10,700 

(1,880-19,300)

All-

cause
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Table C-22. Summary of risk reduction in the 30 urban study areas when simulating a 

change in air quality from the current standards to alternative annual standards.  

 

 

Alternative Annual 

Standard

(12-11 µg/m³)

Alternative Annual 

Standard 

(12-10 µg/m³)

Alternative Annual 

Standard

(12-9 µg/m³)

Alternative 

Annual Standard

(12-11 µg/m³)

Alternative 

Annual Standard 

(12-10 µg/m³)

Alternative Annual 

Standard

(12-9 µg/m³)

IHD Jerrett 2016 Pri-PM 1,140 (859-1,420) 2,270 (1,710-2,830) 3,390 (2,550-4,210) 7% 14% 21%

Sec-PM 1,400 (1,050-1,740) 2,770 (2,090-3,450) 4,130 (3,110-5,130) 8% 17% 25%

Pope 2014 Pri-PM 1,070 (785-1,360) 2,130 (1,560-2,690) 3,180 (2,340-4,010) 7% 14% 21%

Sec-PM 1,310 (960-1,660) 2,600 (1,910-3,280) 3,880 (2,850-4,890) 8% 17% 25%

Di 2017 Pri-PM 3,070 (2,980-3,160) 6,120 (5,950-6,300) 9,150 (8,890-9,410) 7% 14% 21%

Sec-PM 3,800 (3,690-3,900) 7,560 (7,340-7,770) 11,300 (11,000-11,600) 9% 17% 26%

Pope 2014 Pri-PM 3,390 (2,690-4,080) 6,760 (5,370-8,140) 10,100 (8,030-12,200) 7% 14% 22%

Sec-PM 4,190 (3,330-5,050) 8,350 (6,640-10,100) 12,500 (9,930-15,000) 9% 17% 26%

Thurston 2015 Pri-PM 871 (151-1,590) 1,740 (301-3,170) 2,610 (452-4,740) 7% 15% 22%

Sec-PM 1,080 (187-1,970) 2,160 (374-3,930) 3,230 (561-5,870) 9% 18% 27%

Turner 2016 Pri-PM 262 (81-441) 522 (162-877) 780 (243-1,310) 7% 14% 21%

Sec-PM 327 (101-550) 651 (202-1,090) 972 (303-1,630) 9% 17% 26%

Baxter 2017 Pri-PM 160 (63-256) 319 (126-512) 478 (188-767) 7% 15% 22%

Sec-PM 197 (78-316) 394 (155-632) 592 (233-948) 9% 18% 27%

Ito 2013 Pri-PM 75 (-1-151) 150 (-2-302) 226 (-3-453) 7% 15% 22%

Sec-PM 93 (-1-187) 186 (-2-374) 279 (-4-561) 9% 18% 27%

Zanobetti 2014 Pri-PM 244 (162-325) 487 (324-650) 731 (486-975) 7% 15% 22%

Sec-PM 301 (200-402) 603 (400-804) 904 (600-1,210) 9% 18% 27%

Short-term exposure related mortality

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

All-

cause

Lung 

cancer

All-

cause

Long-term exposure related mortality

Endpoint Study
Simulation 

Method*

Risk Reduction

(Relative to Current Standard)

Percent Risk Reduction

(Relative to Current Standard)
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Table C-23. CBSA level results for the 30 annual-controlled urban study areas using the Jerrett et al., 2016 long-term IHD 

mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 161 173 177 162 162 150 147 138 131 14 18 27 35 40 53

Altoona, PA 31 36 36 33 34 31 31 28 28 3 3 6 6 10 10

Atlanta-Sandy Springs-Roswell, GA 414 462 475 433 438 403 401 372 364 34 42 68 84 102 126

Birmingham-Hoover, AL 163 171 177 161 160 150 142 140 123 12 21 24 41 36 60

Canton-Massillon, OH 90 99 101 92 92 85 84 78 76 8 10 17 19 25 29

Chicago-Naperville-Elgin, IL-IN-WI 1,330 1,420 1,430 1,320 1,320 1,220 1,210 1,120 1,100 114 128 226 255 338 380

Cincinnati, OH-KY-IN 332 365 373 341 343 315 312 290 280 29 36 57 71 86 106

Cleveland-Elyria, OH 436 433 431 406 389 379 347 351 304 31 48 62 95 92 142

Detroit-Warren-Dearborn, MI 1,030 1,090 1,110 1,010 1,000 926 892 844 783 92 122 183 242 273 360

El Centro, CA 21 20 20 19 19 17 17 15 15 2 2 4 4 5 5

Elkhart-Goshen, IN 42 49 49 45 45 41 41 38 38 4 4 9 9 13 13

Evansville, IN-KY 61 70 72 65 66 60 60 55 54 6 7 12 13 18 20

Houston-The Woodlands-Sugar Land, TX 682 723 746 674 673 624 600 574 525 58 84 114 167 170 249

Indianapolis-Carmel-Anderson, IN 282 293 296 274 272 254 248 234 224 23 27 45 54 67 81

Johnstown, PA 39 43 44 40 40 37 37 34 33 3 4 7 9 10 13

Lancaster, PA 109 103 101 95 92 87 83 80 73 9 11 18 22 26 32

Las Vegas-Henderson-Paradise, NV 163 186 189 172 174 159 159 145 144 15 17 30 33 44 49

Lebanon, PA 25 27 27 25 25 23 23 21 21 2 3 5 5 7 7

Little Rock-North Little Rock-Conway, AR 100 116 117 107 107 98 98 89 88 10 11 21 22 31 32

Los Angeles-Long Beach-Anaheim, CA 2,250 2,190 2,190 2,030 2,020 1,870 1,850 1,710 1,680 184 195 365 388 544 578

Louisville/Jefferson County, KY-IN 184 204 208 190 191 176 174 161 156 16 20 32 40 48 59

Macon, GA 41 48 48 44 45 41 41 38 37 4 4 8 9 11 13

McAllen-Edinburg-Mission, TX 94 110 110 101 102 93 93 85 85 9 10 19 20 28 29

Napa, CA 23 27 27 25 25 23 23 21 20 2 2 4 5 7 7

New York-Newark-Jersey City, NY-NJ-PA 3,540 4,020 4,130 3,750 3,810 3,480 3,480 3,200 3,160 310 368 616 730 918 1,090

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1,000 1,040 1,070 971 958 898 846 823 732 84 127 167 251 249 374

San Luis Obispo-Paso Robles-Arroyo Grande, CA 29 33 33 30 30 28 28 25 25 3 3 6 6 8 9

St. Louis, MO-IL 569 656 668 610 617 564 565 518 512 53 60 106 119 158 178

Weirton-Steubenville, WV-OH 44 44 45 41 41 38 37 35 33 4 4 7 9 10 13

Wheeling, WV-OH 48 56 56 51 52 47 47 43 43 5 5 10 10 14 15

Totals 13,300 14,300 14,600 13,300 13,300 12,300 12,100 11,300 10,900 1,140 1,400 2,270 2,770 3,390 4,130

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)
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Table C-24. CBSA level results for the 30 annual-controlled urban study areas using the Pope et al., 2015 long-term IHD 

mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 152 163 167 152 153 141 138 130 123 13 17 25 33 38 50

Altoona, PA 29 34 34 31 32 29 29 26 26 3 3 6 6 9 9

Atlanta-Sandy Springs-Roswell, GA 390 435 447 407 413 379 378 350 342 32 40 64 79 96 118

Birmingham-Hoover, AL 154 162 167 152 150 142 133 131 116 12 19 23 38 34 57

Canton-Massillon, OH 85 93 95 87 87 80 79 73 71 8 9 16 18 23 27

Chicago-Naperville-Elgin, IL-IN-WI 1,250 1,340 1,350 1,240 1,250 1,150 1,140 1,050 1,030 107 120 213 239 317 356

Cincinnati, OH-KY-IN 313 344 352 321 323 297 293 273 263 27 34 54 67 80 99

Cleveland-Elyria, OH 411 408 406 382 367 357 327 331 286 29 45 58 89 87 133

Detroit-Warren-Dearborn, MI 967 1,020 1,040 947 941 871 839 794 736 86 115 172 227 256 338

El Centro, CA 20 19 19 18 18 16 16 14 15 2 2 3 3 5 5

Elkhart-Goshen, IN 40 46 46 42 43 39 39 35 35 4 4 8 8 12 12

Evansville, IN-KY 57 66 67 61 62 57 57 52 51 6 6 11 13 16 19

Houston-The Woodlands-Sugar Land, TX 642 682 703 635 634 588 564 540 494 54 79 107 157 160 234

Indianapolis-Carmel-Anderson, IN 266 276 279 258 256 239 234 220 211 21 26 42 51 63 76

Johnstown, PA 37 40 42 38 38 35 34 32 31 3 4 6 8 10 12

Lancaster, PA 103 97 96 90 87 82 78 75 69 8 10 16 20 25 30

Las Vegas-Henderson-Paradise, NV 153 175 178 162 164 149 150 136 135 14 16 28 31 42 46

Lebanon, PA 24 26 26 24 24 22 22 20 20 2 2 4 5 6 7

Little Rock-North Little Rock-Conway, AR 94 109 110 101 101 92 92 83 83 10 10 19 20 29 30

Los Angeles-Long Beach-Anaheim, CA 2,120 2,070 2,060 1,920 1,900 1,760 1,740 1,610 1,580 172 183 342 364 510 543

Louisville/Jefferson County, KY-IN 174 192 196 179 180 165 163 152 147 15 19 30 37 45 56

Macon, GA 39 45 46 42 42 39 39 35 35 4 4 7 8 11 12

McAllen-Edinburg-Mission, TX 88 103 104 96 96 88 88 80 80 9 9 18 18 26 27

Napa, CA 22 25 25 23 23 21 21 19 19 2 2 4 4 6 7

New York-Newark-Jersey City, NY-NJ-PA 3,330 3,790 3,890 3,530 3,590 3,280 3,280 3,020 2,970 290 345 578 685 862 1,020

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 944 984 1,010 915 902 845 796 775 688 79 119 156 236 233 351

San Luis Obispo-Paso Robles-Arroyo Grande, CA 28 31 31 28 28 26 26 24 23 3 3 5 5 8 8

St. Louis, MO-IL 536 618 629 575 581 531 532 487 482 50 56 99 112 148 167

Weirton-Steubenville, WV-OH 41 42 42 39 38 36 35 33 31 3 4 7 8 10 12

Wheeling, WV-OH 45 52 53 48 49 44 44 40 40 5 5 9 9 13 14

Totals 12,500 13,500 13,700 12,500 12,600 11,600 11,400 10,600 10,200 1,070 1,310 2,130 2,600 3,180 3,880

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)
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Table C-25. CBSA level results for the 30 annual-controlled urban study areas using the Di et al., 2017b long-term all-cause 

mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 547 589 602 548 549 507 496 465 441 45 59 90 117 134 174

Altoona, PA 104 123 123 113 113 103 104 94 94 11 11 21 21 32 32

Atlanta-Sandy Springs-Roswell, GA 1,940 2,180 2,240 2,030 2,060 1,890 1,880 1,740 1,700 158 194 314 387 470 578

Birmingham-Hoover, AL 709 745 770 697 692 649 613 601 533 52 85 104 170 156 253

Canton-Massillon, OH 300 329 335 305 307 281 278 256 249 27 31 53 63 80 93

Chicago-Naperville-Elgin, IL-IN-WI 4,220 4,520 4,570 4,200 4,200 3,870 3,840 3,550 3,470 350 396 698 789 1,040 1,180

Cincinnati, OH-KY-IN 1,160 1,280 1,300 1,190 1,190 1,100 1,080 1,000 970 98 120 196 240 293 358

Cleveland-Elyria, OH 1,290 1,280 1,280 1,200 1,150 1,120 1,020 1,030 891 89 138 178 274 266 410

Detroit-Warren-Dearborn, MI 2,430 2,570 2,620 2,380 2,360 2,180 2,100 1,990 1,840 211 283 421 562 630 840

El Centro, CA 51 48 48 44 45 40 41 36 37 4 4 8 8 12 12

Elkhart-Goshen, IN 114 133 133 122 123 112 112 101 101 11 12 23 23 34 35

Evansville, IN-KY 207 242 247 224 226 206 206 188 185 20 22 39 45 59 66

Houston-The Woodlands-Sugar Land, TX 2,130 2,260 2,340 2,100 2,100 1,940 1,870 1,780 1,630 174 256 347 510 519 761

Indianapolis-Carmel-Anderson, IN 950 989 997 921 915 852 832 783 749 74 89 148 178 221 266

Johnstown, PA 120 133 136 123 124 114 112 104 100 10 13 21 26 31 39

Lancaster, PA 397 374 370 346 334 317 299 288 263 31 38 62 76 93 114

Las Vegas-Henderson-Paradise, NV 543 622 633 575 582 529 531 482 479 49 54 98 108 146 161

Lebanon, PA 95 102 102 94 94 86 86 78 77 8 9 17 18 25 27

Little Rock-North Little Rock-Conway, AR 354 411 415 378 381 345 346 312 311 36 37 71 75 107 111

Los Angeles-Long Beach-Anaheim, CA 5,280 5,150 5,140 4,770 4,730 4,380 4,320 3,990 3,900 418 445 832 887 1,240 1,330

Louisville/Jefferson County, KY-IN 731 813 829 754 759 695 688 636 617 64 77 127 152 190 228

Macon, GA 129 149 152 138 140 128 128 117 115 12 13 23 26 35 39

McAllen-Edinburg-Mission, TX 213 251 252 231 232 212 212 192 192 21 22 42 44 62 65

Napa, CA 87 99 100 92 92 84 84 77 76 8 9 16 17 24 26

New York-Newark-Jersey City, NY-NJ-PA 7,690 8,770 9,020 8,170 8,310 7,570 7,580 6,960 6,850 649 781 1,290 1,560 1,940 2,320

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3,260 3,400 3,480 3,160 3,110 2,910 2,740 2,660 2,360 266 401 530 798 792 1,190

San Luis Obispo-Paso Robles-Arroyo Grande, CA 108 120 121 111 111 101 101 92 91 10 10 20 21 30 31

St. Louis, MO-IL 1,590 1,840 1,870 1,710 1,730 1,570 1,580 1,440 1,420 144 163 287 325 429 485

Weirton-Steubenville, WV-OH 102 104 104 96 95 89 86 82 76 8 10 16 20 24 30

Wheeling, WV-OH 124 144 145 133 133 122 122 110 110 12 13 24 25 36 37

Totals 37,000 39,800 40,500 36,900 37,000 34,100 33,500 31,200 29,900 3,070 3,800 6,120 7,560 9,150 11,300

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)

 Alternative Annual 

Standard (12-10 µg/m³)
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Table C-26. CBSA level results for the 30 annual-controlled urban study areas using the Pope et al., 2015 long-term all-cause 

mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 595 641 656 596 598 551 539 506 479 49 63 97 126 145 188

Altoona, PA 107 126 126 116 116 106 106 96 96 11 11 22 22 32 33

Atlanta-Sandy Springs-Roswell, GA 2,310 2,590 2,660 2,420 2,450 2,240 2,230 2,070 2,020 186 229 371 457 555 683

Birmingham-Hoover, AL 831 874 903 817 811 761 717 704 623 61 100 121 198 181 296

Canton-Massillon, OH 318 349 355 323 325 297 294 271 263 28 33 56 66 84 98

Chicago-Naperville-Elgin, IL-IN-WI 4,660 4,990 5,040 4,630 4,640 4,270 4,230 3,910 3,820 384 434 767 866 1,150 1,290

Cincinnati, OH-KY-IN 1,310 1,440 1,480 1,340 1,350 1,240 1,220 1,130 1,100 110 136 220 270 329 404

Cleveland-Elyria, OH 1,390 1,380 1,370 1,290 1,230 1,200 1,100 1,110 956 96 147 191 293 285 438

Detroit-Warren-Dearborn, MI 2,720 2,880 2,940 2,660 2,640 2,440 2,350 2,220 2,050 235 314 469 625 702 933

El Centro, CA 59 56 56 51 52 47 47 42 42 5 5 10 10 14 14

Elkhart-Goshen, IN 125 146 146 134 135 123 123 111 111 12 13 25 25 37 38

Evansville, IN-KY 229 268 273 248 250 228 228 207 205 22 25 43 49 65 73

Houston-The Woodlands-Sugar Land, TX 2,590 2,760 2,850 2,560 2,560 2,360 2,270 2,170 1,980 211 310 421 617 629 922

Indianapolis-Carmel-Anderson, IN 1,080 1,130 1,130 1,050 1,040 968 946 889 851 84 101 168 201 251 300

Johnstown, PA 126 139 143 129 130 119 118 109 105 11 14 21 27 32 40

Lancaster, PA 402 378 373 349 337 320 301 290 265 31 38 62 77 93 114

Las Vegas-Henderson-Paradise, NV 631 723 737 669 677 615 617 560 557 57 63 113 125 170 187

Lebanon, PA 97 104 105 96 96 88 87 80 79 9 9 17 19 26 28

Little Rock-North Little Rock-Conway, AR 414 481 486 443 446 404 405 365 364 42 44 83 87 124 130

Los Angeles-Long Beach-Anaheim, CA 5,800 5,660 5,650 5,230 5,200 4,810 4,740 4,380 4,280 456 486 909 969 1,360 1,450

Louisville/Jefferson County, KY-IN 841 935 954 867 872 799 791 730 708 73 88 145 174 217 261

Macon, GA 153 177 180 164 166 151 151 139 137 14 16 27 31 41 46

McAllen-Edinburg-Mission, TX 243 286 288 264 265 241 241 219 218 24 25 47 49 71 74

Napa, CA 89 102 103 94 95 87 86 79 78 8 9 17 18 25 26

New York-Newark-Jersey City, NY-NJ-PA 8,230 9,400 9,670 8,750 8,890 8,100 8,110 7,450 7,330 694 831 1,380 1,660 2,070 2,480

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3,570 3,730 3,820 3,460 3,410 3,190 3,000 2,910 2,580 290 438 578 872 864 1,300

San Luis Obispo-Paso Robles-Arroyo Grande, CA 112 125 125 115 115 105 105 95 95 10 11 21 21 31 32

St. Louis, MO-IL 1,750 2,030 2,070 1,880 1,900 1,740 1,740 1,590 1,570 158 179 314 356 470 532

Weirton-Steubenville, WV-OH 112 114 115 106 105 98 94 90 84 9 11 17 22 26 33

Wheeling, WV-OH 129 150 151 138 139 127 127 115 114 13 13 25 26 38 39

Totals 41,000 44,200 45,000 41,000 41,000 37,800 37,100 34,600 33,200 3,390 4,190 6,760 8,350 10,100 12,500

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)
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Table C-27. CBSA level results for the 30 annual-controlled urban study areas using the Thurston et al., 2016 long-term all-

cause mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 157 169 173 157 157 145 142 133 126 13 16 25 33 37 49

Altoona, PA 27 32 33 30 30 27 27 25 25 3 3 5 5 8 8

Atlanta-Sandy Springs-Roswell, GA 644 725 746 676 685 626 624 577 562 51 63 102 126 152 188

Birmingham-Hoover, AL 231 243 252 227 225 211 199 195 172 16 27 33 55 49 82

Canton-Massillon, OH 84 92 94 85 86 78 77 71 69 7 9 14 17 22 26

Chicago-Naperville-Elgin, IL-IN-WI 1,220 1,310 1,320 1,210 1,210 1,120 1,110 1,020 996 99 112 197 223 295 334

Cincinnati, OH-KY-IN 353 390 400 362 365 334 330 306 294 29 36 58 72 87 108

Cleveland-Elyria, OH 359 357 355 333 319 310 282 286 246 24 37 48 75 73 112

Detroit-Warren-Dearborn, MI 717 761 776 702 697 643 618 583 538 61 81 121 162 182 243

El Centro, CA 16 16 16 14 14 13 13 12 12 1 1 3 3 4 4

Elkhart-Goshen, IN 33 39 39 36 36 33 33 29 29 3 3 6 7 10 10

Evansville, IN-KY 62 72 74 67 68 61 61 56 55 6 7 11 13 17 19

Houston-The Woodlands-Sugar Land, TX 729 776 803 720 720 664 636 607 552 58 86 116 171 174 256

Indianapolis-Carmel-Anderson, IN 293 305 308 284 282 262 256 240 230 22 27 45 54 67 80

Johnstown, PA 31 34 35 32 32 29 29 27 26 3 3 5 7 8 10

Lancaster, PA 97 91 90 84 81 77 72 69 63 7 9 15 18 22 27

Las Vegas-Henderson-Paradise, NV 186 214 218 197 200 181 182 165 164 17 18 33 37 50 55

Lebanon, PA 25 26 26 24 24 22 22 20 20 2 2 4 5 6 7

Little Rock-North Little Rock-Conway, AR 116 135 137 124 125 113 113 102 102 11 12 23 24 34 36

Los Angeles-Long Beach-Anaheim, CA 1,470 1,430 1,430 1,320 1,310 1,210 1,190 1,100 1,080 113 120 225 240 338 360

Louisville/Jefferson County, KY-IN 231 258 263 239 240 220 217 201 194 20 24 39 47 59 71

Macon, GA 43 51 52 47 47 43 43 39 39 4 4 8 9 11 13

McAllen-Edinburg-Mission, TX 66 78 79 72 72 66 66 59 59 6 7 13 13 19 20

Napa, CA 22 25 26 23 24 21 21 19 19 2 2 4 4 6 6

New York-Newark-Jersey City, NY-NJ-PA 2,070 2,370 2,440 2,200 2,240 2,030 2,040 1,870 1,840 172 205 343 410 514 615

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 912 953 977 883 870 812 763 741 655 73 110 145 219 217 328

San Luis Obispo-Paso Robles-Arroyo Grande, CA 27 30 30 27 27 25 25 23 23 2 3 5 5 7 8

St. Louis, MO-IL 463 539 550 499 505 460 460 420 415 41 46 82 93 122 139

Weirton-Steubenville, WV-OH 31 32 32 30 29 27 26 25 23 2 3 5 6 7 9

Wheeling, WV-OH 34 40 40 37 37 34 34 30 30 3 3 7 7 10 10

Totals 10,700 11,600 11,800 10,700 10,800 9,900 9,710 9,050 8,650 871 1,080 1,740 2,160 2,610 3,230

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)
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Table C-28. CBSA level results for the 30 annual-controlled urban study areas using the Turner et al., 2016 long-term lung 

cancer mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 48 51 52 48 48 44 43 41 38 4 5 8 10 12 15

Altoona, PA 6 7 7 7 7 6 6 6 6 1 1 1 1 2 2

Atlanta-Sandy Springs-Roswell, GA 183 204 210 191 194 178 177 164 160 15 18 29 36 44 54

Birmingham-Hoover, AL 63 66 69 62 62 58 55 54 47 5 8 9 15 14 23

Canton-Massillon, OH 25 28 28 26 26 24 24 22 21 2 3 5 5 7 8

Chicago-Naperville-Elgin, IL-IN-WI 379 406 410 377 378 348 345 319 312 32 36 63 71 94 106

Cincinnati, OH-KY-IN 122 134 137 125 126 115 114 106 102 10 13 20 26 31 38

Cleveland-Elyria, OH 111 111 110 103 99 96 88 89 77 8 12 15 24 23 35

Detroit-Warren-Dearborn, MI 220 233 237 215 214 198 190 180 166 19 26 38 51 57 76

