Assessing Geographic Heterogeneity and Variable Importance in an Air
Pollution Data Set

S. Stanley Young* and Jessie Q. Xia

National Institute of Statistical Sciences, RTP, NC 27709, USA

Received 30 April 2013; revised 4 July 2013; accepted 8 July 2013
DOI:10.1002/sam.11202
Published online in Wiley Online Library (wileyonlinelibrary.com).

Abstract:  In this article, we examine data on the relationship between air quality and mortality in the United States using a
published observational data set. Observational studies are complex and open to various interpretations. We show that there is
geographic heterogeneity for the effect of air pollution on longevity. We also show that the relative importance of air pollution
on longevity is much less than that of income or smoking. Most often authors do not address the relative importance of
variables under consideration, choosing instead to concentrate on specific claims of significance. Yet good policy decisions
require knowledge of the magnitude of relevant effects. Our analysis uses three methods for determining variable importance,
showing how this puts predictor variables into a context that supports sound environmental policymaking. In particular, using
both regression and recursive partitioning, we are able to confirm a spatial interaction with the air quality variable PM2.5; there
is no significant association of PM2.5 with longevity in the west of the United States. We also determine the relative importance
of PM2.5 in comparison to other predictor variables available in this data set. Our findings call into question the claim made

by the original researchers. © 2013 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 6: 375-386, 2013
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1. INTRODUCTION

Galileo’s Revenge is an ironically titled book by Peter
W. Huber [1] about junk science in the courtroom. Huber
makes the point that it is relatively easy to fool juries
and even judges. Here is the irony. Galileo (1564—-1642)
was a leader in the scientific revolution and championed
the heliocentric universe of Copernicus. For his trouble,
the Roman Inquisition, speaking for the society of the
time, showed him the rack and asked him to recant the
heliocentric universe. Huber seems to be saying that the
tables are now turned and it is junk science that is punishing
society. Cope and Allison [2] worry that White Hat Bias
is now a threat to the integrity of science reporting.
White Hat Bias is defined as ‘bias leading to distortion
of information in the service of what may be perceived
to be righteous ends’. Many decisions need to be made in
the analysis of an observational data set; there is rarely a
simple path from data, through analysis, to a claim. Guided
analysis and selective citation are examples of White
Hat Bias.
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The current policy paradigm is that air pollution, as
measured by small particles (those less than 2.5 um or
PM2.5), is killing people and it needs to be brought under
further regulatory control. At one point or another the
Environmental Protection Agency (EPA) and the California
Air Resources Board (CARB) speak of thousands or more
than 160,000 deaths attributable to PM2.5; see ref. 3. The
EPA and CARB base their case on statistical analysis of
observational data. But if that analysis is not correct, and
small-particle air pollution is not causing excess statistical
deaths, then the faulty science is punishing society through
increased costs and unnecessary regulation.

Pope et al. [4] cited eight studies (references 4—11
in their paper), saying, ‘Associations between long-term
exposure to fine particulate air pollution and mortality
have been observed ... more recently, in cohort-based
studies. . .. all support the view that relatively prompt and
sustained health benefits are derived from improved air
quality’. These citations appear unbalanced. For example,
Enstrom [5], after citing papers supporting an association
says, ‘Other cohort studies have also examined mortality
associations with PM2.5 and other pollutants ... with
somewhat different findings.” There were eight papers
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that Pope et al. referred to supporting an association
between pollution, PM2.5, and statistical deaths, and
four papers that Enstrom referred to that cast doubt on
the claim. Peng ef al. [6] commented, ‘For example, in
air pollution epidemiology, the national relative risk of
increased mortality is estimated to be 1.005 per 10 parts
per billion of 24-hour ozone. Remarkably, an integrated
analysis of mortality in 95 metropolitan areas can detect this
signal, which translates into thousands of excess deaths per
year given the universality of ozone exposure. Nevertheless,
the potential for unexplained confounding cannot be denied
for such a small relative risk’. For a review of animal and
human studies see ref. 7.