El Centro, CA 4 4 4 3 3 3 3 3 3 0 0 1 1 1 1

Elkhart-Goshen, IN 10 11 11 10 10 9 9 9 9 1 1 2 2 3 3

Evansville, IN-KY 19 22 23 21 21 19 19 17 17 2 2 4 4 5 6

Houston-The Woodlands-Sugar Land, TX 194 206 213 191 191 177 170 162 148 16 24 31 47 47 70

Indianapolis-Carmel-Anderson, IN 102 106 107 99 98 91 89 84 80 8 10 16 19 24 29

Johnstown, PA 8 9 9 9 9 8 8 7 7 1 1 1 2 2 3

Lancaster, PA 28 26 26 24 23 22 21 20 18 2 3 4 5 6 8

Las Vegas-Henderson-Paradise, NV 55 63 64 58 59 53 53 49 48 5 5 10 11 15 16

Lebanon, PA 9 9 9 8 8 8 8 7 7 1 1 2 2 2 2

Little Rock-North Little Rock-Conway, AR 37 43 43 39 40 36 36 33 33 4 4 7 8 11 12

Los Angeles-Long Beach-Anaheim, CA 360 351 351 325 323 299 295 272 266 29 30 57 61 85 91

Louisville/Jefferson County, KY-IN 82 91 93 85 85 78 78 72 69 7 9 14 17 21 26

Macon, GA 13 15 15 14 14 13 13 11 11 1 1 2 3 3 4

McAllen-Edinburg-Mission, TX 11 13 13 12 12 11 11 10 10 1 1 2 2 3 3

Napa, CA 7 8 8 7 7 6 6 6 6 1 1 1 1 2 2

New York-Newark-Jersey City, NY-NJ-PA 590 672 691 626 637 580 581 534 525 50 60 99 119 148 178

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 284 296 303 275 271 253 238 232 205 23 35 46 70 69 104

San Luis Obispo-Paso Robles-Arroyo Grande, CA 8 9 9 8 8 7 7 7 7 1 1 1 2 2 2

St. Louis, MO-IL 158 182 186 169 171 156 157 143 142 14 16 28 32 42 48

Weirton-Steubenville, WV-OH 9 10 10 9 9 8 8 8 7 1 1 1 2 2 3

Wheeling, WV-OH 11 12 12 11 11 10 10 9 9 1 1 2 2 3 3

Totals 3,150 3,400 3,460 3,160 3,160 2,920 2,860 2,670 2,560 262 327 522 651 780 972

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)



 C-69  

Table C-29. CBSA level results for the 30 annual-controlled urban study areas using the Baxter et al., 2017 all-cause short-

term mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 29 31 32 29 29 27 26 25 23 2 3 5 6 7 9

Altoona, PA 5 6 6 6 6 5 5 5 5 1 1 1 1 2 2

Atlanta-Sandy Springs-Roswell, GA 111 126 129 117 119 108 108 100 97 9 11 18 22 26 32

Birmingham-Hoover, AL 40 42 44 40 39 37 35 34 30 3 5 6 9 9 14

Canton-Massillon, OH 15 17 17 16 16 14 14 13 13 1 2 3 3 4 5

Chicago-Naperville-Elgin, IL-IN-WI 228 245 248 227 227 208 206 190 186 18 21 37 41 55 62

Cincinnati, OH-KY-IN 63 70 71 64 65 59 59 54 52 5 6 10 13 15 19

Cleveland-Elyria, OH 68 67 67 63 60 58 53 54 46 5 7 9 14 14 21

Detroit-Warren-Dearborn, MI 132 140 143 129 128 118 113 107 99 11 15 22 30 33 44

El Centro, CA 3 3 3 2 2 2 2 2 2 0 0 0 0 1 1

Elkhart-Goshen, IN 6 7 7 7 7 6 6 5 5 1 1 1 1 2 2

Evansville, IN-KY 11 13 13 12 12 11 11 10 10 1 1 2 2 3 3

Houston-The Woodlands-Sugar Land, TX 126 134 139 124 124 114 109 104 95 10 15 20 29 30 44

Indianapolis-Carmel-Anderson, IN 52 54 55 51 50 47 46 43 41 4 5 8 9 12 14

Johnstown, PA 6 7 7 6 6 6 6 5 5 0 1 1 1 1 2

Lancaster, PA 20 18 18 17 16 16 15 14 13 1 2 3 4 4 5

Las Vegas-Henderson-Paradise, NV 30 34 35 32 32 29 29 26 26 3 3 5 6 8 9

Lebanon, PA 5 5 5 5 5 4 4 4 4 0 0 1 1 1 1

Little Rock-North Little Rock-Conway, AR 20 23 24 21 22 20 20 18 18 2 2 4 4 6 6

Los Angeles-Long Beach-Anaheim, CA 284 277 277 255 254 234 231 212 208 22 23 43 46 65 69

Louisville/Jefferson County, KY-IN 41 45 46 42 42 38 38 35 34 3 4 7 8 10 12

Macon, GA 7 9 9 8 8 7 7 7 7 1 1 1 1 2 2

McAllen-Edinburg-Mission, TX 12 14 14 13 13 12 12 11 11 1 1 2 2 3 4

Napa, CA 4 5 5 5 5 4 4 4 4 0 0 1 1 1 1

New York-Newark-Jersey City, NY-NJ-PA 401 459 473 427 434 394 394 361 355 33 39 66 79 99 118

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 172 180 184 166 164 153 144 139 123 14 21 27 41 41 61

San Luis Obispo-Paso Robles-Arroyo Grande, CA 5 6 6 5 5 5 5 5 4 0 0 1 1 1 1

St. Louis, MO-IL 84 98 100 90 91 83 83 76 75 7 8 15 17 22 25

Weirton-Steubenville, WV-OH 5 5 6 5 5 5 4 4 4 0 1 1 1 1 2

Wheeling, WV-OH 6 7 7 7 7 6 6 6 6 1 1 1 1 2 2

Totals 1,990 2,150 2,190 1,990 1,990 1,830 1,790 1,670 1,600 160 197 319 394 478 592

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)
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Table C-30. CBSA level results for the 30 annual-controlled urban study areas using the Ito et al., 2013 all-cause short-term 

mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 14 15 15 14 14 13 12 12 11 1 1 2 3 3 4

Altoona, PA 2 3 3 3 3 2 2 2 2 0 0 0 0 1 1

Atlanta-Sandy Springs-Roswell, GA 53 60 62 56 57 52 52 48 46 4 5 8 10 13 15

Birmingham-Hoover, AL 19 20 21 19 19 18 17 16 14 1 2 3 4 4 7

Canton-Massillon, OH 7 8 8 7 7 7 7 6 6 1 1 1 1 2 2

Chicago-Naperville-Elgin, IL-IN-WI 107 115 116 106 106 98 97 89 87 9 10 17 19 26 29

Cincinnati, OH-KY-IN 30 33 34 31 31 28 28 26 25 2 3 5 6 7 9

Cleveland-Elyria, OH 32 31 31 29 28 27 25 25 22 2 3 4 7 6 10

Detroit-Warren-Dearborn, MI 62 66 68 61 61 56 54 51 47 5 7 10 14 16 21

El Centro, CA 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Elkhart-Goshen, IN 3 3 3 3 3 3 3 3 3 0 0 1 1 1 1

Evansville, IN-KY 5 6 6 6 6 5 5 5 5 0 1 1 1 1 2

Houston-The Woodlands-Sugar Land, TX 61 65 67 60 60 55 53 50 46 5 7 10 14 14 21

Indianapolis-Carmel-Anderson, IN 25 26 26 24 24 22 22 20 20 2 2 4 5 6 7

Johnstown, PA 3 3 3 3 3 3 3 2 2 0 0 0 1 1 1

Lancaster, PA 9 9 9 8 8 7 7 7 6 1 1 1 2 2 3

Las Vegas-Henderson-Paradise, NV 14 16 17 15 15 14 14 13 13 1 1 3 3 4 4

Lebanon, PA 2 2 2 2 2 2 2 2 2 0 0 0 0 1 1

Little Rock-North Little Rock-Conway, AR 10 11 11 10 10 9 9 8 8 1 1 2 2 3 3

Los Angeles-Long Beach-Anaheim, CA 133 130 129 120 119 109 108 99 97 10 11 20 22 30 32

Louisville/Jefferson County, KY-IN 19 22 22 20 20 18 18 17 16 2 2 3 4 5 6

Macon, GA 4 4 4 4 4 3 3 3 3 0 0 1 1 1 1

McAllen-Edinburg-Mission, TX 6 7 7 6 6 6 6 5 5 1 1 1 1 2 2

Napa, CA 2 2 2 2 2 2 2 2 2 0 0 0 0 1 1

New York-Newark-Jersey City, NY-NJ-PA 187 214 220 199 202 184 184 168 165 15 18 31 37 46 55

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 82 86 88 79 78 73 68 66 59 6 10 13 19 19 29

San Luis Obispo-Paso Robles-Arroyo Grande, CA 3 3 3 3 3 2 2 2 2 0 0 0 0 1 1

St. Louis, MO-IL 40 47 48 43 44 40 40 36 36 4 4 7 8 11 12

Weirton-Steubenville, WV-OH 3 3 3 2 2 2 2 2 2 0 0 0 0 1 1

Wheeling, WV-OH 3 3 3 3 3 3 3 3 3 0 0 1 1 1 1

Totals 940 1,010 1,030 939 940 864 847 789 754 75 93 150 186 226 279

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)
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Table C-31. CBSA level results for the 30 annual-controlled urban study areas using the Zanobetti et al., 2014 all-cause short-

term mortality CR function. 

 

 

Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM Pri-PM Sec-PM

Akron, OH 45 49 50 45 45 42 41 38 36 4 5 7 9 11 14

Altoona, PA 9 10 10 9 9 9 9 8 8 1 1 2 2 3 3

Atlanta-Sandy Springs-Roswell, GA 159 180 185 167 170 155 154 142 139 13 15 25 31 38 46

Birmingham-Hoover, AL 58 62 64 57 57 53 50 49 44 4 7 8 14 12 20

Canton-Massillon, OH 25 27 28 25 25 23 23 21 20 2 3 4 5 6 7

Chicago-Naperville-Elgin, IL-IN-WI 348 373 377 345 346 318 315 290 284 28 32 56 63 83 94

Cincinnati, OH-KY-IN 95 105 108 98 98 90 89 82 79 8 10 16 19 23 29

Cleveland-Elyria, OH 106 106 105 99 94 92 83 85 73 7 11 14 22 21 33

Detroit-Warren-Dearborn, MI 200 212 216 196 194 179 172 162 149 17 22 34 45 50 67

El Centro, CA 4 4 4 4 4 3 3 3 3 0 0 1 1 1 1

Elkhart-Goshen, IN 9 11 11 10 10 9 9 8 8 1 1 2 2 3 3

Evansville, IN-KY 17 20 21 19 19 17 17 15 15 2 2 3 4 5 5

Houston-The Woodlands-Sugar Land, TX 175 187 193 173 173 160 153 146 133 14 20 28 41 41 61

Indianapolis-Carmel-Anderson, IN 78 82 82 76 75 70 68 64 61 6 7 12 14 18 21

Johnstown, PA 10 11 11 10 10 9 9 9 8 1 1 2 2 2 3

Lancaster, PA 33 31 31 28 28 26 24 24 21 2 3 5 6 7 9

Las Vegas-Henderson-Paradise, NV 44 51 52 47 47 43 43 39 39 4 4 8 9 12 13

Lebanon, PA 8 8 8 8 8 7 7 6 6 1 1 1 1 2 2

Little Rock-North Little Rock-Conway, AR 29 34 34 31 31 28 28 26 25 3 3 6 6 9 9

Los Angeles-Long Beach-Anaheim, CA 435 425 424 392 389 359 354 326 319 33 35 66 71 99 106

Louisville/Jefferson County, KY-IN 60 67 69 62 63 57 57 52 50 5 6 10 12 15 18

Macon, GA 11 12 13 11 12 11 11 10 9 1 1 2 2 3 3

McAllen-Edinburg-Mission, TX 17 21 21 19 19 17 17 16 16 2 2 3 3 5 5

Napa, CA 7 8 8 8 8 7 7 6 6 1 1 1 1 2 2

New York-Newark-Jersey City, NY-NJ-PA 630 722 743 671 682 619 620 568 559 52 62 103 124 154 186

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 268 280 287 259 255 238 224 217 192 21 32 42 64 63 96

San Luis Obispo-Paso Robles-Arroyo Grande, CA 9 10 10 9 9 8 8 7 7 1 1 2 2 2 2

St. Louis, MO-IL 131 152 155 141 142 129 130 118 117 11 13 23 26 34 39

Weirton-Steubenville, WV-OH 8 9 9 8 8 7 7 7 6 1 1 1 2 2 2

Wheeling, WV-OH 10 12 12 11 11 10 10 9 9 1 1 2 2 3 3

Totals 3,040 3,280 3,340 3,040 3,040 2,790 2,740 2,550 2,440 244 301 487 603 731 904

 Alternative Annual 

Standard (12-10 µg/m³)

Alternative Annual 

Standard (12-9 µg/m³)

* Pri-PM (primary PM-based modeling approach), Sec-PM (secondary PM-based modeling approach)

CBSA

Absolute Risk Risk Reduction (Relative to Current Standard)

Current 

Conditions 

(2015)

Current Standard 

(12 µg/m³)

Alternative Annual 

Standard (11 µg/m³)

 Alternative Annual 

Standard (10 µg/m³)

Alternative Annual 

Standard (9 µg/m³)

Alternative Annual 

Standard (12-11 µg/m³)
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C.2.2 Impact of Alternative Standards on the Distribution of Risk Across Ambient PM2.5 

Levels 

The tables of risk results presented in section C.2.1 illustrate the estimated risk of 

premature death under current and alternative PM2.5 standards. As the city-specific results 

indicate, both total risk and risk reductions estimated to occur under alternative standards can 

vary substantially by urban area. This is due to differences in underlying demographics (e.g., size 

and age of population), health status (e.g., underlying death rates) and exposure (air quality 

conditions). Furthermore, each of these CBSA estimates represents an aggregation of underlying 

12 km grid cell results, masking the underlying variability in the distribution of risk under 

different scenarios. Thus, it can be challenging to understand how patterns of risk are changing 

under air quality simulated to just meet the current or alternative standards. 

To better illustrate the distribution of risk under the current standards, and how that 

distribution changes under potential alternative standards, this section presents graphics 

depicting these changes both in aggregate and at the grid-cell level. It would be possible to 

illustrate these changes separately for each endpoint and CR function, as was done numerically 

in the tables in section C.2.1.  However, because the pattern of risk and risk reduction is similar 

across endpoints, we have chosen to focus on a single endpoint to illustrate the changes 

graphically. Consequently, as with the graphics presented in the PA section 3.3.2, the graphics 

presented in this section are also based on long-term exposure-related IHD mortality modeled 

using effect estimates obtained from Jerrett et al. (2016). The first set of graphics presented in 

this section (Figure C-25, Figure C-26, Figure C-27, Figure C-28, and Figure C-29) include 

results for the full set of 47 urban study areas and the second set (Figure C-30 and Figure C-31) 

include results for the 30 annual-controlled study areas. These graphical plots include: 

• Line graphs showing the distribution of gridded risk estimates across annual-

averaged PM2.5 concentrations (Figure C-25 and Figure C-30). These figures 

allow the reader to consider how the distribution of risk shifts when simulating air 

quality that just meets the current standard (12/35 µg/m3) relative to 2015 current 

conditions and subsequently how that distribution of risk shifts downward when 

simulating air quality that just meets alternative standards of 10/30 µg/m3.    

• Maps showing the 12 km grid-level risk estimates associated with each of the 47 

urban study areas.  In these representative maps each grid cell is shown as a 

square, with the color of the square going from green (lower risk estimates) to red 

(higher risk estimate) colors. The center of the color scales (the beginning of 

yellow) has been set to a risk estimate of two premature deaths. This means that 

green squares represent grid cells where 0-1 premature deaths are estimated, 
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yellow squares represent grid cells in which at least two premature deaths are 

estimated, and as the color graduation approaches red the number of estimated 

premature deaths increases. Separate maps are presented for (a) the unadjusted 

2015 current conditions simulation (Figure C-26), (b) simulation of the current 

standard (12/35 µg/m3) (Figure C-27), and (c) simulation of the change (delta) in 

risk between the current and alternative standards (10/30 µg/m3) (Figure C-28). 

These maps are not repeated for just the 30 area set, as those areas are included in 

the 47 area maps. 

• Scatter plots depicting the distribution of modeled risk by annual-average PM2.5 

concentration (Figure C-29 and Figure C-31). While these scatter plots present 

similar distributional information as the line graphs, the scatter plots allow for a 

more detailed consideration of the nature of the risk distribution in relation to 

ambient PM2.5 levels. In these figures, each grid cell is shown as a dot, with the 

frequency of dots shown on a color scale from cool (green – lower frequency) to 

hot (red – higher frequency) colors.40 Consequently, it is possible to consider 

whether, for example, a shift in risk involves a change in the magnitude of risk 

across higher-risk cells, or in a change in the density of lower risk cells.  

 

Key observations resulting from review of these graphics as well as the CBSA tables 

presented in section C.2.1 are presented below, following the graphics.  

 

                                                           
40 For adjusted air quality, a small amount of risk is estimated at concentrations higher than the level of the annual 

standard (e.g., some risk is estimated at an average concentration of 13 µg/m3 when air quality is adjusted to just 

meet the current standard). This can result because risk estimates are for a single year (i.e., 2015) within the 3-

year design value period (i.e., 2014 to 2016). While the three-year average design value is 12.0 µg/m3, a single 

year can have grid cells with annual average concentrations above or below 12.0 µg/m3. 
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 Distribution of estimated PM2.5-associated mortality for current conditions 

(2015), current standards (12/35 µg/m3), and alternative standards (10/30 µg/m3) 

simulated for all 47 urban study areas.41  

 

 

 

                                                           
41 Risk is rounded toward zero into whole PM2.5 concentration values (e.g., risk estimate at 10 µg/m3 includes risk 

occurring at 10.0-10.9 µg/m3). Blue lines represent the Pri-PM risk estimates, green lines represent the Sec-PM risk 

estimates, and black lines represent the 2015 current conditions risk estimates. 
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 Estimated number of premature deaths (by 12 km grid cell) under 2015 

current conditions in all 47 study areas. 

 

 

 Estimated number of premature deaths (by 12 km grid cell) when just 

meeting the current PM standards (12/35) in all 47 study areas (Pri-PM simulation). 
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 Estimated reduction in the number of premature deaths (by 12 km grid cell) 

when going from just meeting the current standards (12/35) to just meeting the 

alternative standards (10/30) in all 47 study areas (Pri-PM simulation). 
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 Distribution of estimated premature death (by 12 km grid cell) for the current 

standards (12/35 µg/m3), alternative standards (10/30 µg/m3), and current conditions 

(2015) for all 47 urban study areas (Pri-PM simulation). 
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 Distribution of estimated PM2.5-associated mortality for current conditions 

(2015), the current annual standard (12/35 µg/m3), and alternative standards (9.0, 10.0, 

and 11.0 µg/m3) simulated for the 30 annual-controlled urban study areas.42  

 

                                                           
42 Risk is rounded toward zero into whole PM2.5 concentration values (e.g., risk estimate at 10 µg/m3 includes risk 

occurring at 10.0-10.9 µg/m3). Blue lines represent the Pri-PM risk estimates, green lines represent the Sec-PM risk 

estimates, and black lines represent the 2015 current conditions risk estimates. 
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 Distribution of estimated premature death (by 12 km grid cell) for current 

conditions (2015), the current annual standard (12.0 µg/m3), alternative annual 

standards (9.0, 10.0, 11.0 µg/m3), and for all 47 urban study areas (Pri-PM simulation). 

 

Review of the CBSA-level risk estimates presented in Section C.2.1 along with the 

distributional risk estimates presented in Section C.2.2 further support the key observations 

presented in PA section 3.2. Briefly, these observations include: 

• Under simulation of the current PM2.5 standards, long-term annual mortality 

ranges up to 52,100 premature deaths (all-cause, based on Pope et al., 2015), 

including 16,800 IHD-related deaths (based on Jerrett et al., 2016) and 3,950 lung 

cancer deaths (based on Turner et al., 2016) for the full set of 47 urban study 

areas. Estimates of short-term all-cause annual mortality range up to 3,870 deaths 

(based on Zanobetti et al., 2014) for the full set of 47 urban study areas (Table C-

10). 
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• In considering the alternative suite of standards (10/30 µg/m3) modeled for the 

full set of 47 urban study areas, we note that larger risk reductions are estimated 

for those urban study areas controlled by annual standards, relative to those 

controlled by the 24-hour standard (Table C-10 and Table C-11).  

• Across the full set of alternative annual standards modeled including 11, 10 and 9 

µg/m3 (each evaluated for the 30 annually-controlled study areas), we see a 

consistent reduction in mortality (Table C-21 and Table C-22). In addition, we 

note that these risk reductions are associated with iteratively lower ambient PM2.5 

concentrations, such that with the lowest annual standard considered (9 µg/m3) 

the majority of remaining risk occurs in grid cells with ambient PM2.5 

concentrations between 7 and 9 µg/m3. In contrast, most of the risk occurring 

under the current standard occurs in grid cells with ambient concentrations in the 

range of 10-12 µg/m3 (Figure C-29).  

• Patterns of risk reduction seen in the summary (aggregated) risk results tables 

presented both in PA section 3.3 and in section C.2.1 are driven by considerable 

underlying variability across both CBSAs and across the 12km grid-level risk 

estimates. Specifically, if we consider the detailed CBSA-level risk estimates 

presented in section C.2.1, we observe significant variation in the magnitude of 

modeled risk across the 47 urban study areas. Similarly, if we consider both the 

maps and scatter plots presented in section C.2.2, we see considerable spread (i.e., 

variability) in the grid-level risk estimates. We note that this underlying 

variability in risk (both across CBSAs and across underlying 12km grid cells) 

reflects local patterns of population density, baseline incidence and modeled 

ambient PM2.5 levels. However, it is important to also note that the underlying 

variability does not result from differences in CR functions, since for all mortality 

endpoints modeled in this analysis, national-level effect estimates were utilized.   

• When considering the shift in the distribution of risks for the alternative standards 

(Figure C-29 and Figure C-31), we note that risk reductions are estimated in grid 

cells encompassing a wide range of PM2.5 concentrations. This includes grid cells 

with typical (i.e. frequently occurring) concentrations (as seen in red) as well as 

cells with concentrations that occur relatively infrequently (as seen in green). 

Furthermore, these shifts reflect reductions both in areas with relatively few 

estimated premature deaths (as represented by points near the bottom of each of 

the scatter plots) and in areas with much larger numbers of estimated deaths 

(points higher on the y-axis in these scatter plots).  
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C.3 CHARACTERIZING VARIABILITY AND UNCERTAINTY IN RISK 

ESTIMATES 

An important component of the risk assessment is the characterization of variability and 

uncertainty. Variability refers to the heterogeneity of a variable of interest within a population or 

across different populations. Variability is inherent and cannot be reduced through further 

research. Hence, the design of a population-level risk assessment is often focused on effectively 

characterizing variability in estimated risks across populations. Uncertainty refers to the lack of 

knowledge regarding the actual values of inputs to an analysis. In contrast to variability, 

uncertainty can be reduced through improved measurement of key variables and ongoing model 

refinement. This section discusses our approaches to addressing key sources of variability and 

uncertainty in the PM2.5 risk assessment.  