When this controversy was breaking out in the early
1990s, the EPA asked the National Institute of Statistical
Sciences to evaluate data from two cities, see ref. 8. They
commented on some of the difficulties, saying ‘The data
used in the analyses (meteorological conditions, particulate
levels, death counts) are observational; that is, data that
are measured and recorded without control or intervention
by researchers. Deducing causal relationships from obser-
vational data is perilous. A practical approach described
by Mosteller and Tukey involves considerations beyond
regression analysis. In particular, consideration should be
given to whether the association between particulate levels
and mortality is consistent across ‘“settings,” whether there
are plausible common causes for elevated particulate lev-
els and mortality, and whether the derived models reflect
reasonable physical relationships.” They then concluded,
‘...that the reported effects of particulates on mortality
are unconfirmed’. Essentially noting the same and addi-
tional difficulties, Smith et al. [9] agreed that the case for
a significant association of low-level air pollution with sta-
tistical deaths was unproven, ‘In summary, it is our view
that estimates of the association between ozone and mor-
tality, based on time-series epidemiologic analyses of daily
data from multiple cities, reveal important still-unexplained
inconsistencies and show sensitivity to modeling choices
and data selection. These inconsistencies and sensitivities
contribute to serious uncertainties when epidemiological
results are used to discern the nature and magnitude of pos-
sible ozone—mortality relationships or are applied to risk
assessment’ [10].

It was noted by Krewski et al. [11], who support the view
that a relationship exists between air pollution and statistical
deaths, that if there are effects, they are heterogeneous,
i.e. varying across the United States as shown in their
Figure 21, which is reproduced here as Fig. 1(a). Smith
et al. [9], using complex methods for ozone levels, also
noted that the effects were not constant across the United
States. We present their geo-map for the 8-hours and all-
year measurements as Fig. 1(b). In both geo-maps, there are
hot spots and vast areas where any affect of air pollution
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on mortality appears minimal to nonexistent; i.e. there is
geographic heterogeneity. From a statistical point of view,
the story could stop right here. There is interaction. Reliance
on a main effect of air pollution, PM2.5, and/or ozone is
not supported by the statistical analysis.

We were fortunate to obtain from Dr. C. Arden Pope III
the data used in his 2009 New England Journal of Medicine
paper. That data is comprehensive and allows us to address
two important questions. The first question is the relative
importance of air pollution relative to other factors with
respect to statistical deaths. In all of air pollution literature
that we have surveyed there is essentially no presentation
of such information. Yes, it is of interest to scientists to
determine if there is any effect of air pollution, but it should
also be important to decision makers to know its relative
importance with respect to other factors so that possible
tradeoffs can be considered. The second question concerns
regional differences in the air pollution and statistical death
relationship. Given Fig 1(a) and 1(b), it would be of interest
to know if there is evidence for differential effects in the
western United States as opposed to the East. Enstrom [5]
finds no effect in California, with a relative risk of 1.00 and
confidence limits of 0.98—1.02. His results are confirmed
by CARB consultant Professor Jerrett, with a relative risk
of 1.00 and confidence limits of 0.97—1.03. We compute
multiple analyses sweeping across the county from west
to east and show that one can ‘cut’ along the longitude
passing just west of Chicago and find no effect of PM2.5
to the west and a small effect of PM2.5 on statistical deaths
to the east. Both Styer et al. [8] and Smith e al. [9] make
the point if the effect of the pollutant is not consistent,
then it is unlikely that you have a causative agent.
We agree.

Pope et al. [4] suggest that PM2.5 is a statistically
significant cause of death uniformly across the United
States, so reducing PM2.5 will lead to improved life
expectancy. They tacitly take the position that PM2.5
should be reduced without regard to other variables that
impact mortality. We take the position that their reporting
and analysis is in support of the righteous end of saving
lives; they do not cite contrary papers, e.g. Enstrom [5],
and they ignore geographic heterogeneity, which they note
in Krewski et al. [11] and so their paper is consistent with
White Hat Bias. Based on our analysis, an alternative
interpretation is that PM2.5 exhibits different associations
with mortality in the eastern and western United States,
suggesting that a single national policy is not appropriate
across the entire country. In any case, the relative
importance of PM2.5 to statistical mortality, as compared
to other factors, should be taken into account by decision
makers. Following the methods used by Krsti¢ [12] we will
provide estimates of days of lives extended for changes in
PM2.5 and income.
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(a) The risk of mortality due to fine particles varies by location (Source: Krewski et al. [11].). (b) The risk of mortality from

ozone varies by location (Source: Personal communication from R. L. Smith ez al. [9]). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

In this article, we first describe the Pope ef al. [4] data
set. Next we describe two analysis methods, regression and
recursive partitioning (RP), that can be used to assess the
importance of predictor variables. Next we give a series
of results: evidence of geographic heterogeneity, variable
importance using three methods, and partial correlations
to help understand the predictors in the Pope data set.
Finally, we discuss our results and a number of literature
thoughts on the nature of science inference from complex
observational data.

2. DATA

Pope et al. [4] started with 2068 county units from which
215 county units in metropolitan areas were selected that
had matching PM2.5 data available. Four New York areas
were consolidated into one, so ultimately there were 211
records for 51 metropolitan areas within the United States.
Note that there are only 51 distinct PM2.5 measurement
stations; these were replicated as necessary and assigned
to 211 metropolitan areas. The response variable was the

Statistical Analysis and Data Mining DOI:10.1002/sam
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Table 1. Variables reported and use by Pope et al. for regression
analysis. NB: All variables are given as change from years ~1980
to ~2000.

Variable Comment

Life Expectancy, life-table
methods

Per capita income (in
thousands of $)

Lung Cancer (Age
standardized death rate)

COPD (Age standardized
death rate)

Response variable (Change LE)

Inflation adjusted to the year
2000 (Income)
Surrogate for smoking (LCan)

Surrogate for smoking. COPD
denotes chronic obstructive
pulmonary disease

High-school graduates (hs)

(proportion of population)

PM2.5 (ug/m?) Particulate matter, aerodynamic
diameter < 2.5 um

Black population (proportion  Self reported (black)
of population)

Population (in hundreds of (pop)
thousands)

5-Year in-migration Five-year in-migration refers to
(proportion of population) the proportion of the
(mig) population who did not reside

in the county 5 years earlier.

Hispanic population Self reported (hisp)
(proportion of population)

Urban residence (proportion
of population)

(urban)

Table 2. Means and standard deviations for the 11 variables in
the Pope data set.

Variable Mean SD
1 Change LE 2.7312 0.9167
2 Lecan_d 2.3455 2.7726
3 copd_d 4.4397 2.4358
4 Change Income 8.5069 3.1608
5 Change PM 6.5477 2.9151
6 hs_d 0.1872 0.1453
7 black_d 0.0176 0.0565
8 hisp_d 0.0333 0.0431
9 Pop_d 0.9948 2.2599
10 urban_d 0.2002 0.1800
11 mig_d —0.0063 0.0613

change in age-adjusted mortality from the early 1980s to
the late 1990s. And there were 10 predictor variables; see
Table 1. The predictor variables are also the change over
time. For example, change in income is ‘income 2000 minus
income 1979’. Means and standard deviations for these
variables are given in Table 2. Partial correlations among
the variables are given in Table 3. The change in PM2.5
is the same for each unit within a metropolitan area. The
data used in this article were obtained from Professor Pope
and will be posted to http://www.datadryad.org. We also
provide the data set consolidated to 51 metropolitan areas.
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3. METHODS

3.1. Introduction

We use two methods of model fitting: linear regression
and RP. Some of the many potential problems with
regression methods are covered by Glaeser [13]. A review
of regression variable importance measure is given by
Nathans et al. [14]. RP is also used as it is robust to
nonlinear relationships. The Golden Helix implementation
of single and multiple tree RP is described in their user
manual, HelixTree manual [15] available at http://www.
goldenhelix.com/pdfs/HelixTreeManual.pdf.

3.2. Regression

The linear regression model of the following form is
considered:

Y=83+pXi+ X+ -+ poXio+e, (1)

where Y represents the change of life expectancy from the
early 1980s to the late 1990s; X to Xjo represent the
10 covariates considered in Pope et al. [4], including the
changes of PM2.5, income, high school graduate rate, and
two proxy indicators for smoking, and so on, which are
listed in Table 1. The residuals e are assumed to have an
independent, identical Gaussian distribution with mean 0

and variance o 2.