Variability in the risk of PM2.5-associated mortality could result from a number of factors. 

These can include variation in PM2.5 exposures within and across populations (e.g., due to 

differences in behavior patterns, building characteristics, air quality patterns etc.) and in the 

health responses to those exposures (e.g., because some groups are at increased risk of PM-

related health effects). There is also variation over space and time in both PM2.5 itself (e.g., 

concentrations, air quality patterns) and in the ambient pollutants that co-occur with PM2.5. In the 

PM2.5 risk assessment discussed in this PA, we account for these and other sources of variability, 

in part, by estimating risks based on CR functions from a number of epidemiologic studies. 

These studies evaluate PM2.5 health effect associations for either annual or daily PM2.5 exposures 

across various time periods; in numerous geographic locations, encompassing much or all of the 

U.S.; in various populations, including some with the potential to be at higher risk than the 

general population (e.g., older adults); and using a variety of methods to estimate PM2.5 

exposures (e.g., hybrid modeling approaches, monitors) and to control for potential confounders. 

In selecting areas in which to estimate PM2.5-associated risks, we include areas that cover 

multiple regions of the U.S., with varying population demographics. Additionally, we use two 

different strategies for adjusting PM2.5 air quality, reflecting the potential for changes in ambient 

PM2.5 concentrations to be influenced by changes in primary PM2.5 emissions and by changes in 

precursor emissions that contribute to secondary particle formation.  

Beyond the reliance on information from multiple epidemiologic studies to account for 

the variability in key risk assessment inputs, we use a combination of quantitative and qualitative 

approaches to more explicitly characterize the remaining uncertainty in risk estimates. The 

characterization of uncertainty associated with risk assessments is often addressed in the 

regulatory context using a tiered approach in which progressively more sophisticated methods 

are used to evaluate and characterize sources of uncertainty depending on the overall complexity 

of the risk assessment (WHO, 2008). Guidance documents developed by EPA for assessing air 
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toxics-related risk and Superfund Site risks (U.S. EPA, 2004 U.S. EPA, 2001) as well as recent 

guidance from the World Health Organization (WHO, 2008) specify multitiered approaches for 

addressing uncertainty. The WHO guidance presents a four-tiered approach, where the decision 

to proceed to the next tier is based on the outcome of the previous tier’s assessment. The four 

tiers described in the WHO guidance include: 

• Tier 0 – recommended for routine screening assessments, uses default uncertainty factors 

(rather than developing site-specific uncertainty characterizations);  

• Tier 1 – the lowest level of site-specific uncertainty characterization, involves qualitative 

characterization of sources of uncertainty (e.g., a qualitative assessment of the general 

magnitude and direction of the effect on risk results);  

• Tier 2 – site-specific deterministic quantitative analysis involving sensitivity analysis, 

interval-based assessment, and possibly probability bound (high- and low-end) 

assessment; and 

• Tier 3 – uses probabilistic methods to characterize the effects on risk estimates of sources 

of uncertainty, individually and combined. 

With this four-tiered approach, the WHO framework provides a means for systematically 

linking the characterization of uncertainty to the sophistication of the underlying risk assessment. 

Ultimately, the decision as to which tier of uncertainty characterization to include in a risk 

assessment will depend both on the overall sophistication of the risk assessment and the 

availability of information for characterizing the various sources of uncertainty. EPA staff used 

the WHO guidance as a framework for developing the approach used for characterizing 

uncertainty in this risk assessment. The overall analysis in the PM NAAQS risk assessment is 

relatively complex, thereby warranting consideration of a full probabilistic (WHO Tier 3) 

uncertainty analysis. However, limitations in available information prevent this level of analysis 

from being completed at this time. In particular, the incorporation of uncertainty related to key 

elements of CR functions (e.g., alternative functional forms, etc.) into a full probabilistic WHO 

Tier 3 analysis would require that probabilities be assigned to each competing specification of a 

given model element (with each probability reflecting a subjective assessment of the probability 

that the given specification is the “correct” description of reality). However, for many model 

elements there is insufficient information on which to base these probabilities. One approach that 

has been taken in such cases is expert elicitation; however, this approach is resource- and time-

intensive and consequently, it was not feasible to use this technique in the current PM NAAQS 

review to support a WHO Tier 3 analysis.  

For most elements of this risk assessment, rather than conducting a full probabilistic 

uncertainty analysis, we have included qualitative discussions of the potential impact of 

uncertainty on risk results (WHO Tier1) and/or completed sensitivity analyses assessing the 

potential impact of sources of uncertainty on risk results. The remainder of this section is 
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organized as follows. Those sources of uncertainty addressed quantitively in the risk assessment 

are discussed in section C.3.1. Those sources of uncertainty addressed qualitatively in the risk 

assessment are discussed in section C.3.2. Below we summarize key findings from both the 

qualitative and quantitative assessments of variability and uncertainty in the context of assessing 

overall confidence in the risk assessment and its estimates.  

C.3.1 Quantitative Assessment of Uncertainty 

The risk assessment includes three components which allow us to quantitatively evaluate 

the impact of potentially important sources of uncertainty on the risk estimates generated. Each 

of these is discussed below including conclusions drawn from each assessment regarding the 

potential importance of each source of uncertainty: 

• 95 percent CIs around point estimates of mortality risk: Each of the point estimates 

presented in the results section includes 95 percent CIs generated by BenMAP-CE, 

reflecting the standard error (SE) associated with the underlying effect estimate (i.e., a 

measure of the statistical precision of the effect estimate). There is considerable variation 

in the range of 95 percent CIs associated with the point estimates generated for this 

analysis, with some health endpoint/study combinations displaying substantially greater 

variability than others (e.g., short-term PM2.5 exposure and all-cause mortality based on 

effect estimates from Ito et al., 2013 versus long-term PM2.5 exposure IHD mortality 

estimates based on Jerrett et al., 2016, respectively—see tables presenting risk estimates 

in section 3.3.2 of this PA). There are a number of factors potentially responsible for the 

varying degrees of statistical precision in effect estimates, including sample size, 

exposure measurement error, degree of control for confounders/effect modifiers, and 

variability in PM2.5 concentrations. 

• Inclusion of range of mortality estimates reflecting variation in effect estimates across 

studies: For some mortality endpoints, we include a range of risk estimates reflecting 

different epidemiology studies and associated study designs (e.g., age ranges, methods 

for controlling potential confounders). In some instances, we find that the effect estimate 

used has only a small impact on risk estimates (i.e., modeling of IHD mortality using 

effect estimates from Jerrett et al., 2016 and Pope et al., 2015, Table 3-5 in PA section 

3.3.2). By contrast, for other mortality endpoints, such as all-cause mortality associated 

with long-term exposures (e.g., Di et al., 2017b versus Thurston et al., 2016), the use of 

different effect estimates can have a larger impact (section 3.3.2, Table 3-5). The degree 

to which different CR functions result in different risk estimates could reflect differences 

in study design and/or study populations evaluated, as well as other factors. For example, 

the examination of different cohorts in Di et al., 2017b) and Thurston et al., 2016) could 

contribute to greater divergence in risk estimates. Details regarding the design of 

epidemiology studies providing effect estimates for this risk assessment are presented in 

Table C-1).  

• Evaluation of two different strategies for simulating air quality scenarios: As noted 

above, we use two methods to adjust air quality in order to simulate just meeting the 

current and alternative standards (i.e., the Pri-PM-based method and the Sec-PM based 

method). Our evaluation of these methods reflects the fact that there is variability, and 
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uncertainty, in how emissions in a particular area could change such that the area “just 

meets” either the current or alternative standards. By modeling risks based on adjusted 

primary PM2.5 emissions and based on adjusted precursor emissions that contribute to 

secondary PM2.5 formation, the risk assessment provides insight into the potential 

significance of this source of uncertainty. As discussed in section 3.3.2 of this PA, the 

approach to adjusting air quality had relatively modest impacts on overall risk estimates. 

Specifically, the difference between the absolute risk estimates from two air quality 

modeling approach methods was generally less than 5% (Table 3-5 in PA section 3.3.2).  

C.3.2 Qualitative Uncertainty Analysis 

While the methods described above address some of the potentially important sources of 

uncertainty and variability in the risk assessment, there are a range of additional sources that 

cannot be analyzed quantitatively due to limitations in data, methods and/or resources. We have 

addressed these additional sources of uncertainty qualitatively (Table C-32).  

In describing each source of uncertainty, we attempt to characterize both the magnitude 

and direction of impact on mortality risk estimates, including our rationale for these 

characterizations. The categories used in describing the potential magnitude of impact (i.e., low, 

medium, or high) reflect EPA staff judgments on the degree to which a particular source of 

uncertainty could produce a sufficient impact on risk estimates to influence the interpretation of 

those estimates in the context of the PM NAAQS review. Sources classified as having a low 

impact would not be expected to influence conclusions from the risk assessment. Sources 

classified as having a medium impact have the potential to affect such conclusions and sources 

classified as high are likely to influence conclusions. Because this classification of the potential 

magnitude of impact of sources of uncertainty is qualitative, it is not possible to place a 

quantitative level of impact on each of the categories.  
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Table C-32. Qualitative analysis of sources of uncertainty and assessment of potential impact on risk assessment. 

Source of 
Uncertainty 

Description Direction Magnitude Comments 

a) Simulating just 
meeting current and 
alternative 
standards using 
model-based 
(Downscaler) 
methods 

a) The baseline and adjusted 
concentration fields were 
developed using modeling to fill 
spatial and temporal gaps in 
monitoring and to explore air 
quality scenarios of policy interest. 
State-of-the-science modeling 
methods were used, but model-
related biases and errors can 
introduce uncertainty into the PM2.5 
concentration estimates.  
b) Due to the national scale of the 
assessment, the modeling 
scenarios are based on “across-
the-board” emission changes in 
which emissions of primary PM2.5 or 
NOx and SO2 from all 
anthropogenic sources throughout 
the U.S. are scaled by fixed 
percentages. Although this 
approach tends to target the key 
sources in each area, it does not 
tailor emission changes to specific 
periods or sources. 
c) Two adjustment cases were 
applied that span a wide range of 
emission conditions, but these 
cases are necessarily a subset of 
the full set of possible emission 
cases that could be used to adjust 
PM2.5 concentrations to just meet 
standards.    

This source of 
uncertainty could 
bias results in 
either direction.  

Medium Use of state-of-the-science modeling systems with the 
relative response factor adjustment approach provides 
confidence in the broad features of the simulated national 
PM2.5 distributions and how the distributions shift with 
changing standards levels. Due to challenges in modeling 
local features in the national annual simulations, quantitative 
results for individual areas or small subsets of grid cells are 
relatively uncertain compared with broad features of the 
national PM2.5 distributions. 
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Source of 
Uncertainty 

Description Direction Magnitude Comments 

b) Simulating just 
meeting alternative 
annual standards 
with levels of 9.0 
and 11.0 ug/m3 
using linear 
extrapolation/ 
interpolation 

The use of extrapolation/ 
interpolation in simulating just 
meeting annual standards 
introduces uncertainty into the risk 
assessment since this approach 
does not fully capture potential 
non-linearities associated with the 
formation of secondary PM2.5. 

Both Medium Extrapolation to generate the surface for 9.0 µg/m3 is 
subject to greater uncertainty than interpolation to 11.0 
µg/m3 (i.e., since the former estimates concentrations below 
those in modeled surfaces, while the latter estimates a 
surface between two sets of modeled results). In addition, 
linear extrapolation/interpolation based on the primary-PM 
modeled surfaces (for current standard and 10.0 µg/m3) is 
likely subject to less uncertainty than 
extrapolation/interpolation based on the secondary-PM 
modeled surfaces since the latter focus on secondary 
formation which could involve a higher degree of non-
linearity.  

c) Exposure 
measurement error 
in epidemiologic 
studies assessing 
the relationship 
between mortality 
and exposure to 
ambient PM2.5 

Epidemiologic studies have 
employed a variety of approaches 
to estimate population-level PM2.5 
exposures (e.g., stationary 
monitors, hybrid modeling 
approaches). These approaches 
are based on using measured or 
predicted ambient PM2.5 
concentrations as surrogates for 
population exposures. As such, 
exposure estimates in 
epidemiologic studies are subject 
to exposure error. This error in the 
underlying epidemiologic studies 
contributes to uncertainty in the risk 
estimates that are based on 
concentration-response 
relationships in those studies.  

Both Low Available studies indicate that PM2.5 health effect 
associations are robust across various approaches to 
estimating PM2.5 exposures. This includes recent studies 
that estimate exposures using ground-based monitors alone 
and studies that estimate exposures using data from 
multiple sources (e.g., satellites, land use information, 
modeling), in addition to monitors. While none of these 
approaches eliminates the potential for exposure error in 
epidemiologic studies, such error does not call into question 
the findings of key PM2.5 epidemiologic studies. The ISA 
notes that, while bias in either direction can occur, exposure 
error tends to result in underestimation of health effects in 
epidemiologic studies of PM exposure (U.S. EPA, 2019, 
section 3.5). Consistent with this, a recent study Hart et al. 
(2015) reports that correction for PM2.5 exposure error using 
personal exposure information results in a moderately larger 
effect estimate for long-term PM2.5 exposure and mortality 
(though with wider confidence intervals). While most PM2.5 
epidemiologic studies have not employed similar corrections 
for exposure error, several studies report that restricting 
analyses to populations in close proximity to a monitor (i.e., 
in order to reduce exposure error) result in larger PM2.5 
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Source of 
Uncertainty 

Description Direction Magnitude Comments 

effect estimates (e.g., Willis et al., 2003; Kloog et al., 2013). 
Thus, to the extent key PM2.5 epidemiologic studies are 
subject to exposure error, correction for that error would 
likely result in larger effect estimates, and thus larger 
estimates of PM2.5-associated mortality incidence in the risk 
assessment.   
 

d) Representing 
population-level 
exposure with 12 
km grid cell spatial 
framework (in 
context of modeling 
long-term exposure-
related mortality) 

The risk assessment utilizes a 12 
km grid structure in modeling risk. 
A source of uncertainty associated 
with this approach is the mismatch 
between the 12 km grid cell 
framework and the exposure 
estimation approaches used in the 
epidemiology studies providing 
effect estimates for the risk 
assessment. This mismatch can 
introduce additional exposure error 
to risk estimates, beyond the error 
in the underlying epidemiologic 
study itself.  

Both Medium There are a variety of spatial templates used across the five 
epidemiology studies providing effect estimates used in the 
risk assessment and that none of them are an exact match 
with the 12km grid cell template used in the risk 
assessment. For example, the Jerrett et al. (2013) effect 
estimate is an ensemble model which integrates results 
from a range of spatial templates (e.g., 1 km, 9.8, 30 km 
and 36 km grids) while Pope et al. (2015) utilized a county-
level design. Differences between the exposure metric used 
in the risk assessment and those used in the underlying 
epidemiologic studies introduce uncertainty into risk 
estimates.  

e) Representing 
population-level 
exposure with 12 
km grid cell spatial 
framework (in 
context of modeling 
short-term 
exposure-related 
mortality) 

As with long-term exposure-related 
mortality, short-term exposure-
related mortality endpoints were 
also modeled using the same 12 
km grid cell template. The 
disconnect between the spatial 
template used in the underlying 
short-term epidemiology studies 
and the 12 km grid template used 
in the risk assessment introduces 
uncertainty into risk estimates.  

Both Medium-High The three studies providing effect estimates for short-term 
exposure-related mortality in the risk assessment all utilized 
some form of urban-level spatial unit in characterizing 
exposure (e.g., Baxter et al. (2017) utilizes the CBSA, Ito et 
al. (2013), utilizes the MSA), which are larger (less spatially 
differentiated) in general than the 12 km grid cells used in 
modeling risk. This means that we are generally modeling 
short-term exposure-related mortality at a finer level of 
spatial resolution in the risk assessment than reflected in 
the epidemiology studies supplying the effect estimates, 
which does introduce uncertainty into the analysis.   

f) Temporal 
mismatch between 

Several of the epidemiology 
studies for long-term exposure-

Both Low This approach can be reasonable in the context of an 
epidemiologic study evaluating health effect associations 
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Source of 
Uncertainty 

Description Direction Magnitude Comments 

ambient air quality 
data characterizing 
exposure and 
mortality in long-
term exposure-
related 
epidemiology 
studies 

related mortality have a mismatch 
between the time period associated 
with ambient PM2.5 concentrations 
used to characterize population-
level exposure and mortality data 
(i.e., the ambient PM2.5 data 
reflects a period near the end of 
the mortality period for Jerrett et al. 
(2016) and Pope et al. (2015)).  

with long-term PM2.5 exposures, under the assumption that 
spatial patterns in PM2.5 concentrations are not appreciably 
different during time periods for which air quality information 
is not available (e.g., Chen et al. (2016)), Thus, as long as 
the overall spatial pattern of ambient PM2.5 levels in relation 
to population-level exposure and mortality rates has held 
relatively stable over time, then a temporal disconnect 
between the time-period associated with mortality and the 
ambient PM2.5 level used in characterizing exposure would 
not be expected to introduce significant uncertainty into the 
epidemiology studies and associated effect estimates.  

g) Shape and 
corresponding 
statistical 
uncertainty around 
the CR function for 
long-term and short-
term exposure-
related mortality 
(especially at lower 
ambient PM levels) 

Interpreting the shapes of 
concentration-response 
relationships, particularly at PM2.5 
concentrations near the lower end 
of the air quality distribution, can be 
complicated by relatively low data 
density in the lower concentration 
range, the possible influence of 
exposure measurement error, and 
variability among individuals with 
respect to air pollution health 
effects. These sources of variability 
and uncertainty tend to smooth and 
“linearize” population-level 
concentration-response functions, 
and thus could obscure the 
existence of a threshold or 
nonlinear relationship (U.S. EPA, 
2015, section 6.c).   

Both Medium-High With regard to long-term exposure-related (nonaccidental) 
mortality, the ISA concludes that the majority of evidence 
supports a linear, no-threshold concentration-response 
relationship, though there is initial evidence indicating that 
the slope of the concentration-response curve may be 
steeper at lower concentrations for cardiovascular mortality 
(U.S. EPA, 2019, section 1.5.3.2). For long-term exposure-
related mortality, the ISA notes that there is less certainty in 
the shape of the concentration-response curve at mean 
annual PM2.5 concentrations generally below 8 μg/m3 
because data density is reduced below this concentration 
(section 11.2.4). Given that a portion of risk modeling in the 
risk assessment does involve locations with ambient PM2.5 
concentrations below 8 ug/m3 (although most of the 
population modeled is associated with level above this), we 
note the potential for significant uncertainty being introduced 
into the risk assessment (particularly for that portion of risk 
modeled at or below 8 ug/m3). With regard to short-term 
exposure-related mortality, the ISA concludes that, while 
difficulties remain in assessing the shape of the PM2.5-
mortality concentration-response relationship, as identified 
in the 2009 PM ISA, and studies have not conducted 
systematic evaluations of alternatives to linearity, recent 
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Source of 
Uncertainty 

Description Direction Magnitude Comments 

studies continue to provide evidence of a no-threshold linear 
relationship, with less confidence at concentrations lower 
than 5 μg/m3.  

h) Potential 
confounding of the 
PM2.5-mortalty effect   

Factors are considered potential 
confounders if demonstrated in the 
scientific literature to be related to 
health effects and correlated with 
PM. Omitting potential confounders 
from analyses could either increase 
or decrease the magnitude of PM2.5 
effect estimates (e.g., Di et al., 
2017b, Figure S2 in Supplementary 
Materials). Thus, not accounting for 
confounders can introduce 
uncertainty into effect estimates 
and, consequently, into the risk 
estimates generated using those 
effect estimates. Confounders vary 
according to study design, 
exposure duration, and health 
effect. While a range of 
approaches to control for potential 
confounders have been adopted 
across the studies used in the risk 
assessment, and across the 
broader body of PM2.5 
epidemiologic studies assessed in 
the ISA, no individual study adjusts 
for all potential confounders. 

Both Medium Long-term PM2.5 exposure and mortality studies: For studies 
of long-term exposures, potential confounders are those 
that vary spatially. These may include socioeconomic 
status, race, age, medication use, smoking status, stress, 
noise, occupational exposures, and copollutant 
concentrations. Cohort studies used to characterize the 
PM2.5 -mortality relationship used a variety of approaches to 
account for these and other potential confounders (e.g., see 
Appendix B, Table B-12). Across studies, a variety of study 
designs and statistical approaches have been used to 
account for potential confounding in the PM2.5-mortality 
relationship. The fact that across this diverse body of 
evidence epidemiologic studies continue to report 
consistently positive associations that are often similar in 
magnitude, adds support the conclusion that the PM2.5-
mortality association is robust. Specifically regarding 
copollutants, the final PM ISA notes that, overall, 
associations remained relatively unchanged in copollutant 
models for total (nonaccidental) mortality, cardiovascular, 
and respiratory adjusted for ozone (Figure 11-20). Studies 
focusing on copollutant models with NO2, PM10−2.5, SO2 and 
benzene were examined in individual studies, and across 
these studies the PM2.5-mortality association was relatively 
unchanged (Figure 11-21).  
 
Short-term PM2.5 exposure and mortality studies: For studies 
of short-term exposures, potential confounders are those 
that vary temporally. These may include meteorology (e.g., 
temperature, humidity), day of week, season, medication 
use, allergen exposure, copollutant concentrations, and 
long-term temporal trends. Some recent studies have 
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Source of 
Uncertainty 

Description Direction Magnitude Comments 

expanded the examination of potential confounders, 
including long-term temporal trends, weather, and 
copollutants. Overall, the ISA concludes that alternative 
approaches to controlling for long-term temporal trends and 
for the potential confounding effects of weather may 
influence the magnitude of the association between PM2.5 
exposures and mortality, but have not been found to 
influence the direction of the observed association (U.S. 
EPA, 2019, section 11.1.5.1). With regard to copollutants, 
recent studies conducted outside the U.S. provide additional 
evidence that associations between short-term PM2.5 
exposures and mortality remain positive and relatively 
unchanged in copollutant models with both gaseous 
pollutants and PM10-2.5 (U.S. EPA, 2019, Section 11.1.4).   
 
 

i) Compositional 
and source 
differences in PM 

The composition of PM2.5 can differ 
across study areas reflecting 
underlying differences in primary 
and secondary PM2.5 sources (both 
natural and anthropogenic). If 
these compositional differences 
lead to differences in public health 
impacts (per unit concentration in 
ambient air) for PM2.5, then 
uncertainty may be introduced into 
risk estimates that are based on 
concentration-response 
relationships for PM2.5 mass.  