3.3. Step-Wise Regression

For the purpose of either variable selection or variable
importance assignment, step-wise regressions are often
conducted. NB: the order of entry is important and later
we use a method that averages all orders. In the forward
selection mode, the simplest model without any regression
variables is first fitted:

Y=p+e

Then one regression variable is added to the model,
forming a second model:

Y =P8+ BiXi+e

The decrease of the residual sum of squares r; is assigned
to the regression variable X;. This procedure is repeated,
until all 10 variables enter the 11th model. Eventually, there
will be a vector of residual sum of squares (71, 2, ..., r10)
for the 10 regression variables. If all regression variables
are independent, the vector will be unique regardless of
the sequence of the variables entering the linear model in
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Table 3. Partial correlations among the variables in the data set adjusted over all pairs of other variables. PM2.5 partial correlations
were not significantly associated with any of the other variables, Bonferroni adjusted.

Change Change Change
Variable LE Lecan_d copd_d Income PM hs_d black. d hisp.d Pop_d wurban.d migd
Change LE 1.000 —0.263 —0.237 0.412 0.147 0.000 —0.090 0.021 0.058 0.001 0.001
Lcan_d —0.263 1.000 0.291 —-0.027 —-0.074 —0.183 —0.062 0.005 —0.163 0.001 0.082
copd_d —0.237 0.291 1.000 —0.032  —0.028 —-0.257 -0.079 —-0.067 —0.015 0.182 0.013
Change Income 0412  -0.027 —0.032 1.000  —0.005 0.423 -0.016 —0.002 —0.009 0.167 0.020
Change PM 0.147  —-0.074 —0.028 —0.005 1.000 —0.002 0.001 —0.000 —0.112 —0.000 0.001
hs_d 0.000  —0.183 —0.257 0.423  —0.002 1.000 0.089 0.009 0.077 —-0.057 —0.328
black_d —-0.090 —0.062 —-0.079 —0.016 0.001 0.089 1.000 0.012 —-0.001 —0.069 —0.006
hisp_d 0.021 0.005 —0.067 —0.002  —0.000 0.009 0.012 1.000 0.395 —0.149 —0.000
Pop_d 0.058 —-0.163 —0.015 —0.009 —0.112 0.077 —0.001 0.395 1.000 —0.010 —0.097
urban_d 0.001 0.001 0.182 0.167  —0.000 —-0.057 —-0.069 —0.149 -0.010 1.000  —0.062
mig_d 0.001 0.082 0.013 0.020 0.001 —-0.328 —0.006 —0.000 —0.097 —0.062 1.000

Eq. (1). However, if there are correlated variables, their r;
values will depend on the order that the variable enter the
linear model.

3.4. Regression Variable Importance

Variable importance estimates are achieved by decom-
posing var(Y) into the parts attributable to the individ-
val X;s. There are several methods of variable impor-
tance assignment based on the linear regression models
shown in Eq. (1), as described in Lindeman et al. [16],
Gromping [17-19], and Pratt [20] among others, Nathans
et al. [14]. In our article, we use the method proposed by
Lindeman, Merenda, and Gold (LMG). It considers all the
10! = 3,628,800 permutations of the stepwise regression
using the 10 regression variables. The method is computa-
tionally intensive, but there is free code to do the analysis
in R, see ref. 17. Let (rl(k), rz(k), e, rl(l(;)) represent the
kth variable importance assignment for the regression vari-
ables; the final variance importance assignment is just the
average importance over all the permutations:

10!

1
> ritk).i=1.....10.
k=1

= To1 2

T

For two correlated variables, a single stepwise regression
will diminish the relative importance of the variable that
enters the regression model at a later time; the LMG method
averages across all possible full-term stepwise regressions
and LMG claim their method assigns a more balanced value
of importance to both variables.

We also compute the method of Pratt [20], following his
example, which gives the fraction of the standard deviation
of the response attributable to each of the predictors. We
chose to omit those variables that were not significant
(denoted by NS’ in the results) at the significance level
of 0.05, without multiplicity adjustment.

3.5. Partial Correlations

A partial correlation coefficient quantifies the correlation
between two variables when adjusted for the linear effects
of one or more other variables; see ref. 21. We give the
partial correlations among each of the pairs of variables,
conditioned on all possible pairs of other variables, in
Table 3. The significance of each partial correlation was
determined using the method by Fisher [22]. A Bonferroni
adjusted p-value, 0.05/55 = 0.0091, was used to highlight
larger partial correlations. A p-value plot, as in Schweder
and Spjgtvoll [23], was used to help evaluate the multiple
results.

3.6. Single Tree

RP is a data mining method useful for uncovering
complicated relationships in large, complex data sets.
These relationships may involve thresholds, interactions,
and nonlinearities. Any or all of these relationships impede
an analysis based on the standard assumptions in multiple
linear regression. RP was originally designed for automatic
interaction detection; see ref. 24. The method has been
subject to much development and is widely used for
complex modeling situations; see ref. 25. The basic analysis
strategy of recursive partitioning is simple and easily
understood with an example. Consider an analysis of the
Pope data set for the eastern United States; see Fig. 2.
The 185 observations from the Eastern United States are
in the top node, denoted by N. Also given within a node
are summary statistics that show the mean (), standard
deviation (s), and multiplicity adjusted p-values used in
the splitting process. All potential predictor variables are
examined and the variable with the smallest adjusted
p-value is used to split the node into two or more daughter
nodes. In this case, Change Income is the variable with
the smallest adjusted p-value. Segmentation is used to find
the optimal ‘cut points’, making in this case three daughter

Statistical Analysis and Data Mining DOI:10.1002/sam
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Change LE
n= 185
u= 2.69
s= 0.94
P= 1.49E-16
aP= 6.11E-09
bP= 6.72E-08
N
i
Change Income Change Income Change Income
X <=6.92 6.92<x<=104 10.4 <x
n= 60 n= 83 n= 42
u= 2.1 u= 2.69 u= 3.56
s= 0.8 s= 0.83 s= 0.62
P=5.81E-05 P= 4.85E-05 P= 5.88E-05
aP= 4.33E-03 aP= 4.55E-03 aP= 3.36E-03
bP= 4.76E-02 bP= 5.01E-02 bP= 3.69E-02
N1 N2 N3
[f] [1 [1
copd_d copd_d Lean_d Lean_d copd_d copd_d
X <=6.03 6.03 <x x<=1.59 1.59 <x X <=247 247 <x
n= 36 n= 24 n= 23 n= 60 n= 13 n= 29
u= 2.4 u= 1.6 u= 33 u= 25 u= 4.1 u= 33
s= 0.7 s= 0.7 s= 0.7 s= 0.8 s= 0.4 s= 0.6
NI11 Ni12 N21 N22 N31 N32
[1 [ [ [i [i [i

Fig. 2 Recursive partitioning analysis selects the best predictor, Change in Income, and makes two ‘cuts’ splitting the predictor into three
groups with Life Expectancy increasing with increased income. Each of the three nodes is split in turn by variables that are surrogates
for smoking, Lung Cancer and COPD. The difference of Life Expectance from the node with lowest increase in income to the highest is
about 1.5 years. Lung Cancer and COPD confer about 0.8 years in increased life expectancy. Three p-values are given: the raw p-value,
P, is unadjusted; aP is adjusted for the number of ways to cut the predictor into categories; bP is adjusted for cuts and variables available

for making a cut.

nodes, denoted by N1, N2, and N3, respectively. It is a user
option to control the maximum number of cut points. We set
the number of cut points to a maximum of two. The p-value
for this cut is adjusted to reflect the number of variables
available and the number of ways the segmentation can
be done, as well as the number and placement of the cuts.
Each of the daughter nodes is examined in turn and is split if
significant. Nodes N1 and N3 use COPD to split and Node
N2 is split using Lung Cancer. Pope et al. [4] used both
COPD and Lung Cancer as surrogates for smoking. Each
node is split in turn and the recursive splitting stops when
there are no statistically significant splits to be made. Notice
that at each level of the tree building the standard deviation
in each node gets smaller as splitting progresses. Tracing
from N to N1 to N11 we see the standard deviations
decrease as 0.94, 0.8, and 0.7, respectively.