Both Low The Integrated Synthesis chapter of the final ISA (Chapter 
1, U.S. EPA, 2019) states that, the assessment of PM 
sources and components confirms and continues to support 
the conclusion from the 2009 PM ISA: Many PM2.5 
components and sources are associated with health effects, 
and the evidence does not indicate that any one source or 
component is more strongly related with health effects than 
PM2.5 mass.  

j) Lag structure in 
short-term 
exposure-related 
mortality 

It can be challenging to 
characterize the timing associated 
with specific PM2.5-related health 
effects and consequently specify 
the lag-structure that should be 

Both Low-Medium Given the emphasis placed in the risk assessment on 
mortality (and specifically, IHD mortality), we focus here on 
lags associated with cardiovascular-related mortality. The 
ISA notes that the immediate effect of PM2.5 on 
cardiovascular morbidity outcomes, specifically those 
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Source of 
Uncertainty 

Description Direction Magnitude Comments 

epidemiology 
studies 

used in modeling those health 
effects. This can introduce 
uncertainty into the modeling of risk 
for short-term exposure-related 
endpoints.  

related to ischemic events, are consistent with the lag 
structure of associations observed in studies of 
cardiovascular mortality that report immediate effects (i.e., 
lag 0-1 day). (final PM ISA, section 1.5.2.2, U.S. EPA, 2019) 

k) Use of 
associations 
reported in 
epidemiologic 
studies to estimate 
how mortality 
incidence may 
change with 
changing PM2.5 air 
quality.  
 
 

The ISA’s determination that the 
evidence supports a causal 
relationship between PM2.5 

exposure and mortality is based on 
assessing a broad body of 
evidence from epidemiologic and 
experimental studies. Thus, the 
use of the concentration-response 
relationship from any individual 
epidemiologic study to estimate 
how mortality incidence may 
change with changing PM2.5 air 
quality is subject to uncertainty.   

Both Low The ISA assesses a longstanding body of health evidence 
supporting relationships between PM2.5 exposures (short- 
and long-term) and mortality. Much of this evidence comes 
from epidemiologic studies conducted in North America, 
Europe, or Asia that demonstrate generally positive, and 
often statistically significant, associations between PM2.5 
exposures and total or cause-specific mortality. In addition, 
recent experimental evidence, as well as evidence from 
panel studies, strengthens support for potential biological 
pathways through which PM2.5 exposures could lead to 
serious health outcomes, including mortality. While this 
broad body of evidence from across disciplines provides the 
foundation for the ISA’s conclusions, the risk assessment 
necessarily focuses on a small number of individual studies. 
Although the studies selected for the risk assessment are 
part of the evidence base supporting the ISA’s causality 
determinations for mortality, the concentration-response 
relationship in any given study reflects the particular time 
period, locations, air quality distribution and populations 
evaluated in that study. Thus, the use of the concentration-
response relationship from any individual epidemiologic 
study to estimate mortality incidence across the U.S. for 
populations, locations and PM2.5 air quality distributions 
different from those present during the study period is 
subject to uncertainty.  
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C.3.3 Conclusion 

To increase overall confidence in the risk assessment, a deliberative process has been 

used in specifying each of the analytical elements comprising the risk model, including selection 

of urban study areas as well as specification of other inputs such as CR functions. This 

deliberative process involved rigorous review of available literature addressing both PM2.5 

exposure and risk combined with the application of a formal set of criteria to guide development 

of each of the key analytical elements in the risk assessment. In addition, the risk assessment 

design reflects consideration of CASAC and public comments on the Integrated Review Plan 

(IRP) for the PM NAAQS (U.S. EPA, 2016). The application of this deliberative process 

increases overall confidence in the risk estimates by ensuring that the estimates are based on the 

best available science and data characterizing PM2.5 exposure and risk, and that they reflect 

consideration of input from experts on PM exposure and risk through CASAC and public 

reviews.  
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C.4 PM2.5 DESIGN VALUES FOR THE AIR QUALITY PROJECTIONS  

 

Table C-33. PM2.5 DVs for the Primary PM projection case and 12/35 standard level. 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes 0 -18 10.99 11.99 23.7 25.4 

AkronO 391530023 Annual No 0 -18 9.16 9.90 20.2 21.4 

Altoon 420130801 Annual Yes 0 -41 10.11 12.02 23.8 29.5 

Atlant 131210039 Annual Yes 0 -27 10.38 11.99 19.7 22.6 

Atlant 132230003 Annual No 0 -27 7.82 8.62 16.2 17.5 

Atlant 131350002 Annual No 0 -27 8.84 10.05 17.9 20.2 

Atlant 130890002 Annual No 0 -27 9.34 10.63 19.2 21.7 

Atlant 130670003 Annual No 0 -27 9.51 10.79 18.6 21.0 

Atlant 130630091 Annual No 0 -27 9.86 11.19 19.1 21.6 

Bakers 060290010 24-hr Yes 79 77 16.52 10.23 70.0 35.4 

Bakers 060290016 24-hr No 79 77 18.45 11.45 61.3 31.7 

Bakers 060290015 24-hr No 79 77 5.15 3.97 15.8 13.6 

Bakers 060290014 24-hr No 79 77 16.53 9.81 61.4 31.7 

Bakers 060290011 24-hr No 79 77 6.06 4.84 19.6 16.6 

Birmin 010732059 Annual Yes 0 -10 11.25 12.00 22.3 23.9 

Birmin 010732003 Annual No 0 -10 10.08 10.70 19.0 20.1 

Birmin 010731010 Annual No 0 -10 9.78 10.30 19.2 20.1 

Birmin 010730023 Annual No 0 -10 10.94 11.66 22.8 24.2 

Canton 391510017 Annual Yes 0 -23 10.81 12.04 23.7 26.1 

Canton 391510020 Annual No 0 -23 9.91 10.96 22.0 23.6 

Chicag 170313103 Annual Yes 0 -15 11.10 12.00 22.6 24.2 

Chicag 550590019 Annual No 0 -15 8.04 8.56 20.4 21.5 

Chicag 181270024 Annual No 0 -15 9.51 10.30 22.4 24.1 

Chicag 180892004 Annual No 0 -15 9.84 10.71 24.7 26.7 

Chicag 180890031 Annual No 0 -15 10.12 11.01 23.6 25.6 

Chicag 180890026 Annual No 0 -15 - - 25.2 27.1 

Chicag 180890022 Annual No 0 -15 - - 22.7 24.8 

Chicag 180890006 Annual No 0 -15 10.03 10.93 23.1 25.2 

Chicag 171971011 Annual No 0 -15 8.36 8.85 18.4 19.3 

Chicag 171971002 Annual No 0 -15 7.69 8.23 20.0 21.2 

Chicag 170890007 Annual No 0 -15 8.94 9.55 19.2 20.5 

Chicag 170890003 Annual No 0 -15 - - 19.2 20.0 

Chicag 170434002 Annual No 0 -15 8.87 9.48 19.9 20.7 

Chicag 170316005 Annual No 0 -15 10.79 11.66 24.1 26.1 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Chicag 170314201 Annual No 0 -15 9.00 9.61 21.4 22.6 

Chicag 170314007 Annual No 0 -15 9.49 10.17 - - 

Chicag 170313301 Annual No 0 -15 10.37 11.18 23.5 25.2 

Chicag 170310076 Annual No 0 -15 10.18 10.96 22.5 24.0 

Chicag 170310057 Annual No 0 -15 11.03 11.89 26.8 28.4 

Chicag 170310052 Annual No 0 -15 10.00 10.78 23.3 24.9 

Chicag 170310022 Annual No 0 -15 10.38 11.30 22.4 23.9 

Chicag 170310001 Annual No 0 -15 10.13 10.88 21.7 23.4 

Cincin 390610014 Annual Yes 0 -24 10.70 12.02 22.9 24.7 

Cincin 390610042 Annual No 0 -24 10.29 11.47 22.6 24.5 

Cincin 390610040 Annual No 0 -24 9.45 10.53 21.0 22.9 

Cincin 390610010 Annual No 0 -24 9.43 10.41 21.3 22.9 

Cincin 390610006 Annual No 0 -24 9.46 10.56 20.3 21.8 

Cincin 390170020 Annual No 0 -24 - - 24.2 26.5 

Cincin 390170019 Annual No 0 -24 10.24 11.51 22.0 23.8 

Cincin 390170016 Annual No 0 -24 9.79 10.91 22.1 23.7 

Cincin 210373002 Annual No 0 -24 9.06 10.00 20.9 22.6 

Clevel 390350065 Annual Yes 0 2 12.17 12.03 24.9 24.6 

Clevel 391030004 Annual No 0 2 8.73 8.66 19.6 19.5 

Clevel 390933002 Annual No 0 2 8.10 8.03 20.2 20.1 

Clevel 390850007 Annual No 0 2 7.88 7.82 17.4 17.3 

Clevel 390351002 Annual No 0 2 8.86 8.78 19.5 19.4 

Clevel 390350045 Annual No 0 2 10.61 10.50 22.9 22.7 

Clevel 390350038 Annual No 0 2 11.38 11.25 25.0 24.8 

Clevel 390350034 Annual No 0 2 8.87 8.79 20.4 20.2 

Detroi 261630033 Annual Yes 0 -15 11.30 12.04 26.8 28.4 

Detroi 261630039 Annual No 0 -15 9.11 9.63 22.3 23.7 

Detroi 261630036 Annual No 0 -15 8.68 9.13 21.8 23.2 

Detroi 261630025 Annual No 0 -15 8.98 9.54 24.1 25.2 

Detroi 261630019 Annual No 0 -15 9.18 9.75 22.4 24.1 

Detroi 261630016 Annual No 0 -15 9.62 10.19 24.4 25.4 

Detroi 261630015 Annual No 0 -15 11.19 11.91 25.5 27.0 

Detroi 261630001 Annual No 0 -15 9.50 10.14 23.3 24.9 

Detroi 261470005 Annual No 0 -15 8.89 9.34 24.3 25.4 

Detroi 261250001 Annual No 0 -15 8.86 9.41 24.2 25.7 

Detroi 260990009 Annual No 0 -15 8.80 9.29 26.2 27.6 

ElCent 060250005 Annual Yes 0 12 12.63 12.00 33.5 31.3 

ElCent 060251003 Annual No 0 12 7.44 7.01 19.8 18.5 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

ElCent 060250007 Annual No 0 12 8.37 7.99 21.5 20.8 

Elkhar 180390008 Annual Yes 0 -47 10.24 12.01 28.6 33.2 

Evansv 181630023 Annual Yes 0 -44 10.11 12.03 21.5 24.0 

Evansv 211010014 Annual No 0 -44 9.64 11.32 20.7 22.3 

Evansv 181630021 Annual No 0 -44 9.84 11.68 21.6 23.3 

Evansv 181630016 Annual No 0 -44 10.02 11.91 22.0 24.0 

Fresno 060195001 24-hr Yes 0 70 14.08 10.87 49.3 35.4 

Fresno 060195025 24-hr No 0 70 13.63 9.98 47.9 31.7 

Fresno 060192009 24-hr No 0 70 8.47 7.26 31.3 25.1 

Fresno 060190011 24-hr No 0 70 14.07 10.01 53.8 34.4 

Hanfor 060310004 24-hr Yes 65 79 21.98 11.79 72.0 35.4 

Hanfor 060311004 24-hr No 65 79 16.49 9.68 58.9 30.7 

Housto 482011035 Annual Yes 0 -14 11.19 12.04 22.4 24.0 

Housto 482011039 Annual No 0 -14 9.22 9.82 21.7 23.1 

Housto 482010058 Annual No 0 -14 9.67 10.37 22.3 23.8 

Housto 481671034 Annual No 0 -14 7.36 7.57 20.3 20.8 

Indian 180970087 Annual Yes 0 -10 11.44 12.01 25.9 26.8 

Indian 180970083 Annual No 0 -10 11.06 11.59 23.9 24.9 

Indian 180970081 Annual No 0 -10 11.07 11.61 25.0 26.0 

Indian 180970078 Annual No 0 -10 10.14 10.60 24.4 24.9 

Indian 180970043 Annual No 0 -10 - - 26.0 26.4 

Indian 180950011 Annual No 0 -10 9.05 9.40 21.8 22.3 

Indian 180570007 Annual No 0 -10 9.02 9.39 21.4 22.1 

Johnst 420210011 Annual Yes 0 -25 10.68 12.03 25.8 30.3 

Lancas 420710012 Annual Yes 0 12 12.83 12.00 32.7 30.4 

Lancas 420710007 Annual No 0 12 10.57 9.88 29.8 27.4 

LasVeg 320030561 Annual Yes 0 -22 10.28 11.98 24.5 29.4 

LasVeg 320032002 Annual No 0 -22 9.79 11.38 19.8 23.4 

LasVeg 320031019 Annual No 0 -22 5.18 5.70 11.5 12.2 

LasVeg 320030540 Annual No 0 -22 8.80 10.21 21.7 25.9 

Lebano 420750100 Annual Yes 0 -15 11.20 12.02 31.4 33.9 

Little 051191008 Annual Yes 0 -41 10.27 12.03 21.7 24.7 

Little 051190007 Annual No 0 -41 9.78 11.76 20.5 24.0 

LoganU 490050007 24-hr Yes 0 -7 6.95 7.15 34.0 35.4 

LosAng 060371103 Annual Yes 0 5 12.38 12.03 32.8 32.1 

LosAng 060592022 Annual No 0 5 7.48 7.33 15.3 15.0 

LosAng 060590007 Annual No 0 5 9.63 9.37 - - 

LosAng 060374004 Annual No 0 5 10.25 9.97 27.3 26.7 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

LosAng 060374002 Annual No 0 5 11.06 10.76 29.2 28.6 

LosAng 060371602 Annual No 0 5 11.86 11.52 32.3 31.5 

LosAng 060371302 Annual No 0 5 11.99 11.64 31.5 30.8 

LosAng 060371201 Annual No 0 5 9.46 9.24 25.6 25.0 

LosAng 060370002 Annual No 0 5 10.52 10.27 29.2 28.6 

Louisv 180190006 Annual Yes 0 -27 10.64 12.04 23.9 26.2 

Louisv 211110075 Annual No 0 -27 10.42 11.84 22.3 24.3 

Louisv 211110067 Annual No 0 -27 9.55 10.78 21.4 23.6 

Louisv 211110051 Annual No 0 -27 10.29 11.48 21.8 23.7 

Louisv 211110043 Annual No 0 -27 10.37 11.72 22.0 24.1 

Louisv 180431004 Annual No 0 -27 9.96 11.20 22.0 24.2 

Louisv 180190008 Annual No 0 -27 8.72 9.69 20.1 21.5 

MaconG 130210007 Annual Yes 0 -39 10.13 12.01 21.2 24.8 

MaconG 130210012 Annual No 0 -39 7.68 8.90 16.6 18.6 

Madera 060392010 24-hr Yes 0 56 13.30 11.03 45.1 35.3 

McAlle 482150043 Annual Yes 0 -67 10.09 12.02 25.0 27.4 

Merced 060470003 24-hr Yes 0 28 11.81 10.97 39.0 35.4 

Merced 060472510 24-hr No 0 28 11.68 10.57 39.8 35.1 

Modest 060990006 24-hr Yes 0 51 13.02 10.70 45.7 35.3 

Modest 060990005 24-hr No 0 51 - - 38.8 32.5 

NapaCA 060550003 Annual Yes 0 -47 10.36 12.03 25.1 29.1 

NewYor 360610128 Annual Yes 0 -26 10.20 12.00 23.9 27.8 

NewYor 361030002 Annual No 0 -26 7.18 8.10 18.8 21.0 

NewYor 360810124 Annual No 0 -26 7.52 8.65 19.5 22.4 

NewYor 360710002 Annual No 0 -26 6.95 7.81 17.5 19.6 

NewYor 360610134 Annual No 0 -26 9.70 11.38 21.6 25.0 

NewYor 360610079 Annual No 0 -26 8.42 9.82 22.8 25.6 

NewYor 360470122 Annual No 0 -26 8.66 10.10 20.5 23.7 

NewYor 360050133 Annual No 0 -26 9.05 10.53 24.0 28.0 

NewYor 360050110 Annual No 0 -26 7.39 8.56 19.4 22.8 

NewYor 340392003 Annual No 0 -26 8.59 9.87 23.6 26.3 

NewYor 340390004 Annual No 0 -26 9.87 11.40 24.2 27.3 

NewYor 340310005 Annual No 0 -26 8.42 9.63 22.2 24.7 

NewYor 340292002 Annual No 0 -26 7.23 8.04 18.1 19.8 

NewYor 340273001 Annual No 0 -26 6.78 7.56 17.1 18.8 

NewYor 340171003 Annual No 0 -26 8.79 10.15 23.4 26.9 

NewYor 340130003 Annual No 0 -26 8.89 10.21 23.8 27.3 

NewYor 340030003 Annual No 0 -26 8.90 10.22 24.5 27.4 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

OgdenC 490110004 24-hr Yes 0 -18 7.28 7.77 32.6 35.4 

OgdenC 490570002 24-hr No 0 -18 8.99 9.73 - - 

OgdenC 490030003 24-hr No 0 -18 6.35 6.76 - - 

Philad 420450002 Annual Yes 0 -8 11.46 12.04 26.0 27.2 

Philad 421010057 Annual No 0 -8 10.86 11.37 27.0 28.4 

Philad 421010055 Annual No 0 -8 11.43 12.03 27.5 29.0 

Philad 421010048 Annual No 0 -8 10.27 10.77 25.6 27.0 

Philad 420290100 Annual No 0 -8 9.64 10.03 23.9 25.1 

Philad 340150004 Annual No 0 -8 8.33 8.69 20.6 21.5 

Philad 340071007 Annual No 0 -8 8.84 9.23 21.0 22.0 

Philad 340070002 Annual No 0 -8 10.19 10.61 23.5 24.6 

Philad 240150003 Annual No 0 -8 8.70 9.02 22.6 23.4 

Philad 100031012 Annual No 0 -8 9.04 9.40 23.0 23.8 

Pittsb 420030064 Annual Yes 0 13 12.82 12.00 35.8 32.8 

Pittsb 421290008 Annual No 0 13 8.65 8.15 19.6 18.9 

Pittsb 421255001 Annual No 0 13 8.35 7.89 17.8 17.2 

Pittsb 421250200 Annual No 0 13 8.95 8.44 19.3 18.2 

Pittsb 421250005 Annual No 0 13 11.02 10.38 22.7 21.2 

Pittsb 420070014 Annual No 0 13 10.11 9.48 21.9 20.5 

Pittsb 420050001 Annual No 0 13 11.03 10.30 21.9 20.5 

Pittsb 420031301 Annual No 0 13 11.00 10.30 24.8 23.0 

Pittsb 420031008 Annual No 0 13 9.78 9.16 20.5 19.3 

Pittsb 420030008 Annual No 0 13 9.50 8.85 20.5 19.0 

Prinev 410130100 24-hr Yes 0 10 8.60 8.17 37.6 35.3 

ProvoO 490494001 24-hr Yes 0 -30 7.74 8.57 30.9 35.3 

ProvoO 490495010 24-hr No 0 -30 6.73 7.52 - - 

ProvoO 490490002 24-hr No 0 -30 7.41 8.31 28.9 33.2 

Rivers 060658005 24-hr Yes 0 36 14.48 11.51 43.2 35.3 

Rivers 060658001 24-hr No 0 36 - - 36.5 29.6 

Sacram 060670006 24-hr Yes 0 -23 9.31 10.40 31.4 35.4 

Sacram 061131003 24-hr No 0 -23 6.62 7.19 15.8 17.3 

Sacram 060670012 24-hr No 0 -23 7.30 8.01 19.8 21.2 

Sacram 060670010 24-hr No 0 -23 8.67 9.65 26.5 29.9 

Sacram 060610006 24-hr No 0 -23 7.58 8.47 20.3 22.3 

Sacram 060610003 24-hr No 0 -23 6.71 7.26 19.3 20.2 

SaltLa 490353010 24-hr Yes 0 44 - - 41.5 35.3 

SaltLa 490353006 24-hr No 0 44 7.62 6.19 36.8 30.2 

SaltLa 490351001 24-hr No 0 44 7.07 5.85 32.1 25.8 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

SanLui 060792007 Annual Yes 0 -46 10.70 12.04 25.9 29.4 

SanLui 060798002 Annual No 0 -46 5.71 6.33 - - 

SanLui 060792004 Annual No 0 -46 8.25 9.26 19.8 21.4 

SouthB 181410015 24-hr Yes 0 -23 10.45 11.37 32.5 35.4 

St.Lou 290990019 Annual Yes 0 -39 10.12 12.02 22.8 24.9 

St.Lou 295100094 Annual No 0 -39 9.57 11.38 23.3 25.9 

St.Lou 295100093 Annual No 0 -39 - - 23.7 26.6 

St.Lou 295100085 Annual No 0 -39 10.10 12.01 23.6 26.2 

St.Lou 295100007 Annual No 0 -39 9.78 11.52 23.7 26.4 

St.Lou 291893001 Annual No 0 -39 9.85 11.72 22.4 25.2 

Stockt 060771002 24-hr Yes 0 17 12.23 11.30 38.7 35.4 

Stockt 060772010 24-hr No 0 17 10.74 9.96 37.3 34.3 

Visali 061072002 24-hr Yes 48 56 16.23 10.93 54.0 35.4 

Weirto 390810017 Annual Yes 0 -5 11.75 12.02 27.2 27.8 

Weirto 540090011 Annual No 0 -5 9.75 9.95 22.8 23.5 

Weirto 540090005 Annual No 0 -5 10.52 10.74 22.4 22.9 

Weirto 390810021 Annual No 0 -5 9.29 9.47 22.2 22.6 

Wheeli 540511002 Annual Yes 0 -44 10.24 12.02 22.5 25.4 

Wheeli 540690010 Annual No 0 -44 9.61 11.32 19.7 22.6 

a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case. 
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Table C-34. PM2.5 DVs for the Secondary PM projection case and 12/35 standard level. 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes -67 0 10.99 12.04 23.7 26.8 

AkronO 391530023 Annual No -67 0 9.16 10.20 20.2 21.8 

Altoon 420130801 Annual Yes N/A N/A 10.11 12.04 23.8 28.3 

Atlant 131210039 Annual Yes N/A N/A 10.38 12.04 19.7 22.9 

Atlant 132230003 Annual No N/A N/A 7.82 9.07 16.2 18.8 

Atlant 131350002 Annual No N/A N/A 8.84 10.25 17.9 20.8 

Atlant 130890002 Annual No N/A N/A 9.34 10.83 19.2 22.3 

Atlant 130670003 Annual No N/A N/A 9.51 11.03 18.6 21.6 

Atlant 130630091 Annual No N/A N/A 9.86 11.44 19.1 22.2 

Bakers 060290010 24-hr Yes N/A N/A 16.52 10.40 70.0 35.4 

Bakers 060290016 24-hr No N/A N/A 18.45 11.61 61.3 31.0 

Bakers 060290015 24-hr No N/A N/A 5.15 3.24 15.8 8.0 

Bakers 060290014 24-hr No N/A N/A 16.53 10.40 61.4 31.1 

Bakers 060290011 24-hr No N/A N/A 6.06 3.81 19.6 9.9 

Birmin 010732059 Annual Yes -56 0 11.25 12.03 22.3 24.2 

Birmin 010732003 Annual No -56 0 10.08 10.86 19.0 21.5 

Birmin 010731010 Annual No -56 0 9.78 10.68 19.2 21.4 

Birmin 010730023 Annual No -56 0 10.94 11.73 22.8 25.3 

Canton 391510017 Annual Yes -78 0 10.81 12.04 23.7 26.1 

Canton 391510020 Annual No -78 0 9.91 11.14 22.0 24.8 

Chicag 170313103 Annual Yes N/A N/A 11.10 12.04 22.6 24.5 

Chicag 550590019 Annual No N/A N/A 8.04 8.72 20.4 22.1 

Chicag 181270024 Annual No N/A N/A 9.51 10.32 22.4 24.3 

Chicag 180892004 Annual No N/A N/A 9.84 10.67 24.7 26.8 

Chicag 180890031 Annual No N/A N/A 10.12 10.98 23.6 25.6 

Chicag 180890026 Annual No N/A N/A - - 25.2 27.3 

Chicag 180890022 Annual No N/A N/A - - 22.7 24.6 

Chicag 180890006 Annual No N/A N/A 10.03 10.88 23.1 25.1 

Chicag 171971011 Annual No N/A N/A 8.36 9.07 18.4 20.0 

Chicag 171971002 Annual No N/A N/A 7.69 8.34 20.0 21.7 

Chicag 170890007 Annual No N/A N/A 8.94 9.70 19.2 20.8 

Chicag 170890003 Annual No N/A N/A - - 19.2 20.8 

Chicag 170434002 Annual No N/A N/A 8.87 9.62 19.9 21.6 

Chicag 170316005 Annual No N/A N/A 10.79 11.70 24.1 26.1 

Chicag 170314201 Annual No N/A N/A 9.00 9.76 21.4 23.2 

Chicag 170314007 Annual No N/A N/A 9.49 10.29 - - 

Chicag 170313301 Annual No N/A N/A 10.37 11.25 23.5 25.5 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Chicag 170310076 Annual No N/A N/A 10.18 11.04 22.5 24.4 