3.7. Multiple Trees

There are advantages (more accurate predictions and
the ability to assess variable importance) to computing
and using multiple trees in the analysis of a data set;
see refs. 26,27. Multiple trees can be computed by
sampling with replacement multiple random samples from
the data set and computing a tree for each such sample;
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see ref. 28. Alternatively, at a split, from among the valid
split variables, one can randomly sample one variable to
make the split; see refs. 26,27. Once there are multiple
trees, they can be used to determine variable importance
in two ways. One can compute how often a variable is
used over all the multiple trees. Alternatively, the split
variable controls all the samples below it so, across the
multiple trees, the fraction of the observations controlled
by a variable can be computed. The latter method is used
by HelixTree [15] from Golden Helix (Bozeman, MT) and
we report its results.

4. RESULTS

It is perhaps not appreciated by the general scientific
community, but it is well-known among experts that air
quality has a differential effect on mortality in eastern
and western United States with essentially no effect in
the West; see refs. 5,9,11,29. As these results are based
on several data sets with analyses done by several teams
of investigators, the no-detectable-effect on mortality of
PM2.5 in the West appears to be real. One explanation is
that PM2.5 is based on physical particle size, not specific
chemical composition. Bell ef al. [30] report that there
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the online issue, which is available at wileyonlinelibrary.com.]

is both temporal and spatial variation in the chemical
composition of PM2.5. With the Pope et al. [4] data set
we confirm the geographic heterogeneity of PM2.5 health
effects, and that there is no detectable effect in the western
United States. Figure 3 gives scatter plots of change in
Life Expectancy versus PM2.5 for the eastern and western
United States. A linear regression for the eastern and
western subsets finds a significant increase in mortality
for the East, but not for the West; the slopes for the two
regression lines are significantly different from one another,
with p-value 0.0063. We selected Denver as the division
of West/East (Figs 4 and 5). The choice of Denver was
arbitrary. To better understand the effect of PM2.5 across
the United States, we computed the regression of longevity
on PM2.5, stepping across the United States from west to

east and we give the slope of the regression line as we go;
see Fig. 6. Start in the West and do a regression for western
most k points. Also compute the regression for the points to
the east of the k points. Now move to k + 1, then k + 2, and
so on moving eastward. We add more points so we should
have more power for the West and decreasing power for the
East. But if there is East/West interaction, then any effect is
attenuated. So the Pope ef al.’s claim that life expectancy
increases with a decrease in PM2.5 is supported in eastern
United States, but not in the western United States.
Variable importance for the eastern and western United
States is computed using the regression method of LMG and
the RP method in HelixTree [15]. The variable importance
results are given in Table 4. The predictor variables are
given in order of their importance in multiple linear

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 6 Slopes of PM2.5 regression line cutting the country into West and East along a line crossing a city. Start in the West on the left
of the figure. Two regression coefficients are given for each cut point. The blue points are for the city and for the points to the west of
the cut point. The red points are for the points to the east of the cut point. Initially there are few cities that make up the blue points and
many for the red points. When you get to Cleveland the regression coefficients are equal West and East. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

regression in the eastern United States. Increase in income
is the most important variable for predicting improved
mortality, in both eastern and western United States, and
for both the regression and the RP variable importance
methods. Lung Cancer and COPD are about equally
important in the eastern United States. COPD and PM2.5
are relatively unimportant in the western United States. The
Percent Graduating from High School and PM2.5 are about
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equally important in the eastern United States. Regression
analysis indicates that %Black and Population Density
are important in the western United States, but not very
important in the eastern United States. Both regression and
RP put the importance of PM2.5 in fourth place among the
predictors, and roughly equal in importance to a high school
education. Both linear regression and RP indicate that
PM2.5 is unimportant in the western United States (Fig. 7).
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Table 4. Variable importance. The rows are sorted by importance in East United States. ‘Regression” importance by variance explained
using linear regression over all 10! permutations of the order of the variables. ‘Recursive Partitioning’ is importance by the proportion of
the samples controlled by a variable using 1000 trees. Note, in bold, the differences in regression importance for a number of the predictor
variables between East and West. For Recursive Partitioning in the West, there was only one significant split, on Income; see Fig. 6.

Regression Recursive Partitioning Pratt
Variable East West United States East West United States United States
Income 0.2792 0.3996 0.3390 0.2865 1.0000 0.2108 21.70
COPD 0.1789 0.0216 0.1621 0.2298 0.0000 0.1199 9.83
LungCancer 0.1697 0.1806 0.1768 0.2385 0.0000 0.1467 9.40
PM2.5 0.1095 0.0299 0.0732 0.1118 0.0000 0.1302 3.78
HighSchool 0.1013 0.0859 0.0997 0.1097 0.0000 0.1066 NS
%Black 0.0620 0.1250 0.0537 0.0000 0.0000 0.0319 2.12
PopDensity 0.0370 0.1171 0.0418 0.0000 0.0000 0.0793 2.95
JHispanic 0.0281 0.0065 0.0177 0.0237 0.0000 0.0136 NS
Migration 0.0240 0.0120 0.0228 0.0000 0.0000 0.0202 0.12
Urban 0.0103 0.0217 0.0133 0.0000 0.0000 0.0105 NS
Change LE life expectancy and change in income; change in percent
Hispanic and change in population; and so forth. Notable
0 2% is the lack of partial correlation between change in PM2.5
- 29 and any of the other variables at the multiplicity-adjusted
5= 0.8 0.0091 level.

- 4.90E - 06 In complex studies, the p-value plot is often helpful
aP= 271E—-04 to get a sense of ‘Is the observed effect of PM2.5 larger
bP= 3.25E-03 than chance?” see Fig. 8. Here we plot the ranked p-values

N for the partial correlations against the integers. A 45° line
|T indicates that there is nothing of interest, whereas points
off the line, on the blade of the hockey stick, indicate real
effects.
5. DISCUSSION
Change Income Change Income
Xx<=9.19 919 < x The problems of observational studies have been well-
n= 20 n= 6 known for many years; see refs. 32,33 for discussion. But
u= 26 u= 41 there has been little or no progress in adopting better
5= 0.5 5= 0.6 methods; see refs. 34,35. The end result is that most claims
that are based on observational data fail to replicate on
N1 N2 .
|T |_I retesting; see refs. 36,37.

Fig. 7 Recursive Partitioning analysis of observations in the
western United States. The only significant predictor of Change
in Life Expectancy is Change in Income. Those that had an
increase in income of over $9.19k from approximately 1980 to
approximately 2000 had an increase in life expectancy of 4.1 years
versus 2.6 years for those that increase their income by less than
or equal to $9.19k.

The second-order partial correlations, as described by de
la Fuente et al. [31], were computed between the pairs of
the 11 variables in the data set and tabulated in Table 3.
Among the partial correlations there are a number of
relatively large and expected correlations; e.g. change in
income and change in high school graduates; change in

The association between PM2.5 with mortality, when
compared to the associations between other variables
and mortality, shows that the importance of PM2.5 is
relatively small. There is no measurable association in
the western United States, although it accounts for about
11% of the variance in the eastern United States. The
Pratt regression analysis across the entire United States
has PM2.5 explaining about 4% of the standard deviation.
The partial correlations in Table 3 are given primarily to
get a general sense of the complex correlation structure of
the data set, but they too indicate that PM2.5 is relatively
unimportant.

The examination of partial correlations is useful for
examination of relationships among predictor variables.

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 8 P-value plot of the 55 p-values for the partial correlations. Given as a dotted line is the nominal significance level of 0.05. Given
as the dashed line is the Bonferroni significance level of 0.0091. An ‘x” marks the p-value for the partial correlation of change in life
expectancy and change in PM2.5. The gap appears unusual and it unexplained.

Consider Fig. 8, where we plot the ranked p-values for
the partial correlations against the integers. The partial
correlation of PM2.5 with mortality, marked as an ‘x’ is
not significant in the context of all the partial correlations,
but it is significant if multiple testing issues are ignored.
There are many other partial correlations better supported
by the data. Very curiously, there is a large unexplained
gap in the points falling on a 45° line. We provide a partial
correlation diagram, Fig. 9, to visualize the links among the
variables. This diagram suggests a straightforward strategy.
One could increase education efforts with the idea of
increasing income and thereby increasing longevity.
While conducting our reanalysis of the Pope data set a
pertinent publication appeared, Krsti¢ [12]. Krsti¢ focused
his reanalysis on the data set of 51 metropolitan regions.
He noticed that the statistical significance of PM2.5 failed
if he removed what he considered an outlier observation,
Topeka, Kansas. We follow the calculations given in Krsti¢
to estimate expected change in longevity for a change in
PM2.5 or income. Change in longevity is computed as the
regression coefficient times the change in either PM2.5 or
Income. Krsti¢ also adjusts this number by multiplying the
result by R”. The results of these calculations in terms of
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Table 5. Change in days of life for changes in PM2.5 and
Income computed as the regression coefficient times the change in
PM2.5 or Income. Following Krsti¢, these changes are weighted
by the R2 for PM2.5 and Income to give Days K.