Chicag 170310057 Annual No N/A N/A 11.03 11.96 26.8 29.1 

Chicag 170310052 Annual No N/A N/A 10.00 10.85 23.3 25.3 

Chicag 170310022 Annual No N/A N/A 10.38 11.26 22.4 24.3 

Chicag 170310001 Annual No N/A N/A 10.13 10.99 21.7 23.5 

Cincin 390610014 Annual Yes -72 0 10.70 12.04 22.9 26.1 

Cincin 390610042 Annual No -72 0 10.29 11.66 22.6 26.2 

Cincin 390610040 Annual No -72 0 9.45 10.79 21.0 25.4 

Cincin 390610010 Annual No -72 0 9.43 10.75 21.3 24.4 

Cincin 390610006 Annual No -72 0 9.46 10.75 20.3 24.3 

Cincin 390170020 Annual No -72 0 - - 24.2 27.8 

Cincin 390170019 Annual No -72 0 10.24 11.40 22.0 24.5 

Cincin 390170016 Annual No -72 0 9.79 11.06 22.1 25.1 

Cincin 210373002 Annual No -72 0 9.06 10.42 20.9 25.1 

Clevel 390350065 Annual Yes 6 0 12.17 12.04 24.9 24.7 

Clevel 391030004 Annual No 6 0 8.73 8.61 19.6 19.2 

Clevel 390933002 Annual No 6 0 8.10 7.99 20.2 19.9 

Clevel 390850007 Annual No 6 0 7.88 7.78 17.4 17.1 

Clevel 390351002 Annual No 6 0 8.86 8.74 19.5 19.2 

Clevel 390350045 Annual No 6 0 10.61 10.49 22.9 22.6 

Clevel 390350038 Annual No 6 0 11.38 11.26 25.0 24.7 

Clevel 390350034 Annual No 6 0 8.87 8.75 20.4 20.1 

Detroi 261630033 Annual Yes -56 0 11.30 12.04 26.8 30.2 

Detroi 261630039 Annual No -56 0 9.11 9.88 22.3 24.8 

Detroi 261630036 Annual No -56 0 8.68 9.39 21.8 23.4 

Detroi 261630025 Annual No -56 0 8.98 9.75 24.1 26.5 

Detroi 261630019 Annual No -56 0 9.18 9.97 22.4 24.1 

Detroi 261630016 Annual No -56 0 9.62 10.38 24.4 27.4 

Detroi 261630015 Annual No -56 0 11.19 11.97 25.5 28.2 

Detroi 261630001 Annual No -56 0 9.50 10.20 23.3 25.0 

Detroi 261470005 Annual No -56 0 8.89 9.50 24.3 26.1 

Detroi 261250001 Annual No -56 0 8.86 9.65 24.2 26.7 

Detroi 260990009 Annual No -56 0 8.80 9.48 26.2 28.4 

ElCent 060250005 Annual Yes N/A N/A 12.63 12.04 33.5 31.9 

ElCent 060251003 Annual No N/A N/A 7.44 7.09 19.8 18.9 

ElCent 060250007 Annual No N/A N/A 8.37 7.98 21.5 20.5 

Elkhar 180390008 Annual Yes N/A N/A 10.24 12.04 28.6 33.6 

Evansv 181630023 Annual Yes -89 0 10.11 12.03 21.5 32.5 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Evansv 211010014 Annual No -89 0 9.64 11.58 20.7 30.2 

Evansv 181630021 Annual No -89 0 9.84 11.79 21.6 32.4 

Evansv 181630016 Annual No -89 0 10.02 11.95 22.0 32.8 

Fresno 060190011 24-hr Yes N/A N/A 14.07 10.46 53.8 35.4 

Fresno 060195025 24-hr No N/A N/A 13.63 10.13 47.9 31.5 

Fresno 060195001 24-hr No N/A N/A 14.08 10.47 49.3 32.4 

Fresno 060192009 24-hr No N/A N/A 8.47 6.30 31.3 20.6 

Hanfor 060310004 24-hr Yes N/A N/A 21.98 10.81 72.0 35.4 

Hanfor 060311004 24-hr No N/A N/A 16.49 8.11 58.9 29.0 

Housto 482011035 Annual Yes -91 0 11.19 12.04 22.4 25.2 

Housto 482011039 Annual No -91 0 9.22 10.16 21.7 24.9 

Housto 482010058 Annual No -91 0 9.67 10.52 22.3 24.8 

Housto 481671034 Annual No -91 0 7.36 8.27 20.3 23.3 

Indian 180970087 Annual Yes -24 0 11.44 12.02 25.9 27.5 

Indian 180970083 Annual No -24 0 11.06 11.64 23.9 25.2 

Indian 180970081 Annual No -24 0 11.07 11.65 25.0 26.7 

Indian 180970078 Annual No -24 0 10.14 10.72 24.4 26.2 

Indian 180970043 Annual No -24 0 - - 26.0 27.6 

Indian 180950011 Annual No -24 0 9.05 9.51 21.8 23.1 

Indian 180570007 Annual No -24 0 9.02 9.52 21.4 22.8 

Johnst 420210011 Annual Yes -86 0 10.68 12.04 25.8 27.9 

Lancas 420710012 Annual Yes 40 0 12.83 12.03 32.7 31.6 

Lancas 420710007 Annual No 40 0 10.57 9.78 29.8 28.5 

LasVeg 320030561 Annual Yes N/A N/A 10.28 12.04 24.5 28.7 

LasVeg 320032002 Annual No N/A N/A 9.79 11.47 19.8 23.2 

LasVeg 320031019 Annual No N/A N/A 5.18 6.07 11.5 13.5 

LasVeg 320030540 Annual No N/A N/A 8.80 10.31 21.7 25.4 

Lebano 420750100 Annual Yes -61 0 11.20 12.04 31.4 32.4 

Little 051191008 Annual Yes -98 0 10.27 12.04 21.7 26.7 

Little 051190007 Annual No -98 0 9.78 11.40 20.5 25.5 

LoganU 490050007 24-hr Yes -28 0 6.95 7.12 34.0 35.4 

LosAng 060371103 Annual Yes N/A N/A 12.38 12.04 32.8 31.9 

LosAng 060592022 Annual No N/A N/A 7.48 7.27 15.3 14.9 

LosAng 060590007 Annual No N/A N/A 9.63 9.37 - - 

LosAng 060374004 Annual No N/A N/A 10.25 9.97 27.3 26.6 

LosAng 060374002 Annual No N/A N/A 11.06 10.76 29.2 28.4 

LosAng 060371602 Annual No N/A N/A 11.86 11.53 32.3 31.4 

LosAng 060371302 Annual No N/A N/A 11.99 11.66 31.5 30.6 



 C-102  

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

LosAng 060371201 Annual No N/A N/A 9.46 9.20 25.6 24.9 

LosAng 060370002 Annual No N/A N/A 10.52 10.23 29.2 28.4 

Louisv 180190006 Annual Yes -65 0 10.64 12.04 23.9 28.4 

Louisv 211110075 Annual No -65 0 10.42 11.76 22.3 26.4 

Louisv 211110067 Annual No -65 0 9.55 10.84 21.4 25.4 

Louisv 211110051 Annual No -65 0 10.29 11.67 21.8 25.9 

Louisv 211110043 Annual No -65 0 10.37 11.71 22.0 26.1 

Louisv 180431004 Annual No -65 0 9.96 11.32 22.0 25.8 

Louisv 180190008 Annual No -65 0 8.72 10.07 20.1 24.3 

MaconG 130210007 Annual Yes N/A N/A 10.13 12.04 21.2 25.2 

MaconG 130210012 Annual No N/A N/A 7.68 9.13 16.6 19.7 

Madera 060392010 24-hr Yes N/A N/A 13.30 11.15 45.1 35.4 

McAlle 482150043 Annual Yes N/A N/A 10.09 12.04 25.0 29.8 

Merced 060472510 24-hr Yes 32 0 11.68 10.79 39.8 35.4 

Merced 060470003 24-hr No 32 0 11.81 10.89 39.0 34.1 

Modest 060990006 24-hr Yes N/A N/A 13.02 10.82 45.7 35.4 

Modest 060990005 24-hr No N/A N/A - - 38.8 30.1 

NapaCA 060550003 Annual Yes N/A N/A 10.36 12.04 25.1 29.2 

NewYor 360610128 Annual Yes N/A N/A 10.20 12.04 23.9 28.2 

NewYor 361030002 Annual No N/A N/A 7.18 8.48 18.8 22.2 

NewYor 360810124 Annual No N/A N/A 7.52 8.88 19.5 23.0 

NewYor 360710002 Annual No N/A N/A 6.95 8.20 17.5 20.7 

NewYor 360610134 Annual No N/A N/A 9.70 11.45 21.6 25.5 

NewYor 360610079 Annual No N/A N/A 8.42 9.94 22.8 26.9 

NewYor 360470122 Annual No N/A N/A 8.66 10.22 20.5 24.2 

NewYor 360050133 Annual No N/A N/A 9.05 10.68 24.0 28.3 

NewYor 360050110 Annual No N/A N/A 7.39 8.72 19.4 22.9 

NewYor 340392003 Annual No N/A N/A 8.59 10.14 23.6 27.9 

NewYor 340390004 Annual No N/A N/A 9.87 11.65 24.2 28.6 

NewYor 340310005 Annual No N/A N/A 8.42 9.94 22.2 26.2 

NewYor 340292002 Annual No N/A N/A 7.23 8.53 18.1 21.4 

NewYor 340273001 Annual No N/A N/A 6.78 8.00 17.1 20.2 

NewYor 340171003 Annual No N/A N/A 8.79 10.38 23.4 27.6 

NewYor 340130003 Annual No N/A N/A 8.89 10.49 23.8 28.1 

NewYor 340030003 Annual No N/A N/A 8.90 10.51 24.5 28.9 

OgdenC 490110004 24-hr Yes -53 0 7.28 7.65 32.6 35.4 

OgdenC 490570002 24-hr No -53 0 8.99 9.37 - - 

OgdenC 490030003 24-hr No -53 0 6.35 6.70 - - 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Philad 420450002 Annual Yes -75 0 11.46 12.04 26.0 27.4 

Philad 421010057 Annual No -75 0 10.86 11.54 27.0 28.1 

Philad 421010055 Annual No -75 0 11.43 12.03 27.5 28.8 

Philad 421010048 Annual No -75 0 10.27 10.91 25.6 27.4 

Philad 420290100 Annual No -75 0 9.64 10.38 23.9 25.2 

Philad 340150004 Annual No -75 0 8.33 8.94 20.6 23.2 

Philad 340071007 Annual No -75 0 8.84 9.51 21.0 21.9 

Philad 340070002 Annual No -75 0 10.19 10.95 23.5 24.6 

Philad 240150003 Annual No -75 0 8.70 9.47 22.6 23.7 

Philad 100031012 Annual No -75 0 9.04 9.81 23.0 23.6 

Pittsb 420030064 Annual Yes 30 0 12.82 12.02 35.8 34.8 

Pittsb 421290008 Annual No 30 0 8.65 8.06 19.6 18.0 

Pittsb 421255001 Annual No 30 0 8.35 7.78 17.8 16.4 

Pittsb 421250200 Annual No 30 0 8.95 8.32 19.3 18.2 

Pittsb 421250005 Annual No 30 0 11.02 10.30 22.7 21.7 

Pittsb 420070014 Annual No 30 0 10.11 9.52 21.9 20.6 

Pittsb 420050001 Annual No 30 0 11.03 10.45 21.9 20.4 

Pittsb 420031301 Annual No 30 0 11.00 10.28 24.8 23.6 

Pittsb 420031008 Annual No 30 0 9.78 9.20 20.5 19.0 

Pittsb 420030008 Annual No 30 0 9.50 8.89 20.5 19.2 

Prinev 410130100 24-hr Yes N/A N/A 8.60 8.10 37.6 35.4 

ProvoO 490494001 24-hr Yes -76 0 7.74 8.29 30.9 35.4 

ProvoO 490495010 24-hr No -76 0 6.73 7.21 - - 

ProvoO 490490002 24-hr No -76 0 7.41 7.95 28.9 33.2 

Rivers 060658005 24-hr Yes N/A N/A 14.48 11.87 43.2 35.4 

Rivers 060658001 24-hr No N/A N/A - - 36.5 29.9 

Sacram 060670006 24-hr Yes -99 0 9.31 10.04 31.4 35.3 

Sacram 061131003 24-hr No -99 0 6.62 7.08 15.8 19.0 

Sacram 060670012 24-hr No -99 0 7.30 7.85 19.8 21.3 

Sacram 060670010 24-hr No -99 0 8.67 9.30 26.5 30.2 

Sacram 060610006 24-hr No -99 0 7.58 8.08 20.3 22.2 

Sacram 060610003 24-hr No -99 0 6.71 7.04 19.3 20.7 

SaltLa 490353010 24-hr Yes 58 0 - - 41.5 35.4 

SaltLa 490353006 24-hr No 58 0 7.62 6.91 36.8 31.5 

SaltLa 490351001 24-hr No 58 0 7.07 6.30 32.1 25.8 

SanLui 060792007 Annual Yes N/A N/A 10.70 12.04 25.9 29.1 

SanLui 060798002 Annual No N/A N/A 5.71 6.43 - - 

SanLui 060792004 Annual No N/A N/A 8.25 9.28 19.8 22.3 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

SouthB 181410015 Annual Yes -92 0 10.45 12.04 32.5 34.8 

St.Lou 290990019 Annual Yes N/A N/A 10.12 12.04 22.8 27.1 

St.Lou 295100094 Annual No N/A N/A 9.57 11.39 23.3 27.7 

St.Lou 295100093 Annual No N/A N/A - - 23.7 28.2 

St.Lou 295100085 Annual No N/A N/A 10.10 12.02 23.6 28.1 

St.Lou 295100007 Annual No N/A N/A 9.78 11.64 23.7 28.2 

St.Lou 291893001 Annual No N/A N/A 9.85 11.72 22.4 26.6 

Stockt 060771002 24-hr Yes 42 0 12.23 11.41 38.7 35.4 

Stockt 060772010 24-hr No 42 0 10.74 9.96 37.3 34.3 

Visali 061072002 24-hr Yes N/A N/A 16.23 10.64 54.0 35.4 

Weirto 390810017 Annual Yes -14 0 11.75 12.03 27.2 27.5 

Weirto 540090011 Annual No -14 0 9.75 10.02 22.8 23.6 

Weirto 540090005 Annual No -14 0 10.52 10.80 22.4 23.1 

Weirto 390810021 Annual No -14 0 9.29 9.55 22.2 22.8 

Wheeli 540511002 Annual Yes N/A N/A 10.24 12.04 22.5 26.5 

Wheeli 540690010 Annual No N/A N/A 9.61 11.30 19.7 23.2 

a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 
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Table C-35.  PM2.5 DVs for the Primary PM projection case and 10/30 standard level. 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes 0 17 10.99 10.03 23.7 22.6 

AkronO 391530023 Annual No 0 17 9.16 8.46 20.2 19.1 

Altoon 420130801 Annual Yes 0 2 10.11 10.02 23.8 23.5 

Atlant 131210039 Annual Yes 0 6 10.38 10.01 19.7 19.0 

Atlant 132230003 Annual No 0 6 7.82 7.64 16.2 15.9 

Atlant 131350002 Annual No 0 6 8.84 8.57 17.9 17.3 

Atlant 130890002 Annual No 0 6 9.34 9.04 19.2 18.7 

Atlant 130670003 Annual No 0 6 9.51 9.22 18.6 18.2 

Atlant 130630091 Annual No 0 6 9.86 9.56 19.1 18.5 

Bakers 060290016 Annual Yes 91 100 18.45 10.01 61.3 29.1 

Bakers 060290015 Annual No 91 100 5.15 3.66 15.8 13.6 

Bakers 060290014 Annual No 91 100 16.53 8.37 61.4 26.0 

Bakers 060290011 Annual No 91 100 6.06 4.58 19.6 15.9 

Bakers 060290010 Annual No 91 100 16.52 8.87 70.0 27.9 

Birmin 010732059 Annual Yes 0 16 11.25 10.03 22.3 19.8 

Birmin 010732003 Annual No 0 16 10.08 9.06 19.0 17.2 

Birmin 010731010 Annual No 0 16 9.78 8.94 19.2 17.7 

Birmin 010730023 Annual No 0 16 10.94 9.77 22.8 20.6 

Canton 391510017 Annual Yes 0 15 10.81 10.01 23.7 22.6 

Canton 391510020 Annual No 0 15 9.91 9.21 22.0 21.0 

Chicag 170313103 Annual Yes 0 18 11.10 10.01 22.6 21.0 

Chicag 550590019 Annual No 0 18 8.04 7.42 20.4 18.8 

Chicag 181270024 Annual No 0 18 9.51 8.55 22.4 20.4 

Chicag 180892004 Annual No 0 18 9.84 8.78 24.7 22.8 

Chicag 180890031 Annual No 0 18 10.12 9.05 23.6 21.1 

Chicag 180890026 Annual No 0 18 - - 25.2 22.8 

Chicag 180890022 Annual No 0 18 - - 22.7 20.4 

Chicag 180890006 Annual No 0 18 10.03 8.93 23.1 20.5 

Chicag 171971011 Annual No 0 18 8.36 7.78 18.4 17.4 

Chicag 171971002 Annual No 0 18 7.69 7.04 20.0 18.7 

Chicag 170890007 Annual No 0 18 8.94 8.21 19.2 17.8 

Chicag 170890003 Annual No 0 18 - - 19.2 18.1 

Chicag 170434002 Annual No 0 18 8.87 8.13 19.9 18.9 

Chicag 170316005 Annual No 0 18 10.79 9.73 24.1 21.7 

Chicag 170314201 Annual No 0 18 9.00 8.25 21.4 19.9 

Chicag 170314007 Annual No 0 18 9.49 8.66 - - 

Chicag 170313301 Annual No 0 18 10.37 9.38 23.5 21.3 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Chicag 170310076 Annual No 0 18 10.18 9.24 22.5 20.7 

Chicag 170310057 Annual No 0 18 11.03 9.99 26.8 25.1 

Chicag 170310052 Annual No 0 18 10.00 9.06 23.3 21.4 

Chicag 170310022 Annual No 0 18 10.38 9.28 22.4 20.9 

Chicag 170310001 Annual No 0 18 10.13 9.22 21.7 19.7 

Cincin 390610014 Annual Yes 0 12 10.70 10.04 22.9 21.8 

Cincin 390610042 Annual No 0 12 10.29 9.69 22.6 21.6 

Cincin 390610040 Annual No 0 12 9.45 8.91 21.0 20.0 

Cincin 390610010 Annual No 0 12 9.43 8.93 21.3 20.5 

Cincin 390610006 Annual No 0 12 9.46 8.91 20.3 19.5 

Cincin 390170020 Annual No 0 12 - - 24.2 23.3 

Cincin 390170019 Annual No 0 12 10.24 9.60 22.0 21.1 

Cincin 390170016 Annual No 0 12 9.79 9.22 22.1 21.2 

Cincin 210373002 Annual No 0 12 9.06 8.58 20.9 20.0 

Clevel 390350065 Annual Yes 0 33 12.17 10.00 24.9 21.3 

Clevel 391030004 Annual No 0 33 8.73 7.57 19.6 17.8 

Clevel 390933002 Annual No 0 33 8.10 6.95 20.2 18.7 

Clevel 390850007 Annual No 0 33 7.88 6.84 17.4 15.4 

Clevel 390351002 Annual No 0 33 8.86 7.64 19.5 17.5 

Clevel 390350045 Annual No 0 33 10.61 8.84 22.9 20.1 

Clevel 390350038 Annual No 0 33 11.38 9.37 25.0 22.0 

Clevel 390350034 Annual No 0 33 8.87 7.58 20.4 18.2 

Detroi 261630033 Annual Yes 0 26 11.30 10.00 26.8 24.9 

Detroi 261630039 Annual No 0 26 9.11 8.21 22.3 20.3 

Detroi 261630036 Annual No 0 26 8.68 7.88 21.8 19.8 

Detroi 261630025 Annual No 0 26 8.98 7.99 24.1 21.7 

Detroi 261630019 Annual No 0 26 9.18 8.18 22.4 19.7 

Detroi 261630016 Annual No 0 26 9.62 8.63 24.4 22.6 

Detroi 261630015 Annual No 0 26 11.19 9.94 25.5 22.8 

Detroi 261630001 Annual No 0 26 9.50 8.39 23.3 20.4 

Detroi 261470005 Annual No 0 26 8.89 8.11 24.3 22.4 

Detroi 261250001 Annual No 0 26 8.86 7.90 24.2 22.2 

Detroi 260990009 Annual No 0 26 8.80 7.94 26.2 23.8 

ElCent 060250005 Annual Yes 0 50 12.63 10.01 33.5 25.0 

ElCent 060251003 Annual No 0 50 7.44 5.67 19.8 14.6 

ElCent 060250007 Annual No 0 50 8.37 6.80 21.5 18.5 

Elkhar 180390008 Annual Yes 0 6 10.24 10.01 28.6 27.8 

Evansv 181630023 Annual Yes 0 2 10.11 10.02 21.5 21.5 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Evansv 211010014 Annual No 0 2 9.64 9.56 20.7 20.7 