Days Days K
SD  Days PM2.5 Income Days K PM2.5 Income
0.5 38.5 95.5 2.0 30.4
1 77.1 190.9 4.0 60.7
2 154.2 381.9 8.0 121.4

standard deviations are given in Table 5. For both PM2.5
and income, the days saved depends on the value of the
change in the variable. For both PM2.5 and income a
change of one standard deviation seems representative of
policy goals. Again, income is more important than PM2.5.

All analysis indicates that changes in income and several
other variables are more influential than PM2.5, so pol-
icymakers might better focus on improving the economy,
reducing cigarette smoking, and encouraging people to pur-
sue education. With no adjustment to the significance level
for multiple testing, for example, the partial correlation of
change in life expectancy and PM2.5 is 0.147 and this is
significant at the 0.05 (unadjusted) level. Since we provide
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Fig. 9 Partial correlation diagram. The thicker the line the
stronger the partial correlation. Positive partial correlations are
red and negative are blue. Focus on Change LE, the change
in life expectancy. Income is the most important variable,
then smoking proxies, COPD and Lung cancer. High-school is
positively associated with increased income, as expected. People
migrate to metropolitan area with increasing income. Urbanization
increases where income increases. The strongest path to increased
life expectancy is from high-school to income to increase life
expectancy. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

the data set, an interested reader can produce variations of
this partial correlation table as well as other analyses.

The classic view of science is expressed by Feynman[38]:
‘In summary, the idea is to try to give all the information
to help others to judge the value of your contribution;
not just the information that leads to judgment in one
particular direction or another’. In contrast, the scientist
as advocate is expressed in the Stanford News headline
of August 11, 2011, ‘Scientists must leave the ivory
tower and become advocates, or civilization is endangered,
says Stanford biologist Paul Ehrlich® The sub-headline
continued, ‘Scientists, especially ecologists, have to be
more active in explaining the meaning of their research
results to the public if human behavior is going to change
in time to prevent a planetary catastrophe’ [39].

Complex modeling presents its own problems. Friedrich
Hayek [40] in his Nobel Prize lecture of 1974 described
the situation of complex modeling outside the area of the
physical sciences where theory offers guidance on which
variables need to be measured. In nonphysical sciences,
one might simply use available measurements. In physical
sciences the number of relevant variables can be small and
the relationships simple, whereas in complex biological
systems both the number of variables and how they are
related can be very complex, which Hayek called essential
complexity. With a large number of variables and complex
relationships, laymen have essentially no ability to discern
the validity of the model. Even experts will have trouble
evaluating claims based on models. Debunking invalid

models is difficult because the models are complex and
because people and institutions tend to become invested
in those models. We summarize the Hayek argument:
There are multiple factors that are likely to impinge on a
phenomenon of interest and many of these factors may not
be measured or even measurable. Outside of the physical
sciences we have little theory to guide us on what needs
measuring. These unavailable factors can lead to biases that
may be on the same order of magnitude as the phenomenon
under study. In our case, the study of factors associated with
mortality, the mechanism is one of essential complexity.
The statistical modeling process is not simple, so even
experts find it difficult to judge the validity of the analysis.
We think the link between air pollution and longevity lines
up nicely with Hayek’s essential complexity. Pope et al.
claim that PM2.5 is killing people. Krsti¢ is on the other
side, ‘The observed loss of statistical significance in the
correlation between the reduction of ambient air PM2.5
concentrations and life expectancy in metropolitan areas of
the United States, after removing one of the metropolitan
areas from the regression analysis, may raise concern for
the policymakers in decisions regarding further reductions
in permitted levels of air pollution emissions.” Given the
lack of effect in the West and the greater importance of
other predictors, we agree with Krsti¢ that this data set does
not support the claim that decreasing PM2.5 will increase
longevity. If the cost of decreasing PM2.5 is high enough
there could well be a net loss in longevity.
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