Evansv 181630021 Annual No 0 2 9.84 9.76 21.6 21.5 

Evansv 181630016 Annual No 0 2 10.02 9.94 22.0 21.9 

Fresno 060195001 24-hr Yes 0 100 14.08 9.49 49.3 30.3 

Fresno 060195025 24-hr No 0 100 13.63 8.41 47.9 26.4 

Fresno 060192009 24-hr No 0 100 8.47 6.74 31.3 22.2 

Fresno 060190011 24-hr No 0 100 14.07 8.27 53.8 27.1 

Hanfor 060310004 Annual Yes 82 98 21.98 10.00 72.0 29.5 

Hanfor 060311004 Annual No 82 98 16.49 8.36 58.9 25.2 

Housto 482011035 Annual Yes 0 19 11.19 10.01 22.4 20.2 

Housto 482011039 Annual No 0 19 9.22 8.40 21.7 19.6 

Housto 482010058 Annual No 0 19 9.67 8.70 22.3 20.3 

Housto 481671034 Annual No 0 19 7.36 7.07 20.3 19.6 

Indian 180970087 Annual Yes 0 25 11.44 10.01 25.9 24.2 

Indian 180970083 Annual No 0 25 11.06 9.72 23.9 22.5 

Indian 180970081 Annual No 0 25 11.07 9.71 25.0 23.4 

Indian 180970078 Annual No 0 25 10.14 8.97 24.4 22.8 

Indian 180970043 Annual No 0 25 - - 26.0 24.6 

Indian 180950011 Annual No 0 25 9.05 8.17 21.8 20.7 

Indian 180570007 Annual No 0 25 9.02 8.07 21.4 20.0 

Johnst 420210011 Annual Yes 0 12 10.68 10.02 25.8 23.5 

Lancas 420710012 Annual Yes 0 41 12.83 9.98 32.7 25.5 

Lancas 420710007 Annual No 0 41 10.57 8.20 29.8 22.0 

LasVeg 320030561 Annual Yes 0 4 10.28 9.97 24.5 23.6 

LasVeg 320032002 Annual No 0 4 9.79 9.50 19.8 19.2 

LasVeg 320031019 Annual No 0 4 5.18 5.08 11.5 11.3 

LasVeg 320030540 Annual No 0 4 8.80 8.55 21.7 20.9 

Lebano 420750100 Annual Yes 0 21 11.20 10.04 31.4 28.0 

Little 051191008 Annual Yes 0 6 10.27 10.00 21.7 21.3 

Little 051190007 Annual No 0 6 9.78 9.48 20.5 20.1 

LoganU 490050007 24-hr Yes 0 19 6.95 6.40 34.0 30.3 

LosAng 060371103 Annual Yes 0 34 12.38 9.99 32.8 27.8 

LosAng 060592022 Annual No 0 34 7.48 6.43 15.3 13.3 

LosAng 060590007 Annual No 0 34 9.63 7.84 - - 

LosAng 060374004 Annual No 0 34 10.25 8.36 27.3 23.7 

LosAng 060374002 Annual No 0 34 11.06 9.02 29.2 24.9 

LosAng 060371602 Annual No 0 34 11.86 9.55 32.3 26.5 

LosAng 060371302 Annual No 0 34 11.99 9.64 31.5 27.0 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

LosAng 060371201 Annual No 0 34 9.46 7.93 25.6 21.6 

LosAng 060370002 Annual No 0 34 10.52 8.81 29.2 25.0 

Louisv 180190006 Annual Yes 0 12 10.64 10.01 23.9 22.8 

Louisv 211110075 Annual No 0 12 10.42 9.79 22.3 21.4 

Louisv 211110067 Annual No 0 12 9.55 8.99 21.4 20.5 

Louisv 211110051 Annual No 0 12 10.29 9.76 21.8 21.2 

Louisv 211110043 Annual No 0 12 10.37 9.77 22.0 21.2 

Louisv 180431004 Annual No 0 12 9.96 9.41 22.0 21.0 

Louisv 180190008 Annual No 0 12 8.72 8.29 20.1 19.5 

MaconG 130210007 Annual Yes 0 2 10.13 10.03 21.2 21.0 

MaconG 130210012 Annual No 0 2 7.68 7.61 16.6 16.5 

Madera 060392010 24-hr Yes 0 84 13.30 9.89 45.1 30.4 

McAlle 482150043 Annual Yes 0 2 10.09 10.03 25.0 24.9 

Merced 060470003 24-hr Yes 0 65 11.81 9.87 39.0 30.4 

Merced 060472510 24-hr No 0 65 11.68 9.11 39.8 28.8 

Modest 060990006 24-hr Yes 0 77 13.02 9.52 45.7 30.3 

Modest 060990005 24-hr No 0 77 - - 38.8 29.2 

NapaCA 060550003 Annual Yes 0 9 10.36 10.04 25.1 24.6 

NewYor 360610128 Annual Yes 0 3 10.20 9.99 23.9 23.5 

NewYor 361030002 Annual No 0 3 7.18 7.07 18.8 18.6 

NewYor 360810124 Annual No 0 3 7.52 7.39 19.5 19.1 

NewYor 360710002 Annual No 0 3 6.95 6.84 17.5 17.2 

NewYor 360610134 Annual No 0 3 9.70 9.51 21.6 21.2 

NewYor 360610079 Annual No 0 3 8.42 8.26 22.8 22.5 

NewYor 360470122 Annual No 0 3 8.66 8.49 20.5 20.2 

NewYor 360050133 Annual No 0 3 9.05 8.87 24.0 23.6 

NewYor 360050110 Annual No 0 3 7.39 7.25 19.4 19.1 

NewYor 340392003 Annual No 0 3 8.59 8.44 23.6 23.2 

NewYor 340390004 Annual No 0 3 9.87 9.69 24.2 23.8 

NewYor 340310005 Annual No 0 3 8.42 8.28 22.2 21.9 

NewYor 340292002 Annual No 0 3 7.23 7.13 18.1 17.9 

NewYor 340273001 Annual No 0 3 6.78 6.69 17.1 16.9 

NewYor 340171003 Annual No 0 3 8.79 8.64 23.4 22.9 

NewYor 340130003 Annual No 0 3 8.89 8.73 23.8 23.4 

NewYor 340030003 Annual No 0 3 8.90 8.75 24.5 24.1 

OgdenC 490110004 24-hr Yes 0 15 7.28 6.89 32.6 30.3 

OgdenC 490570002 24-hr No 0 15 8.99 8.39 - - 

OgdenC 490030003 24-hr No 0 15 6.35 6.02 - - 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Philad 420450002 Annual Yes 0 20 11.46 9.99 26.0 22.9 

Philad 421010057 Annual No 0 20 10.86 9.56 27.0 23.4 

Philad 421010055 Annual No 0 20 11.43 9.94 27.5 24.2 

Philad 421010048 Annual No 0 20 10.27 9.00 25.6 22.7 

Philad 420290100 Annual No 0 20 9.64 8.66 23.9 21.2 

Philad 340150004 Annual No 0 20 8.33 7.43 20.6 18.2 

Philad 340071007 Annual No 0 20 8.84 7.86 21.0 18.8 

Philad 340070002 Annual No 0 20 10.19 9.11 23.5 20.6 

Philad 240150003 Annual No 0 20 8.70 7.90 22.6 20.5 

Philad 100031012 Annual No 0 20 9.04 8.15 23.0 21.1 

Pittsb 420030064 Annual Yes 0 44 12.82 10.04 35.8 26.2 

Pittsb 421290008 Annual No 0 44 8.65 6.96 19.6 16.9 

Pittsb 421255001 Annual No 0 44 8.35 6.78 17.8 15.7 

Pittsb 421250200 Annual No 0 44 8.95 7.22 19.3 15.7 

Pittsb 421250005 Annual No 0 44 11.02 8.85 22.7 18.0 

Pittsb 420070014 Annual No 0 44 10.11 7.98 21.9 17.5 

Pittsb 420050001 Annual No 0 44 11.03 8.58 21.9 17.8 

Pittsb 420031301 Annual No 0 44 11.00 8.64 24.8 18.7 

Pittsb 420031008 Annual No 0 44 9.78 7.68 20.5 16.1 

Pittsb 420030008 Annual No 0 44 9.50 7.30 20.5 16.3 

Prinev 410130100 24-hr Yes 0 33 8.60 7.19 37.6 30.4 

ProvoO 490494001 24-hr Yes 0 3 7.74 7.65 30.9 30.4 

ProvoO 490495010 24-hr No 0 3 6.73 6.65 - - 

ProvoO 490490002 24-hr No 0 3 7.41 7.32 28.9 28.4 

Rivers 060658005 24-hr Yes 0 58 14.48 9.69 43.2 30.4 

Rivers 060658001 24-hr No 0 58 - - 36.5 25.4 

Sacram 060670006 24-hr Yes 0 6 9.31 9.02 31.4 30.4 

Sacram 061131003 24-hr No 0 6 6.62 6.47 15.8 15.4 

Sacram 060670012 24-hr No 0 6 7.30 7.11 19.8 19.4 

Sacram 060670010 24-hr No 0 6 8.67 8.41 26.5 25.7 

Sacram 060610006 24-hr No 0 6 7.58 7.34 20.3 19.9 

Sacram 060610003 24-hr No 0 6 6.71 6.56 19.3 19.0 

SaltLa 490353010 24-hr Yes 0 85 - - 41.5 30.4 

SaltLa 490353006 24-hr No 0 85 7.62 4.85 36.8 23.8 

SaltLa 490351001 24-hr No 0 85 7.07 4.72 32.1 21.0 

SanLui 060792007 Annual Yes 0 22 10.70 10.04 25.9 24.9 

SanLui 060798002 Annual No 0 22 5.71 5.42 - - 

SanLui 060792004 Annual No 0 22 8.25 7.76 19.8 19.2 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

SouthB 181410015 24-hr Yes 0 18 10.45 9.72 32.5 30.3 

St.Lou 290990019 Annual Yes 0 2 10.12 10.02 22.8 22.7 

St.Lou 295100094 Annual No 0 2 9.57 9.48 23.3 23.2 

St.Lou 295100093 Annual No 0 2 - - 23.7 23.5 

St.Lou 295100085 Annual No 0 2 10.10 10.00 23.6 23.4 

St.Lou 295100007 Annual No 0 2 9.78 9.69 23.7 23.6 

St.Lou 291893001 Annual No 0 2 9.85 9.76 22.4 22.3 

Stockt 060771002 24-hr Yes 0 43 12.23 9.86 38.7 30.3 

Stockt 060772010 24-hr No 0 43 10.74 8.75 37.3 29.6 

Visali 061072002 24-hr Yes 58 74 16.23 9.67 54.0 30.4 

Weirto 390810017 Annual Yes 0 33 11.75 10.00 27.2 22.6 

Weirto 540090011 Annual No 0 33 9.75 8.42 22.8 19.8 

Weirto 540090005 Annual No 0 33 10.52 9.07 22.4 19.8 

Weirto 390810021 Annual No 0 33 9.29 8.06 22.2 19.3 

Wheeli 540511002 Annual Yes 0 5 10.24 10.03 22.5 22.1 

Wheeli 540690010 Annual No 0 5 9.61 9.42 19.7 19.4 

a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case. 
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Table C-36. PM2.5 DVs for the Secondary PM projection case and 10/30 standard level. 

CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

AkronO 391530017 Annual Yes 45 0 10.99 10.04 23.7 20.8 

AkronO 391530023 Annual No 45 0 9.16 8.24 20.2 17.7 

Altoon 420130801 Annual Yes N/A N/A 10.11 10.04 23.8 23.6 

Atlant 131210039 Annual Yes N/A N/A 10.38 10.04 19.7 19.1 

Atlant 132230003 Annual No N/A N/A 7.82 7.56 16.2 15.7 

Atlant 131350002 Annual No N/A N/A 8.84 8.55 17.9 17.3 

Atlant 130890002 Annual No N/A N/A 9.34 9.03 19.2 18.6 

Atlant 130670003 Annual No N/A N/A 9.51 9.20 18.6 18.0 

Atlant 130630091 Annual No N/A N/A 9.86 9.54 19.1 18.5 

Bakers 060290010 24-hr Yes N/A N/A 16.52 8.99 70.0 30.4 

Bakers 060290016 24-hr No N/A N/A 18.45 10.04 61.3 26.6 

Bakers 060290015 24-hr No N/A N/A 5.15 2.80 15.8 6.9 

Bakers 060290014 24-hr No N/A N/A 16.53 9.00 61.4 26.7 

Bakers 060290011 24-hr No N/A N/A 6.06 3.30 19.6 8.5 

Birmin 010732059 Annual Yes 71 0 11.25 10.04 22.3 20.2 

Birmin 010732003 Annual No 71 0 10.08 8.86 19.0 16.1 

Birmin 010731010 Annual No 71 0 9.78 8.39 19.2 16.6 

Birmin 010730023 Annual No 71 0 10.94 9.72 22.8 20.3 

Canton 391510017 Annual Yes 36 0 10.81 10.04 23.7 21.7 

Canton 391510020 Annual No 36 0 9.91 9.13 22.0 19.4 

Chicag 170313103 Annual Yes N/A N/A 11.10 10.04 22.6 20.4 

Chicag 550590019 Annual No N/A N/A 8.04 7.27 20.4 18.5 

Chicag 181270024 Annual No N/A N/A 9.51 8.60 22.4 20.3 

Chicag 180892004 Annual No N/A N/A 9.84 8.90 24.7 22.3 

Chicag 180890031 Annual No N/A N/A 10.12 9.15 23.6 21.3 

Chicag 180890026 Annual No N/A N/A - - 25.2 22.8 

Chicag 180890022 Annual No N/A N/A - - 22.7 20.5 

Chicag 180890006 Annual No N/A N/A 10.03 9.07 23.1 20.9 

Chicag 171971011 Annual No N/A N/A 8.36 7.56 18.4 16.6 

Chicag 171971002 Annual No N/A N/A 7.69 6.96 20.0 18.1 

Chicag 170890007 Annual No N/A N/A 8.94 8.09 19.2 17.4 

Chicag 170890003 Annual No N/A N/A - - 19.2 17.4 

Chicag 170434002 Annual No N/A N/A 8.87 8.02 19.9 18.0 

Chicag 170316005 Annual No N/A N/A 10.79 9.76 24.1 21.8 

Chicag 170314201 Annual No N/A N/A 9.00 8.14 21.4 19.4 

Chicag 170314007 Annual No N/A N/A 9.49 8.58 - - 

Chicag 170313301 Annual No N/A N/A 10.37 9.38 23.5 21.3 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Chicag 170310076 Annual No N/A N/A 10.18 9.21 22.5 20.4 

Chicag 170310057 Annual No N/A N/A 11.03 9.98 26.8 24.2 

Chicag 170310052 Annual No N/A N/A 10.00 9.05 23.3 21.1 

Chicag 170310022 Annual No N/A N/A 10.38 9.39 22.4 20.3 

Chicag 170310001 Annual No N/A N/A 10.13 9.16 21.7 19.6 

Cincin 390610014 Annual Yes 28 0 10.70 10.03 22.9 21.2 

Cincin 390610042 Annual No 28 0 10.29 9.61 22.6 20.8 

Cincin 390610040 Annual No 28 0 9.45 8.78 21.0 19.0 

Cincin 390610010 Annual No 28 0 9.43 8.78 21.3 19.6 

Cincin 390610006 Annual No 28 0 9.46 8.82 20.3 18.4 

Cincin 390170020 Annual No 28 0 - - 24.2 22.5 

Cincin 390170019 Annual No 28 0 10.24 9.66 22.0 20.6 

Cincin 390170016 Annual No 28 0 9.79 9.16 22.1 20.1 

Cincin 210373002 Annual No 28 0 9.06 8.38 20.9 18.9 

Clevel 390350065 Annual Yes 79 0 12.17 10.04 24.9 20.5 

Clevel 391030004 Annual No 79 0 8.73 6.75 19.6 13.9 

Clevel 390933002 Annual No 79 0 8.10 6.28 20.2 13.8 

Clevel 390850007 Annual No 79 0 7.88 6.10 17.4 12.9 

Clevel 390351002 Annual No 79 0 8.86 6.81 19.5 14.4 

Clevel 390350045 Annual No 79 0 10.61 8.50 22.9 17.0 

Clevel 390350038 Annual No 79 0 11.38 9.33 25.0 19.7 

Clevel 390350034 Annual No 79 0 8.87 6.90 20.4 15.4 

Detroi 261630033 Annual Yes 60 0 11.30 10.03 26.8 24.3 

Detroi 261630039 Annual No 60 0 9.11 7.82 22.3 18.8 

Detroi 261630036 Annual No 60 0 8.68 7.43 21.8 19.1 

Detroi 261630025 Annual No 60 0 8.98 7.63 24.1 19.1 

Detroi 261630019 Annual No 60 0 9.18 7.83 22.4 20.3 

Detroi 261630016 Annual No 60 0 9.62 8.33 24.4 21.3 

Detroi 261630015 Annual No 60 0 11.19 9.88 25.5 22.0 

Detroi 261630001 Annual No 60 0 9.50 8.26 23.3 20.1 

Detroi 261470005 Annual No 60 0 8.89 7.81 24.3 20.6 

Detroi 261250001 Annual No 60 0 8.86 7.49 24.2 20.5 

Detroi 260990009 Annual No 60 0 8.80 7.57 26.2 21.8 

ElCent 060250005 Annual Yes N/A N/A 12.63 10.04 33.5 26.6 

ElCent 060251003 Annual No N/A N/A 7.44 5.91 19.8 15.7 

ElCent 060250007 Annual No N/A N/A 8.37 6.65 21.5 17.1 

Elkhar 180390008 Annual Yes N/A N/A 10.24 10.04 28.6 28.0 

Evansv 181630023 Annual Yes 3 0 10.11 10.03 21.5 21.2 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Evansv 211010014 Annual No 3 0 9.64 9.56 20.7 20.3 

Evansv 181630021 Annual No 3 0 9.84 9.76 21.6 21.2 

Evansv 181630016 Annual No 3 0 10.02 9.95 22.0 21.7 

Fresno 060190011 24-hr Yes N/A N/A 14.07 9.48 53.8 30.4 

Fresno 060195025 24-hr No N/A N/A 13.63 9.18 47.9 27.1 

Fresno 060195001 24-hr No N/A N/A 14.08 9.49 49.3 27.9 

Fresno 060192009 24-hr No N/A N/A 8.47 5.71 31.3 17.7 

Hanfor 060310004 24-hr Yes N/A N/A 21.98 9.28 72.0 30.4 

Hanfor 060311004 24-hr No N/A N/A 16.49 6.96 58.9 24.9 

Housto 482011035 Annual Yes 84 0 11.19 10.04 22.4 19.6 

Housto 482011039 Annual No 84 0 9.22 8.09 21.7 18.7 

Housto 482010058 Annual No 84 0 9.67 8.57 22.3 19.1 

Housto 481671034 Annual No 84 0 7.36 6.29 20.3 17.8 

Indian 180970087 Annual Yes 48 0 11.44 10.03 25.9 21.8 

Indian 180970083 Annual No 48 0 11.06 9.64 23.9 21.4 

Indian 180970081 Annual No 48 0 11.07 9.66 25.0 20.8 

Indian 180970078 Annual No 48 0 10.14 8.73 24.4 19.9 

Indian 180970043 Annual No 48 0 - - 26.0 20.9 

Indian 180950011 Annual No 48 0 9.05 7.86 21.8 18.3 

Indian 180570007 Annual No 48 0 9.02 7.75 21.4 17.8 

Johnst 420210011 Annual Yes 31 0 10.68 10.04 25.8 25.1 

Lancas 420710012 Annual Yes 98 0 12.83 10.01 32.7 26.2 

Lancas 420710007 Annual No 98 0 10.57 7.81 29.8 23.4 

LasVeg 320030561 Annual Yes N/A N/A 10.28 10.04 24.5 23.9 

LasVeg 320032002 Annual No N/A N/A 9.79 9.56 19.8 19.3 

LasVeg 320031019 Annual No N/A N/A 5.18 5.06 11.5 11.2 

LasVeg 320030540 Annual No N/A N/A 8.80 8.59 21.7 21.2 

Lebano 420750100 Annual Yes 53 0 11.20 10.03 31.4 28.6 

Little 051191008 Annual Yes 11 0 10.27 10.04 21.7 21.1 

Little 051190007 Annual No 11 0 9.78 9.57 20.5 19.9 

LoganU 490050007 24-hr Yes 56 0 6.95 6.51 34.0 30.4 

LosAng 060371103 Annual Yes N/A N/A 12.38 10.04 32.8 26.6 

LosAng 060592022 Annual No N/A N/A 7.48 6.07 15.3 12.4 

LosAng 060590007 Annual No N/A N/A 9.63 7.81 - - 

LosAng 060374004 Annual No N/A N/A 10.25 8.31 27.3 22.1 

LosAng 060374002 Annual No N/A N/A 11.06 8.97 29.2 23.7 

LosAng 060371602 Annual No N/A N/A 11.86 9.62 32.3 26.2 

LosAng 060371302 Annual No N/A N/A 11.99 9.72 31.5 25.5 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

LosAng 060371201 Annual No N/A N/A 9.46 7.67 25.6 20.8 

LosAng 060370002 Annual No N/A N/A 10.52 8.53 29.2 23.7 

Louisv 180190006 Annual Yes 24 0 10.64 10.02 23.9 22.0 

Louisv 211110075 Annual No 24 0 10.42 9.83 22.3 20.3 

Louisv 211110067 Annual No 24 0 9.55 8.96 21.4 19.9 

Louisv 211110051 Annual No 24 0 10.29 9.68 21.8 20.2 

Louisv 211110043 Annual No 24 0 10.37 9.77 22.0 20.2 

Louisv 180431004 Annual No 24 0 9.96 9.37 22.0 20.4 

Louisv 180190008 Annual No 24 0 8.72 8.13 20.1 18.3 

MaconG 130210007 Annual Yes N/A N/A 10.13 10.04 21.2 21.0 

MaconG 130210012 Annual No N/A N/A 7.68 7.61 16.6 16.5 

Madera 060392010 24-hr Yes N/A N/A 13.30 10.04 45.1 30.4 

McAlle 482150043 Annual Yes N/A N/A 10.09 10.04 25.0 24.9 

Merced 060472510 24-hr Yes 68 0 11.68 9.74 39.8 30.4 

Merced 060470003 24-hr No 68 0 11.81 9.82 39.0 29.8 

Modest 060990006 24-hr Yes N/A N/A 13.02 9.75 45.7 30.4 

Modest 060990005 24-hr No N/A N/A - - 38.8 25.8 

NapaCA 060550003 Annual Yes N/A N/A 10.36 10.04 25.1 24.3 

NewYor 360610128 Annual Yes N/A N/A 10.20 10.04 23.9 23.5 

NewYor 361030002 Annual No N/A N/A 7.18 7.07 18.8 18.5 

NewYor 360810124 Annual No N/A N/A 7.52 7.40 19.5 19.2 

NewYor 360710002 Annual No N/A N/A 6.95 6.84 17.5 17.2 

NewYor 360610134 Annual No N/A N/A 9.70 9.55 21.6 21.3 

NewYor 360610079 Annual No N/A N/A 8.42 8.29 22.8 22.4 

NewYor 360470122 Annual No N/A N/A 8.66 8.52 20.5 20.2 

NewYor 360050133 Annual No N/A N/A 9.05 8.91 24.0 23.6 

NewYor 360050110 Annual No N/A N/A 7.39 7.27 19.4 19.1 

NewYor 340392003 Annual No N/A N/A 8.59 8.46 23.6 23.2 

NewYor 340390004 Annual No N/A N/A 9.87 9.72 24.2 23.8 

NewYor 340310005 Annual No N/A N/A 8.42 8.29 22.2 21.9 

NewYor 340292002 Annual No N/A N/A 7.23 7.12 18.1 17.8 

NewYor 340273001 Annual No N/A N/A 6.78 6.67 17.1 16.8 

NewYor 340171003 Annual No N/A N/A 8.79 8.65 23.4 23.0 

NewYor 340130003 Annual No N/A N/A 8.89 8.75 23.8 23.4 

NewYor 340030003 Annual No N/A N/A 8.90 8.76 24.5 24.1 

OgdenC 490110004 24-hr Yes 29 0 7.28 7.01 32.6 30.4 

OgdenC 490570002 24-hr No 29 0 8.99 8.71 - - 

OgdenC 490030003 24-hr No 29 0 6.35 6.10 - - 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

Philad 420450002 Annual Yes 86 0 11.46 10.04 26.0 22.3 

Philad 421010057 Annual No 86 0 10.86 9.12 27.0 22.5 

Philad 421010055 Annual No 86 0 11.43 9.95 27.5 23.9 

Philad 421010048 Annual No 86 0 10.27 8.70 25.6 21.1 

Philad 420290100 Annual No 86 0 9.64 7.87 23.9 19.5 

Philad 340150004 Annual No 86 0 8.33 6.99 20.6 16.9 

Philad 340071007 Annual No 86 0 8.84 7.23 21.0 17.1 

Philad 340070002 Annual No 86 0 10.19 8.40 23.5 20.2 

Philad 240150003 Annual No 86 0 8.70 6.90 22.6 17.5 

Philad 100031012 Annual No 86 0 9.04 7.21 23.0 17.7 

Pittsb 420030064 24-hr Yes 100 0 12.82 9.22 35.8 30.4 

Pittsb 421290008 24-hr No 100 0 8.65 6.04 19.6 12.9 

Pittsb 421255001 24-hr No 100 0 8.35 5.90 17.8 11.1 

Pittsb 421250200 24-hr No 100 0 8.95 6.10 19.3 13.7 

Pittsb 421250005 24-hr No 100 0 11.02 7.78 22.7 18.1 

Pittsb 420070014 24-hr No 100 0 10.11 7.38 21.9 15.2 

Pittsb 420050001 24-hr No 100 0 11.03 8.39 21.9 15.5 

Pittsb 420031301 24-hr No 100 0 11.00 7.79 24.8 19.7 

Pittsb 420031008 24-hr No 100 0 9.78 7.11 20.5 14.7 

Pittsb 420030008 24-hr No 100 0 9.50 6.81 20.5 14.2 

Prinev 410130100 24-hr Yes N/A N/A 8.60 6.95 37.6 30.4 

ProvoO 490494001 24-hr Yes 6 0 7.74 7.68 30.9 30.4 

ProvoO 490495010 24-hr No 6 0 6.73 6.68 - - 

ProvoO 490490002 24-hr No 6 0 7.41 7.36 28.9 28.4 

Rivers 060658005 Annual Yes N/A N/A 14.48 10.04 43.2 30.0 

Rivers 060658001 Annual No N/A N/A - - 36.5 25.3 

Sacram 060670006 24-hr Yes 18 0 9.31 9.11 31.4 30.4 

Sacram 061131003 24-hr No 18 0 6.62 6.50 15.8 15.1 

Sacram 060670012 24-hr No 18 0 7.30 7.17 19.8 19.3 

Sacram 060670010 24-hr No 18 0 8.67 8.50 26.5 25.5 

Sacram 060610006 24-hr No 18 0 7.58 7.45 20.3 19.9 

Sacram 060610003 24-hr No 18 0 6.71 6.63 19.3 18.9 

SaltLa 490353010 24-hr Yes 79 0 - - 41.5 30.3 

SaltLa 490353006 24-hr No 79 0 7.62 6.46 36.8 29.3 

SaltLa 490351001 24-hr No 79 0 7.07 5.88 32.1 23.2 

SanLui 060792007 Annual Yes N/A N/A 10.70 10.04 25.9 24.3 

SanLui 060798002 Annual No N/A N/A 5.71 5.36 - - 

SanLui 060792004 Annual No N/A N/A 8.25 7.74 19.8 18.6 
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CBSA a Site 
Controlling 
Standard 

Controlling 
Site? 

NOx & 
SO2 

Reduction 
(%) b 

Primary 
PM2.5 

Reduction 
(%) c 

Base 
Annual 

DV 
(µg m-3) 

Projected 
Annual 

DV 
(µg m-3) 

Base 24-
hr DV 

(µg m-3) 

Projected 
24-hr DV 
(µg m-3) 

SouthB 181410015 24-hr Yes 30 0 10.45 9.68 32.5 30.4 

St.Lou 290990019 Annual Yes N/A N/A 10.12 10.04 22.8 22.6 

St.Lou 295100094 Annual No N/A N/A 9.57 9.49 23.3 23.1 

St.Lou 295100093 Annual No N/A N/A - - 23.7 23.5 

St.Lou 295100085 Annual No N/A N/A 10.10 10.02 23.6 23.4 

St.Lou 295100007 Annual No N/A N/A 9.78 9.70 23.7 23.5 

St.Lou 291893001 Annual No N/A N/A 9.85 9.77 22.4 22.2 

Stockt 060771002 Annual Yes 97 0 12.23 10.04 38.7 29.7 

Stockt 060772010 Annual No 97 0 10.74 8.69 37.3 28.4 

Visali 061072002 24-hr Yes N/A N/A 16.23 9.14 54.0 30.4 

Weirto 390810017 Annual Yes 62 0 11.75 10.02 27.2 23.8 

Weirto 540090011 Annual No 62 0 9.75 8.14 22.8 19.9 

Weirto 540090005 Annual No 62 0 10.52 8.82 22.4 18.8 

Weirto 390810021 Annual No 62 0 9.29 7.68 22.2 18.5 

Wheeli 540511002 Annual Yes N/A N/A 10.24 10.04 22.5 22.1 

Wheeli 540690010 Annual No N/A N/A 9.61 9.42 19.7 19.3 
a CBSA names are the first six characters of the full CBSAs names in Table C-3. 
b Percent reduction in NOx and SO2 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 
c Percent reduction in Primary PM2.5 emissions associated with just meeting the standard in this case; N/A indicates ‘not 
applicable’ where proportional projection was used. 
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APPENDIX D. QUANTITATIVE ANALYSES FOR 

VISIBILITY IMPAIRMENT 

D.1 BACKGROUND  

To inform the EPA’s decision in the last review on the adequacy of protection provided 

by the secondary PM standards the EPA conducted a technical analysis of the relationships 

between a 3-year average daily visibility metric and the 24-hour PM2.5 mass-based standard 

(Kelly et al., 2012). The 3-year visibility metric was calculated as the 3-year average of the 90th 

percentile of daily visibility index values.1 Light extinction coefficient (bext) values for the 

visibility index were calculated using the original IMPROVE equation (Equation D-1 in section 

D.2.2 below), which at the time of the last review, the EPA considered to be better suited to 

urban sites that were the focus of the analysis than other versions of the IMPROVE equation, 

with a few modifications to the equation: excluding the coarse mass2 and sea salt3 terms in the 

equation and using a multiplier of 1.6 for converting OC to OM.4  

                                                           
1 The visibility index is a logarithmic transformation of the light extinction coefficient, bext, the use of which ensures 

that increases or decreases in light extinction coefficient always produce, respectively, increases or decreases in 

visibility index (Kelly et al., 2012). 

2 PM2.5 is the size fraction of PM responsible for most of the visibility impairment in urban areas (U.S. EPA, 2009, 

section 9.2.2.2). Data available at the time of the last review suggested that, generally, PM10-2.5 was a minor 

contributor to visibility impairment most of the time (U.S. EPA, 2010) although the coarse fraction may be a 

major contributor in some areas in the desert southwestern region of the country. Moreover, at the time of the last 

review, there were few data available from continuous PM10-2.5 monitors to quantify the contribution of coarse 

PM to calculated light extinction. 

3 In estimating light extinction in the last review, the EPA did not consider it appropriate to include the term for 

hygroscopic sea salt in evaluating urban light extinction, given that sea salt is not a major contributor to light 

extinction in urban areas compared with more remote coastal locations. In particular, Pitchford (2010) estimated 

that the contribution of sea salt to PM2.5 light extinction was generally well below 5% for PM2.5 light extinction 

greater than 24 dv (U.S. EPA, 2010, p. 3-22; U.S. EPA, 2012, p. IV-5). 

4 At the time of the last review, the EPA considered the multiplier of 1.8 recommended by Pitchford et al. (2007) to 

convert OC to OM for use in the revised IMPROVE equation (Equation D-2 below) to be too high for urban 

environments. The composition of, and the mix of emission sources contributing to, PM2.5 differ between urban 

and remote areas, and consequently, the light extinction may differ between urban and remote areas. Organic 

mass in urban areas is often from local and regional sources and would have a greater percentage of fresh 

emissions compared with aged emissions, which tend to be more prominent in rural areas, and a different PM 

mass to OC ratio than in urban areas. The EPA also considered the multiplier of 1.4 used with the original 

IMPROVE equation to be too low to adequately account for the contribution of OM to visibility impairment, 

particularly in urban areas where OM concentrations tend to be higher. Based on these considerations, along with 

an evaluation of the OC to OM relationship at CSN sites (2011 PA, Appendix F, section F.6), the EPA chose to 

use a multiplier of 1.6 to convert OC to OM in the light extinction calculations used in the last review (U.S. EPA, 

2012, pages IV-5-IV-8). 
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Using 2008-2010 air quality data for 102 CSN network sites,5 the 2012 analysis explored 

the relationship between the 3-year design values for the existing 24-hour PM2.5 standard and 

values of the 3-year visibility metric.6 The analysis indicated that increases in 24-hour PM2.5 

design values generally correspond to increases in the 3-year visibility metric values, and vice-

versa (78 FR 3201, January 15, 2013).The analysis also found linear correlations between the 24-

hour PM2.5 design values and the 3-year visibility metric with an average r2 value of 0.75 across 

all of the sites (Kelly et al., 2012). A key implication of this analysis was that for the level 

proposed by the EPA for a visibility index-based standard, the 24-hour PM2.5 standard of 35 

µg/m3 would be controlling in almost all or all instances (78 FR 3202, January 15, 2013). 

D.2 ANALYSIS: METHODS AND INPUTS 

Consistent with the analyses conducted in the last review described above, we have 

conducted analyses examining the relationship between PM mass concentrations and estimated 

light extinction in terms of a PM visibility metric. These analyses are intended to inform our 

understanding of visibility impairment in the U.S. under recent air quality conditions, 

particularly those conditions that meet the current standards, and our understanding of the 

relative influence of various factors on light extinction. These analyses were conducted using 

three versions of the IMPROVE equation (Equations D-1 through D-3 below) to estimate light 

extinction to better understand the influence of variability in inputs across the three equations. 

This analysis included 67 monitoring sites that are geographically distributed across the U.S. in 

both urban and rural areas (see Figure D-1). The data set is comprised of sites with data for the 

2015-2017 period that supported a valid 24-hour PM2.5 design value7 and met strict criteria for 

PM species. Light extinction at these 67 monitoring sites was calculated without the coarse 

fraction in the IMPROVE equations, consistent with the analyses conducted in the last review. 

For a subset of 20 of the 67 monitoring sites where PM10 data were available and met 

completeness criteria, the coarse fraction was included when calculating light extinction to better 

characterize the influence of coarse PM on light extinction. Results for these two sets of analyses 

are presented in Figures 5-3 and 5-4 and discussed in section 5.2.1.2 of Chapter 5 and presented 

in Table D-7 and Table D-8 and Figure D-2 in section D.3 below. 

                                                           
5 The 102 sites included in the Kelly et al. (2012) analysis were those sites that met the data completeness criteria 

used for that analysis (Kelly et al., 2012, p. 15). 

6 The EPA used monthly average relative humidity values rather than shorter-term (e.g., hourly) values to estimate 

light extinction in the last review in order to capture seasonal variability of relative humidity and its effects on 

visibility impairment. This was intended to focus more on the underlying aerosol contributions to visibility 

impairment and less on the day-to-day variations in humidity (U.S. EPA, 2012, p. IV-10). 

7 The design value (DV) for the standard is the metric used to determine whether areas meet or exceed the NAAQS. 

A design value is a statistic that describes the air quality status of a given area relative to the NAAQS. 
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Figure D-1. Locations of monitoring sites with data for 2015-2017 with a valid PM2.5 design 

value and meeting completeness criteria for PM species. 

 

D.2.1 Data Sources for Inputs to Estimate Light Extinction  

D.2.1.1 Relative Humidity 

Relative humidity data were downloaded from the North American Regional Reanalysis 

(NARR). NARR is the National Centers for Environmental Prediction’s (NCEP) high resolution 

combined model and assimilated meteorological dataset. NARR is an extension of the NCEP 

Global Reanalysis which is run over North American using the Eta Model (32 km) together with 

the Regional Data Assimilation System. Files for 3-hour average 10 m relative humidity data for 

2015-2017 are available at https://esrl.noaa.gov/psd/data/gridded/data.narr.html. 

 Using NARR latitudes, relative humidity data were reassigned to each grid cell from 

coordinated universal time (UTC) to their closest time zone and the 3-hour relative humidity data 

were then averaged to 24-hour local time averages in order to approximate the 24-hour averaging 

https://esrl.noaa.gov/psd/data/gridded/data.narr.html


 D-4  

time (midnight-midnight) of the daily PM2.5 measurements. The PM2.5 and PM2.5 component 

daily mass data (described in subsequent sections) were temporally and spatially matched with 

the closest 24-hour average relative humidity grid cell. 

D.2.1.2 PM2.5 Concentrations 

The raw data for PM2.5 site-level daily mass concentrations came from an Air Quality 

System (AQS)8 query of the daily site-level concentrations. Data files used were for 24-hour 

average values from regulatory monitors for all sites in the U.S. for all available days (including 

potential exceptional events) for 2015-2017. When a single site had multiple monitors, the 

previously-determined primary monitor concentration was used. If the primary monitor value 

was missing, the average of the collocated monitors was used. These data were screened so that 

all days either had a valid filter-based 24-hour concentration measurement9 or at least 18 valid 

hourly concentrations measurements. 

D.2.1.3 Coarse PM Concentrations 

The raw data for PM10-2.5 monitor-level daily mass concentrations came from an AQS 

query of the daily monitor-level concentrations. Data files used were for 24-hour average 

concentrations from monitors mainly in the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) network and NCore Multipollutant Monitoring Network. Data were 

included for sites with ≥ 11 valid days for each quarter of 2015-2017. 

D.2.1.4 PM2.5 Component Concentrations 

The raw data for PM2.5 component concentrations for the components listed in Table D-1 

came from an AQS query of the daily monitor-level concentrations. Data files used were for 

filter-based, 24-hour average concentrations from monitors in the Interagency Monitoring of 

Protected Visual Environments (IMPROVE) network, Chemical Speciation Network (CSN), and 

NCore Multipollutant Monitoring Network. Data were included for days with valid data for all 

chemical components listed in Table D-1 below and for sites with ≥ 11 valid days for each 

quarter of 2015-2017. 

  

                                                           
8 The Air Quality System is an EPA database of ambient air quality monitoring data (https://www.epa.gov/aqs). 

9 A valid filter-based 24-hour concentration measurement is one collected via FRM, and that has undergone 

laboratory equilibration (at least 24 hours at standardized conditions of 20-23°C and 30-40% relative humidity) 

prior to analysis (see Appendix L of 40 CFR Part 50 for the 2012 NAAQS for PM). 

https://www.epa.gov/aqs
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Table D-1. PM2.5 components from AQS used in IMPROVE equations. 

PM2.5 Component Drawn from AQS AQS Parameter Code 

Sulfate 88403 

Nitrate 88306 

OC (TORa) 88320, 88370 

EC (TORa) 88321, 88380 

Aluminum (Al), Silica (Si), Calcium (Ca), Iron 
(Fe), Titanium (Ti) 

88104 (Al), 88165 (Si), 88111 (Ca), 88126 
(Fe), 88161 (Ti) 

Chloride, Chlorine 88115 (Chlorine), 88203 (Chloride) 

a OC and EC values are based on the thermal optical reflectance (TOR) analytical method, 
which replaced the NIOSH 5040-like thermal optical transmittance (TOT) method in the CSN 
network after 2009 (Spada and Hyslop, 2018). 

 

D.2.1.5 24-Hour PM2.5 Design Values 

Files for 24-hour PM2.5 design values for 2015-2017 are located at 

https://www.epa.gov/air-trends/air-quality-design-values. Data handling of the 2015-2017 PM2.5 

design values is described in Appendix N of 40 CFR Part 50 for the 2012 National Ambient Air 

Quality Standards (NAAQS) for Particulate Matter (PM). 

 

D.2.1.6 24-Hour PM10 Design Values 

 Files for 24-hour PM10 design values for 2015-2017 are located at 

https://www.epa.gov/air-trends/air-quality-design-values. Data handling of the 2015-2017 PM10 

design values is described in Appendix K of 40 CFR Part 50. 

 

D.2.1.7 Annual PM2.5 Design Values 

Files for annual PM2.5 design values for 2015-2017 are located at 

https://www.epa.gov/air-trends/air-quality-design-values. Data handling of the 2015-2017 PM2.5 

design values is described in Appendix N of 40 CFR Part 50 for the 2012 National Ambient Air 

Quality Standards (NAAQS) for Particulate Matter (PM). 

 

D.2.2 Calculating Light Extinction for Visibility Impairment Analyses  

For all days with a valid relative humidity value, PM2.5 mass concentration, and all 

chemical components listed in Table D-1, daily light extinction was calculated using three 

versions of the IMPROVE equation, as shown below. Formulas for derivation of the equation 

variables from the AQS parameters are presented in Table D-6. 

  

https://www.epa.gov/air-trends/air-quality-design-values
https://www.epa.gov/air-trends/air-quality-design-values
https://www.epa.gov/air-trends/air-quality-design-values
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Original IMPROVE Equation (Malm et al., 1994): 

𝑏𝑒𝑥𝑡  ≅ 3𝑓(𝑅𝐻)([𝐴𝑆] + [𝐴𝑁]) + 4[𝑂𝑀] + 10[𝐸𝐶] + 1[𝐹𝑆] + 0.6[𝐶𝑀] + 10 

Equation D-1 

where:  

 [AS] is concentration in µg/m3 of ammonium sulfate,  

 [AN] is concentration in µg/m3 of ammonium nitrate,  

 [OM] is concentration in µg/m3 of organic matter,  

 [EC] is concentration in µg/m3 of elemental carbon,  

 [FS] is concentration in µg/m3 of fine soil,  

 [CM] is concentrations in µg/m3 of coarse mass, and 

f(RH) is the relative-humidity-dependent water growth function, assigned values as shown 

in Table D-2: 

Table D-2. Relatively-humidity-dependent water growth function for use in the original 

IMPROVE equation.  

RH (%) 1-36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 

f(RH) 1 1.02 1.04 1.06 1.08 1.1 1.13 1.15 1.18 1.2 1.23 1.26 1.28 1.31 1.34 1.37 1.41 1.44 1.47 1.51 1.54 

                      

RH (%) 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 

f(RH) 1.58 1.62 1.66 1.7 1.74 1.79 1.83 1.88 1.93 1.98 2.03 2.08 2.14 2.19 2.25 2.31 2.37 2.43 2.5 2.56 2.63 

                      

RH (%) 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 a 

f(RH) 2.7 2.78 2.86 2.94 3.03 3.12 3.22 3.33 3.45 3.58 3.74 3.93 4.16 4.45 4.84 5.37 6.16 7.4 9.59 14.1 26.4 

Note: See fRHOriginalIMPROVE.csv file from http://vista.cira.colostate.edu/Improve/the-improve-algorithm/ (Malm et al., 1994). 
a For our application, any relative humidity values greater than 98% were assigned the f(RH) value associated with 98%, the highest 
value available for the relative humidity function. 

http://vista.cira.colostate.edu/Improve/the-improve-algorithm/
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The various coefficients are the empirically derived extinction efficiency (mass scattering and 

absorption) coefficients, as originally specified by Malm et al. (1994). 

 

Revised IMPROVE Equation (Pitchford et al., 2007): 

𝑏𝑒𝑥𝑡  ≅ 2.2𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 4.8𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 2.4𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑛𝑖𝑡𝑟𝑎𝑡𝑒]

+ 5.1𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑛𝑖𝑡𝑟𝑎𝑡𝑒] + 2.8[𝑠𝑚𝑎𝑙𝑙 𝑂𝑀] + 6.1[𝑙𝑎𝑟𝑔𝑒 𝑂𝑀] + 10[𝐸𝐶]

+ 1[𝐹𝑆] + 1.7𝑓𝑆𝑆(𝑅𝐻)[𝑆𝑆] + 0.6[𝐶𝑀] + 10 

Equation D-2 

where:  

[small sulfate], [large sulfate], [small nitrate], [large nitrate], [small OM] and [large OM] 

are defined as follows in Table D-3: 

Table D-3. Values for use in the revised IMPROVE equation for small and large sulfate, 

nitrate, and organic matter concentrations. 

 If [  ] > 20 If [  ] <20 

Large sulfate [AS] [AS]÷20 

Small sulfate 0 [AS] - ([AS]÷20) 

Large nitrate [AN] [AN]÷20 

Small nitrate 0 [AN] - ([AN]÷20) 

Large OM [OM] [OM]÷20 

Small OM 0 [OM] - ([OM]÷20) 

Note: [AS], [AN] and [OM] are defined as for Equation D-1. 

 

 [SS] is sea salt; and,  

 fSS(RH), fS(RH), and fL(RH) are defined as shown in Table D-4: 
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Table D-4. Relatively-humidity-dependent water growth function for sea salt, small 

particles, and large particles for use in the revised IMPROVE equation.  

RH (%) 1-36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

fSS(RH) 1 1 1 1 1 1 1 1 1 1 1 2.3584 2.3799 2.4204 2.4488 

fS(RH) 1 1.38 1.4 1.42 1.44 1.46 1.48 1.49 1.51 1.53 1.55 1.57 1.59 1.62 1.64 

fL(RH) 1 1.31 1.32 1.34 1.35 1.36 1.38 1.39 1.41 1.42 1.44 1.45 1.47 1.49 1.5 

                

RH (%) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 

fSS(RH) 2.4848 2.5006 2.5052 2.5279 2.5614 2.5848 2.5888 2.616 2.6581 2.6866 2.7341 2.7834 2.8272 2.8287 2.8594 

fS(RH) 1.66 1.68 1.71 1.73 1.76 1.78 1.81 1.83 1.86 1.89 1.92 1.95 1.99 2.02 2.06 

fL(RH) 1.52 1.54 1.55 1.57 1.59 1.61 1.63 1.65 1.67 1.69 1.71 1.73 1.75 1.78 1.8 

                

RH (%) 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

fSS(RH) 2.8943 2.9105 2.9451 3.0105 3.0485 3.1269 3.1729 3.2055 3.2459 3.2673 3.3478 3.4174 3.5202 3.5744 3.6329 

fS(RH) 2.09 2.13 2.17 2.22 2.26 2.31 2.36 2.41 2.47 2.54 2.6 2.67 2.75 2.84 2.93 

fL(RH) 1.83 1.86 1.89 1.92 1.95 1.98 2.01 2.05 2.09 2.13 2.18 2.22 2.27 2.33 2.39 

                

RH (%) 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 a 

fSS(RH) 3.6905 3.808 3.9505 4.0398 4.1127 4.2824 4.494 4.6078 4.8573 5.1165 5.3844 5.7457 6.1704 6.7178 7.3492 

fS(RH) 3.03 3.15 3.27 3.42 3.58 3.76 3.98 4.23 4.53 4.9 5.35 5.93 6.71 7.78 9.34 

fL(RH) 2.45 2.52 2.6 2.69 2.79 2.9 3.02 3.16 3.33 3.53 3.77 4.06 4.43 4.92 5.57 

Note: See fRHRevisedIMPROVE.csv file from http://vista.cira.colostate.edu/Improve/the-improve-algorithm/ (Pitchford et al., 
2007). 
a For our application, any relative humidity values greater than 95% were assigned the f(RH) value associated with 95%, the 
highest value available for the relative humidity function. 

 

and 

 [EC], [FS] and [CM] are defined as for Equation D-1. 

This equation is generally dividing PM components into small and large particle sizes10 with 

separate mass scattering efficiencies and hygroscopic growth functions for each size (included in 

the equation as fS(RH) for small particles, fL(RH) for large particles, and fSS(RH) for sea salt). 

 

                                                           
10 The large mode for sulfate, nitrate, and OM represents aged and/or cloud processed particles, whereas the small 

mode represents freshly formed particles. These size modes are described by log-normal mass size distributions 

with geometric mean diameters and geometric standard deviations of 0.2 µm and 2.2 for small mode and 0.5 µm 

and 1.5 for the large mode, respectively. 

http://vista.cira.colostate.edu/Improve/the-improve-algorithm/
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Lowenthal and Kumar (2016) Equation: 

𝑏𝑒𝑥𝑡  ≅ 2.2𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 4.8𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑠𝑢𝑙𝑓𝑎𝑡𝑒] + 2.4𝑓𝑆(𝑅𝐻)[𝑠𝑚𝑎𝑙𝑙 𝑛𝑖𝑡𝑟𝑎𝑡𝑒]

+ 5.1𝑓𝐿(𝑅𝐻)[𝑙𝑎𝑟𝑔𝑒 𝑛𝑖𝑡𝑟𝑎𝑡𝑒] + 2.8𝑓𝑆(𝑅𝐻)𝑂𝑀[𝑠𝑚𝑎𝑙𝑙 𝑂𝑀]

+ 6.1𝑓𝐿(𝑅𝐻)𝑂𝑀[𝑙𝑎𝑟𝑔𝑒 𝑂𝑀] + 10[𝐸𝐶] + 1[𝐹𝑆] + 1.7𝑓𝑆𝑆(𝑅𝐻)[𝑆𝑆] + 0.6[𝐶𝑀]

+ 10 

Equation D-3 

where:  

fS(RH)OM and fL(RH)OM are the relative-humidity-dependent water growth function for small and 

large organic matter, respectively, as defined in Table D-5 below. 

Table D-5. Relatively-humidity-dependent water growth function for small organic matter 

and large organic matter for use in the original IMPROVE equation. 

RH (%) 0-29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

fS(RH)OM 1.000 1.321 1.325 1.329 1.333 1.337 1.340 1.343 1.346 1.349 1.352 1.354 1.356 1.358 1.360 1.362 1.364 

FL(RH)OM 1.000 1.267 1.271 1.274 1.278 1.280 1.283 1.286 1.288 1.290 1.292 1.294 1.296 1.297 1.299 1.300 1.302 

                  

RH (%) 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 

fS(RH)OM 1.366 1.368 1.369 1.371 1.373 1.75 1.377 1.379 1.382 1.384 1.387 1.390 1.393 1.397 1.400 1.404 1.409 

fS(RH)OM 1.303 1.305 1.306 1.308 1.309 1.311 1.306 1.308 1.309 1.311 1.313 1.314 1.316 1.318 1.320 1.323 1.325 

                  

RH (%) 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

fS(RH)OM 1.413 1.419 1.424 1.430 1.437 1.444 1.452 1.460 1.469 1.478 1.489 1.500 1.511 1.524 1.537 1.51 1.566 

fS(RH)OM 1.328 1.331 1.334 1.338 1.342 1.346 1.350 1.355 1.385 1.393 1.401 1.409 1.418 1.428 1.438 1.449 1.461 

                  

RH (%) 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 a  

fS(RH)OM 1.582 1.599 1.617 1.637 1.657 1.679 1.703 1.727 1.754 1.782 1.812 1.843 1.877 1.912 1.950 1.989  

fS(RH)OM 1.473 1.486 1.500 1.515 1.531 1.548 1.566 1.585 1.605 1.626 1.648 1.672 1.696 1.722 1.750 1.779  

Note: See Table 1 in Lowenthal and Kumar (2016). 
a For our application, any relative humidity values greater than 95% were assigned the f(RH) value associated with 95%, the highest 
value available for the relative humidity function. 

 

and  

[small sulfate], [large sulfate], [small nitrate], [large nitrate], [small OM], [large OM], [EC], 

[FS], [SS], [CM], fS(RH), fL(RH) and fSS(RH) are defined as above for Equation D-2. 

 

This equation updates the multiplier for estimating the concentration organic matter, [OM], from 

the concentration of organic carbon to 2.1 and incorporates fS(RH)OM and fL(RH)OM representing 

water absorption by soluble organic matter as a function of relative humidity for small and large 

organic matter, respectively. 
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Based on each equation, site-specific visibility metrics were derived for each site as 

follows. Daily light extinction values were derived for 2015, 2016, and 2017, the 90th percentile 

of daily values for each year was calculated, and the three years of values were averaged. The 3-

year averages of the 90th percentiles of daily light extinction values were paired with the 2015-

2017 PM2.5 24-hour design values for each site having valid data for both statistics. 

Table D-6. Derivation of equation variables from AQS PM2.5 component concentrations. 

Equation Variable How Calculated from AQS Parameter Values 

Ammonium Sulfate All three equations: 1.375×[Sulfate] A 

Ammonium Nitrate All three equations: 1.29×[Nitrate] B 

Organic Matter 
Original IMPROVE equation: 1.6×[OC] C 
Revised IMPROVE equation: 1.6×[OC] C 
Lowenthal and Kumar (2016) equation: 2.1×[OC] 

Elemental Carbon [EC] 

Fine Soil 
All three equations: D  
2.2×[Al]+2.49×[Si]+1.63×[Ca]+2.42×[Fe]+1.94×[Ti] 

Sea Salt 
Revised IMPROVE and Lowenthal and Kumar, 2016 equations:D 

1.8×[Chloride] 
1.8×[Chlorine] (if chloride is missing) 

A This formula is based on molar molecular weights of ammonium sulfate and sulfate (Malm et al., 1994).  
B This formula is based on molar molecular weights of ammonium nitrate and nitrate (Malm et al., 1994). 
C See footnote 4 earlier in this appendix. 
D This formula is documented in Malm et al. (1994). 

 

D.3 SUMMARY OF RESULTS  

Results for the visibility impairment analyses are discussed in section 5.2.1.2 of Chapter 

5. Table D-7 presents the 24-hour PM2.5, 24-hour PM10 design values, and 3-year visibility 

metrics based on light extinction calculations using the three versions of the IMPROVE equation 

with the coarse mass fraction excluded for the 67 monitoring sites included in the analyses. Table 

D-8 presents the 24-hour PM2.5 and 24-hour PM10 design values, along with the 3-year visibility 

metrics based on light extinction calculations using the three versions of the IMPROVE equation 

with and without the coarse mass fraction for the subset of 20 monitoring sites with coarse PM 

monitoring data that meet the completeness criteria as described above. Figure 5-3 and 5-4 in 

Chapter 5 show a comparison of the 3-year visibility metric and the 24-hour PM2.5 design values 

for the 67 monitoring sites in the analyses where light extinction was calculated using the 
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original IMPROVE equation11 and the Lowenthal and Kumar IMPROVE equation.12 Figure D-2 

below presents the 3-year visibility metric and the 24-hour PM2.5 design values for the 67 

monitoring sites with light extinction calculated using the revised IMPROVE equation.13 

 

                                                           
11 For this analysis, the original IMPROVE equation in Equation D-1 was modified to use a 1.6 multiplier to convert 

OC to OM and to remove the coarse mass fraction from the light extinction calculation, consistent with the 

modifications in the last review. 

12 For this analysis, the Lowenthal and Kumar IMPROVE equation in Equation D-3 was modified to remove the 

coarse mass fraction from the light extinction calculation. 

13 For this analysis, the revised IMPROVE equation in Equation D-2 was modified to use a 1.6 multiplier to convert 

OC to OM and to remove the coarse mass fraction from the light extinction calculation, consistent with the 

modifications in the last review. 
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Table D-7. Summary of 24-hour PM2.5, 24-hour PM10, and annual PM2.5 design values, and 3-year visibility metrics at 67 

monitoring sites (2015-2017). 

Monitor ID State Region 

24-hour 
PM2.5 

Design 
Value 

(µg/m3) A 

24-hour PM10 
Design Value 
(number of 

exceedances) B 

C 

Annual PM2.5 
Design Value 

(µg/m3) D 

3-year Visibility Metric (deciviews) E 

Original 
IMPROVE 
Equation F 

Revised 
IMPROVE 
Equation G 

Lowenthal & 
Kumar 

IMPROVE 
Equation H 

010730023 Alabama Southeast 22 0 10.4 21 21 26 

020900034 Alaska Alaska 35 0 9.5 27 27 31 

040139997 Arizona Southwest 21 0.3 7.1 18 18 21 

040191028 Arizona Southwest 12  5.5 13 13 15 

051190007 Arkansas Southeast 19 0 9.4 20 20 24 

060190011 California SoCal 54 0.3 14 25 27 31 

060371103 California SoCal 32 0 12.1 24 25 27 

060658001 California SoCal 34 0 12.3 23 25 28 

060670006 California Northwest 34 0 9.6 24 25 30 

060850005 California Northwest 27 0 9.3 22 22 26 

090050005 Connecticut Northeast 13 0 4.6 17 16 18 

110010043 
District of 
Columbia 

Northeast 21 0 9.2 23 22 25 

120573002 Florida Southeast 17 0 7.4 18 17 20 

130890002 Georgia Southeast 19 0 9.0 20 19 24 

160010010 Idaho Northwest 31  7.6 23 23 26 

170191001 Illinois IndustrialMidwest 17  7.6 21 20 21 

170314201 Illinois IndustrialMidwest 21 0 8.4 23 23 25 

180970078 Indiana IndustrialMidwest 21 0 9.1 23 23 26 

191370002 Iowa UpperMidwest 16  6.5 18 17 19 

191630015 Iowa IndustrialMidwest 20 0 8.2 22 21 23 

191770006 Iowa UpperMidwest 18 0 6.9 21 20 22 
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202090021 Kansas UpperMidwest 21  8.8 21 21 24 

211110067 Kentucky IndustrialMidwest 19  8.6 22 21 24 

220330009 Louisiana Southeast 20 0 9.0 21 20 24 

230090103 Maine Northeast 12 0 4.1 18 16 19 

240053001 Maryland Northeast 23  8.9 23 23 26 

240230002 Maryland IndustrialMidwest 14  5.5 17 17 18 

240330030 Maryland Northeast 18 0 8.4 21 20 24 

250130008 Massachusetts Northeast 14  5.7 20 19 23 

250250042 Massachusetts Northeast 16 0 7.0 20 19 22 

260810020 Michigan IndustrialMidwest 23 0 8.5 23 23 25 

261630001 Michigan IndustrialMidwest 22 0 8.9 24 24 26 

270031002 Minnesota UpperMidwest 18 0 6.7 20 20 23 

270530963 Minnesota UpperMidwest 18  7.2 22 22 24 

270750005 Minnesota IndustrialMidwest 12  4.0 15 15 17 

295100085 Missouri IndustrialMidwest 20 0 8.9 22 21 24 

300490004 Montana Northwest 33  4.1 15 15 20 

310550019 Nebraska UpperMidwest 20 0 8.9 19 18 20 

320030540 Nevada SoCal 23 0.7 8.2 19 19 22 

320310016 Nevada Northwest 20 0 7.2 18 18 22 

330115001 New Hampshire Northeast 12  4.6 14 13 15 

330150018 New Hampshire Northeast 14  5.1 18 17 19 

340010006 New Jersey Northeast 15  6.8 19 19 20 

340130003 New Jersey Northeast 20 0 8.6 23 23 26 

340390004 New Jersey Northeast 23  9.7 24 24 27 

350010023 New Mexico Southwest 18 0 5.8 15 15 18 

360050110 New York Northeast 19  6.9 23 23 25 

360551007 New York Northeast 16  6.5 21 21 23 

360610134 New York Northeast 21  9.3 24 24 27 

360810124 New York Northeast 19  7.3 22 21 24 

361010003 New York Northeast 12  5.0 18 17 19 

371190041 North Carolina Southeast 17  8.5 19 19 23 
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371830014 North Carolina Southeast 18  8.8 19 18 22 

380070002 North Dakota UpperMidwest 18 0 4.1 14 13 15 

380130004 North Dakota UpperMidwest 24 0 4.3 18 18 18 

390610040 Ohio IndustrialMidwest 20 0 8.9 23 22 24 

391351001 Ohio IndustrialMidwest 17  7.7 22 21 23 

460330132 South Dakota UpperMidwest 16 0 3.7 12 11 14 

460710001 South Dakota UpperMidwest 15 0 3.5 12 11 14 

471570075 Tennessee Southeast 15  7.6 19 18 21 

481410044 Texas Southwest 23  8.9 17 17 20 

482011039 Texas Southeast 20 0 8.6 21 21 24 

500070007 Vermont Northeast 10  3.2 16 15 17 

510870014 Virginia Northeast 16 0 7.4 20 19 24 

530330080 Washington Northwest 20  6.4 20 20 23 

550270001 Wisconsin IndustrialMidwest 18 0 6.8 22 22 24 

560210100 Wyoming Northwest 14  4.1 13 12 15 
A The 24-hour PM2.5 design value is the 3-year average of the 98th percentile of daily PM2.5 mass concentrations. The current 24-hour PM2.5 NAAQS is set at a level of 35 
µg/m3. 
B The 24-hour PM10 design value is not to be exceeded more than once per year on average over three years. The current 24-hour PM10 NAAQS is set at a level of 150 
µg/m3. 
C For some monitoring locations, PM10 design values are not available because of a lack of collocated PM10 monitoring at the site or insufficient data after applying 
completeness criteria for calculating PM10 design values. 
D The annual PM2.5 design value is the annual mean, averaged over three years. The current secondary annual PM2.5 NAAQS is set at a level of 15.0 µg/m3. 
E The 3-year visibility metric is the 3-year average of the 90th percentile of daily light extinction. In the last review, the target level of protection identified for the 3-year visibility 
metric was 30 deciviews. 
F The original IMPROVE equation in Equation D-1 was modified to use a 1.6 multiplier to convert OC to OM and to remove the coarse mass fraction from the light extinction 
calculation, consistent with the modifications in the last review. 
G The revised IMPROVE equation in Equation D-2 was modified to use a 1.6 multiplier to convert OC to OM and to remove the coarse mass fraction from the light extinction 
calculation, consistent with the modifications in the last review. 
H The Lowenthal and Kumar IMPROVE equation in Equation D-3 was modified to remove the coarse mass fraction from the light extinction calculation. 
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Table D-8. Summary of 24-hour PM2.5, 24-hour PM10 and annual PM2.5 design values, and 3-year visibility metrics at 20 

monitoring sites with collocated PM2.5 and PM10 monitoring data (2015-2017). 

Monitor ID State Region 

24-hour 
PM2.5 

Design 
Value 

(µg/m3) A 

24-hour PM10 
Design Value 
(number of 

exceedances) 
B C 

Annual PM2.5 
Design Value 

(µg/m3) D 

3-year Visibility Metric (deciviews) E 

Original IMPROVE 
Equation F 

Revised IMPROVE 
Equation G 

Lowenthal & Kumar 
IMPROVE Equation 

Without 
[CM] H 

With 
[CM] I 

Without 
[CM] H 

With 
[CM] I 

Without 
[CM] H 

With 
[CM] I 

051190007 Arkansas Southeast 19 0 9.4 20 21 20 21 24 24 

060670006 California Northwest 34 0 9.6 24 25 25 25 30 29 

060850005 California Northwest 27 0 9.3 22 23 22 23 26 27 

120573002 Florida Southeast 17 0 7.4 18 19 17 18 20 20 

160010010 Idaho Northwest 31  7.6 23 22 23 23 26 25 

180970078 Indiana IndustrialMidwest 21 0 9.1 23 24 23 23 26 26 

191630015 Iowa IndustrialMidwest 20 0 8.2 22 22 21 22 23 24 

211110067 Kentucky IndustrialMidwest 19  8.6 22 22 21 22 24 24 

230090103 Maine Northeast 12 0 4.1 18 19 16 17 19 19 

250250042 Massachusetts Northeast 16 0 7.0 20 20 19 20 22 22 

260810020 Michigan IndustrialMidwest 23 0 8.5 23 23 23 23 25 26 

261630001 Michigan IndustrialMidwest 22 0 8.9 24 25 24 25 26 27 

320310016 Nevada Northwest 20 0 7.2 18 19 18 19 22 23 

340130003 New Jersey Northeast 20 0 8.6 23 24 23 24 22 26 

390610040 Ohio IndustrialMidwest 20 0 8.9 23 24 22 23 24 25 

391351001 Ohio IndustrialMidwest 17  7.7 22 22 21 21 23 23 

471570075 Tennessee Southeast 15  7.6 19 20 18 19 21 22 

500070007 Vermont Northeast 10  3.2 16 16 15 15 17 17 

510870014 Virginia Northeast 16 0 7.4 20 20 19 20 24 24 

530330080 Washington Northwest 20  6.4 20 21 20 20 23 25 

A The 24-hour PM2.5 design value is the 3-year average of the 98th percentile of daily PM2.5 mass concentrations. The current secondary 24-hour PM2.5 NAAQS is set at a level of 35 
µg/m3. 
B The 24-hour PM10 design value is not to be exceeded more than once per year on average over three years. The current secondary 24-hour PM10 NAAQS is set at a level of 150 
µg/m3. 
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C For some monitoring locations, PM10 design values are not available because of a lack of collocated PM10 monitoring at the site or insufficient data after applying completeness 
criteria for calculating PM10 design values. 
D The annual PM2.5 design value is the annual mean, averaged over three years. The current secondary annual PM2.5 NAAQS is set at a level of 15.0 µg/m3. 
E The 3-year visibility metric is the 3-year average of the 90th percentile of daily light extinction. In the last review, the target level of protection identified for the 3-year visibility metric 
was 30 deciviews. 
F The original IMPROVE equation in Equation D-1 was modified to use a 1.6 multiplier to convert OC to OM, consistent with the modifications in the last review. 
G The revised IMPROVE equation in Equation D-2 was modified to use a 1.6 multiplier to convert OC to OM, consistent with the modifications in the last review. 
H Light extinction was calculated with the coarse mass fraction removed from the equation. 
I Although the addition of coarse mass increases the daily extinction calculation, it is possible for the 90th percentile value to decrease due to a different set of days having valid 
measurements of both PM2.5 chemical composition and PM10-2.5. 
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Figure D-2. Comparison of 90th percentile of daily light extinction, averaged over three 

years, and 98th percentile of daily PM2.5 concentrations, averaged over three years, for 

2015-2017 using the revised IMPROVE equation. (Note: Dashed lines indicate the level of 

current 24-hour PM2.5 standard (35 µg/m3) and the target level of protection identified for the 

3-year visibility metric (30 dv).) 
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ATTACHMENT: SUMMARY OF VISIBILITY PREFERENCE 

STUDIES 

 

The preference studies available at the time of the last review were conducted in four 

urban areas. Three western preference studies were available, including one in Denver, Colorado 

(Ely et al., 1991), one in the lower Fraser River valley near Vancouver, British Columbia, 

Canada (Pryor, 1996), and one in Phoenix, Arizona (BBC Research & Consulting, 2003). A pilot 

focus group study was also conducted for Washington, DC (Abt Associates, 2001), and a 

replicate study with 26 participants was also conducted for Washington, DC (Smith and Howell, 

2009).14 Study specific details for these preference studies are shown in Table D-9. 

 

  

                                                           
14 The replicate study with 26 participants was one test group of three included in Smith and Howell (2009). This 

study also included two additional test groups to assess varying light extinction conditions using the same scene 

as was used in the first test group. Study details in Table D-9 reflect all three test groups included in the study. 

However, for reasons described in section 2.5.2 of U.S. EPA (2010), results from the other two test groups were 

not included in the EPA’s evaluation of levels of acceptable visibility impairment from the preference studies. 
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Table D-9. Summary of visibility preference studies. (Adapted from Table 9-2 in U.S. EPA, 

2009). 

 
Denver, CO Phoenix, AZ 

Vancouver, British 
Columbia 

Washington, DC Washington, DC 

Report Date 1991 2003 1996 2001 2009 

Duration of 
session 

 45 minutes 50 minutes 2 hours  

Compensation None $50 None $50 None 

# focus group 
sessions 

16 a 27 b 4 1 3 tests 

# participants 214 385 180 9 64 

Age range Adults 18-65+ University students 27-58 Adults 

Annual or 
seasonal 

Wintertime Annual Summertime Annual Annual 

# and type of 
scene 
presented 

Single scene of 
downtown 
Denver with the 
mountains in the 
south in the 
background 

Single scene of 
downtown 
Phoenix with the 
Estrella 
Mountains in the 
background, 42 
km max. distance 

Single scene from 
each of two suburbs in 
the lower Fraser River 
valley – Chilliwack and 
Abbotsford c 

Single scene of 
Potomac River, 
Washington Mall 
and downtown 
Washington, DC, 
8 km max. sight 

Single scene of 
DC Mall and 
downtown, 8 km 
maximum sight 

# total visibility 
conditions 
presented 

20 conditions (+ 
5 duplicates) 

21 conditions (+ 
4 duplicates) 

20 conditions (10 from 
each city) 

20 conditions (+ 
5 duplicates) 

22 conditions 

Source of 
slides 

Actual photos 
taken between 
9am and 3pm 

WinHaze Actual photos taken at 
1pm or 4pm 

WinHaze WinHaze 

Medium of 
presentation 

Slide projection Slide projection Slide projection Slide projection Slide projection 

Ranking scale 
used 

7 point scale 7 point scale 7 point scale 7 point scale 7 point scale 

Visibility range 
presented (dv) 

11-40 15-35 Chilliwack: 13-25 
Abbotsford: 13.5-31.5 

9-38 9-45 

Health issue 
directions 

Ignore potential 
health impacts; 
visibility only 

Judge solely on 
visibility, do not 
consider health 

Judge solely on 
visibility, do not 
consider health 

Health never 
mentioned, 
“Focus only on 
visibility” 

Health never 
mentioned, 
“Focus only on 
visibility” 

Key questions 
asked 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•“How much 
haze is too 
much?” 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•How many days 
a year would this 
picture be 
“acceptable” 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

•If this hazy, how 
many hours 
would it be 
acceptable (3 
slides only) 

•Valuation 
question 

•Rank VAQ (1-7 
scale) 

•Is each slide 
“acceptable” 

Mean dv found 
“acceptable” 

20.3 23-25 Chilliwack: ~23 
Abbotsford: ~19 

~20 
(range 20-25) 

~30 

a No preference data were collected at a 17th focus group session due ot a slide projector malfunction. 
b The 27 focus groups were conducted in 6 neighborhood locations in Phoenix, with 3 focus groups held in Spanish. 
C Chilliwack scene includes downtown buildings in the foreground with mountains in the background up to 65 km away. Abbotsford scene 
has fewer manmade objects in the foreground and is primarily a more rural scene with mountains in the background up to 55 km away. 
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